/usr/share/gap/lib/schur.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | #############################################################################
##
#W schur.gi GAP library Werner Nickel
#W Alexander Hulpke
##
#Y (C) 2000 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the implementation of the methods for SchurMultiplier
## and Darstellungsgruppen.
##
## Take a finite presentation F/R for a group G and compute a presentation
## of one of G's representation groups (Darstellungsgruppen, Schur covers).
## This is done by assembling a presentation for F/[R,F] and then finding a
## generating set for a complement C/[R,F] for the intersection of R and
## [F,F] in R/[R,F].
##
## No attempt is made to reduce the number of generators in the
## presentation. This can be done using the Tietze routines from the GAP
## library.
BindGlobal("SchurCoverFP",function( G )
local g, i, m, n, r, D, I, M, M2,fgens,rels,gens,Drels;
fgens:=FreeGeneratorsOfFpGroup(G);
rels:=RelatorsOfFpGroup(G);
n := Length( fgens );
m := Length( rels );
D := FreeGroup( n+m );
gens:=GeneratorsOfGroup(D);
Drels := [];
for i in [1..m] do
r := rels[i];
Add(Drels, MappedWord( r, fgens, gens{[1..n]} ) / gens[n+i] );
od;
for g in gens{[1..n]} do
for r in gens{[n+1..n+m]} do
Add( Drels, Comm( r, g ) );
od;
od;
M := [];
for r in rels do
Add( M, List( fgens, g->ExponentSumWord( r, g ) ) );
od;
M{[1..m]}{[n+1..n+m]} := IdentityMat(m);
M := HermiteNormalFormIntegerMat( M );
M:=Filtered(M,i->not IsZero(i));
r := 1; i := 1;
while r <= m and i <= n do
while i <= n and M[r][i] = 0 do
i := i+1;
od;
if i <= n then r := r+1; fi;
od;
r := r-1;
if r > 0 then
M2 := M{[1..r]}{[n+1..n+m]};
M2 := HermiteNormalFormIntegerMat( M2 );
M2:=Filtered(M2,i->not IsZero(i));
for i in [1..Length(M2)] do
Add(Drels,LinearCombinationPcgs(gens{[n+1..n+m]},M2[i]));
od;
fi;
# make the group
D:=D/Drels;
return D;
end);
InstallMethod(SchurCover,"of fp group",true,[IsSubgroupFpGroup],0,
SchurCoverFP);
InstallMethod(EpimorphismSchurCover,"generic, via fp group",true,[IsGroup],1,
function(G)
local iso,
hom,
F,D,p,gens,Fgens,Dgens;
## Check to see if G is trivial -- if so then just return
## the map from the trivial FP group and G.
if IsTrivial(G) then
F := FreeGroup(1);
D := F/[F.1];
return GroupHomomorphismByImages(
D, G,
GeneratorsOfGroup(D), Elements(G));
fi;
##
##
iso:=IsomorphismFpGroup(G);
F:=ImagesSource(iso);
Fgens:=GeneratorsOfGroup(F);
D:=SchurCoverFP(F);
# simplify the fp group
p:=PresentationFpGroup(D);
Dgens:=GeneratorsOfPresentation(p);
TzInitGeneratorImages(p);
TzOptions(p).printLevel:=0;
TzGo(p);
D:=FpGroupPresentation(p);
gens:=TzPreImagesNewGens(p);
Dgens:=List(gens,i->MappedWord(i,Dgens,
Concatenation(Fgens,List([1..(Length(Dgens)-Length(Fgens))],
j->One(F)))));
hom:=GroupHomomorphismByImagesNC(D,G,GeneratorsOfGroup(D),
List(Dgens,i->PreImagesRepresentative(iso,i)));
Dgens:=TzImagesOldGens(p);
Dgens:=List(Dgens{[Length(Fgens)+1..Length(Dgens)]},
i->MappedWord(i,p!.generators,GeneratorsOfGroup(D)));
SetKernelOfMultiplicativeGeneralMapping(hom,SubgroupNC(D,Dgens));
return hom;
end);
# compute commutators and their images so that we know the image on `mul',
# create out relations v=v^g.
BindGlobal("CommutGenImgs",function(pcgs,g,h,mul)
local u,a,b,i,j,c,x,y;
u:=TrivialSubgroup(mul);
a:=[];
b:=[];
x:=One(mul);
y:=One(h[1]);
repeat
for i in [1..Length(g)] do
for j in [1..i-1] do
c:=Comm(g[i],g[j]^x);
if not c in u then
Add(a,c);
Add(b,Comm(h[i],h[j]^y));
u:=ClosureGroup(u,c);
if IsSubgroup(u,mul) then
a:=CanonicalPcgsByGeneratorsWithImages(pcgs,a,b);
return List(GeneratorsOfGroup(mul),
i->i/PcElementByExponentsNC(a[2],ExponentsOfPcElement(a[1],i)));
fi;
fi;
od;
od;
#in rare cases we also need commutators of conjugates.
if Size(mul)=1 then
return [];
else
Info(InfoSchur,2,"the commutators do not generate!");
i:=Random([1..Length(g)]);
x:=x*g[i];
y:=y*h[i];
fi;
until false;
end);
InstallGlobalFunction(SchuMu,function(g,p)
local s,pcgs,n,iso,H,l,cov,der,pco,ng,gens,imgs,ran,zer,i,j,e,a,
mult,rels,de,epi,mul,hom,dc,q,qs,mq;
s:=SylowSubgroup(g,p);
if IsCyclic(s) then
return InverseGeneralMapping(IsomorphismPcGroup(s));
fi;
pcgs:=Pcgs(s);
n:=Normalizer(g,s);
l:=LogInt(Size(s),p);
# compute a Darstellungsgruppe as PC-Group
de:=EpimorphismSchurCover(s);
# exponent of M(G) is at most p^(n/2)
epi:=EpimorphismPGroup(Source(de),p,PClassPGroup(s)+Int(l/2));
cov:=Range(epi);
mul:=Image(epi,KernelOfMultiplicativeGeneralMapping(de));
if Size(mul)=1 then
return InverseGeneralMapping(IsomorphismPcGroup(s));
fi;
# get a decent pcgs for the cover
pco:=List(pcgs,i->Image(epi,PreImagesRepresentative(de,i)));
Append(pco,Pcgs(mul));
pco:=PcgsByPcSequenceNC(FamilyObj(One(cov)),pco);
# the induced action of n on the derived subgroup of the cover:
# we prescribe images on the commutator factor group. These may not be
# entirely correct -- multiplicator elements are missing. However on [G,G]
# they are unique -- the wrong central parts cancel out
# (use Burnside's basis theorem)
der:=DerivedSubgroup(cov);
ng:=GeneratorsOfGroup(n);
gens:=[];
imgs:=List(ng,i->[]);;
ran:=[1..Length(pcgs)];
zer:=ListWithIdenticalEntries(Length(pco)-Length(pcgs),0);
for i in pco do
Add(gens,i);
a:=PcElementByExponentsNC(pcgs,ExponentsOfPcElement(pco,i){ran});
for j in [1..Length(ng)] do
e:=ExponentsOfPcElement(pcgs,a^ng[j]);
Append(e,zer);
Add(imgs[j],PcElementByExponentsNC(pco,e));
od;
od;
# now we add new relators: x^g=x for all central x
rels:=TrivialSubgroup(cov);
for j in [1..Length(ng)] do
# extend homomorphically
rels:=ClosureGroup(rels,CommutGenImgs(pco,gens,imgs[j],mul));
od;
if Size(rels)=Size(mul) then
# total vanish
return InverseGeneralMapping(IsomorphismPcGroup(s));
fi;
# form the quotient, make it the new cover and the new multiplicator.
hom:=NaturalHomomorphismByNormalSubgroupNC(cov,rels);
mul:=Image(hom,mul);
cov:=Image(hom,cov);
pco:=List(pco{[1..Length(pcgs)]},i->Image(hom,i));
Append(pco,Pcgs(mul));
pco:=PcgsByPcSequenceNC(FamilyObj(One(cov)),pco);
epi:=GroupHomomorphismByImagesNC(cov,s,pco,
Concatenation(pcgs,List(Pcgs(mul),i->One(s))));
SetKernelOfMultiplicativeGeneralMapping(epi,mul);
# now extend to the full group
rels:=TrivialSubgroup(cov);
dc:=List(DoubleCosetRepsAndSizes(g,n,n),i->i[1]);
i:=1;
while i<=Length(dc) and Index(mul,rels)>1 do
if Order(dc[i])>1 then # the trivial element will not do anything
q:=Intersection(s,ConjugateSubgroup(s,dc[i]^-1));
if Size(q)>1 then
qs:=PreImage(epi,q);
# factor generators
gens:=GeneratorsOfGroup(qs);
# their conjugates
imgs:=List(gens,j->PreImagesRepresentative(epi,Image(epi,j)^dc[i]));
rels:=ClosureGroup(rels,CommutGenImgs(pco,gens,imgs,
Intersection(mul,DerivedSubgroup(qs))));
fi;
fi;
i:=i+1;
od;
hom:=NaturalHomomorphismByNormalSubgroupNC(cov,rels);
mul:=Image(hom,mul);
cov:=Image(hom,cov);
pco:=List(pco{[1..Length(pcgs)]},i->Image(hom,i));
Append(pco,Pcgs(mul));
pco:=PcgsByPcSequenceNC(FamilyObj(One(cov)),pco);
epi:=GroupHomomorphismByImagesNC(cov,s,pco,
Concatenation(pcgs,List(Pcgs(mul),i->One(s))));
SetKernelOfMultiplicativeGeneralMapping(epi,mul);
return epi;
end);
InstallMethod(AbelianInvariantsMultiplier,"naive",true,
[IsGroup],1, G->AbelianInvariants(KernelOfMultiplicativeGeneralMapping(EpimorphismSchurCover(G))));
InstallMethod(AbelianInvariantsMultiplier,"via Sylow Subgroups",true,
[IsGroup],0,
function(G)
local a,f,i;
Info(InfoWarning,1,"Warning: AbelianInvariantsMultiplier via Sylow subgroups is under construction");
a:=[];
f:=Filtered(Collected(Factors(Size(G))),i->i[2]>1);
for i in f do
Append(a,AbelianInvariants(KernelOfMultiplicativeGeneralMapping(
SchuMu(G,i[1]))));
od;
return a;
end);
# <hom> is a homomorphism from a finite group onto an fp group. It returns
# an isomorphism from the same group onto an isomorphic fp group <F>, such
# that no negative exponent occurs in the relators of <F>.
#
BindGlobal("PositiveExponentsPresentationFpHom",function(hom)
local G,F,geni,ro,fam,r,i,j,rel,n,e;
G:=Image(hom);
F:=FreeGeneratorsOfFpGroup(G);
geni:=List(GeneratorsOfGroup(G),i->PreImagesRepresentative(hom,i));
ro:=List(geni,Order);
fam:=FamilyObj(F[1]);
r:=[];
for i in RelatorsOfFpGroup(G) do
rel:=[];
for j in [1..NrSyllables(i)] do
n:=GeneratorSyllable(i,j);
Add(rel,n);
e:=ExponentSyllable(i,j);
if e<0 then
e:=e mod ro[n];
fi;
Add(rel,e);
od;
Add(r,ObjByExtRep(fam,rel));
od;
# ensure the relative orders are relators.
for i in [1..Length(ro)] do
if not F[i]^ro[i] in r then
Add(r,F[i]^ro[i]);
fi;
od;
# new fp group
F:=FreeGroupOfFpGroup(G)/r;
hom:=GroupHomomorphismByImagesNC(Source(hom),F,geni,GeneratorsOfGroup(F));
return hom;
end);
InstallGlobalFunction(CorestEval,function(FG,s)
# This has plenty of space for optimization.
local G,H,D,T,i,j,k,l,a,h,nk,evals,rels,gens,r,np,g,invlist,el,elp,TL,rp,pos;
G:=Image(FG);
H:=Image(s);
D:=Source(s);
Info(InfoSchur,2,"lift index:",Index(G,H));
T:=RightTransversal(G,H);
TL:=List(T,i->i); # we need to refer to the elements very often
rels:=RelatorsOfFpGroup(Source(FG));
gens:=List(GeneratorsOfGroup(Source(FG)),i->Image(FG,i));
# this will guarantee we always take the same preimages
el:=AsSSortedListNonstored(H);
elp:=List(el,i->PreImagesRepresentative(s,i));
#ensure the preimage of identity is one
if IsOne(el[1]) then
pos:=1;
else
pos:=Position(el,One(H));
fi;
elp[pos]:=One(elp[pos]);
# deal with inverses
invlist:=[];
for g in gens do
h:=One(D);
for k in T do
np:=k*g;
nk:=TL[PositionCanonical(T,np)];
h:= h*elp[Position(el,np/nk)]*elp[Position(el,nk/g/k)];;
od;
Add(invlist,h);
od;
evals:=[];
for rp in [1..Length(rels)] do
CompletionBar(InfoSchur,2,"Relator Loop: ",rp/Length(rels));
r:=rels[rp];
i:=LetterRepAssocWord(r);
a:=One(D);
# take care of inverses
for l in [1..Length(i)] do
if i[l]<0 then
#i[l]:=-i[l];
a:=a*invlist[-i[l]];
fi;
od;
for j in [1..Length(T)] do
k:=T[j];
h:=One(D);
for l in i do
if l<0 then
g:=Inverse(gens[-l]);
else
g:=gens[l];
fi;
np:=k*g;
nk:=TL[PositionCanonical(T,np)];
#h:=h*PreImagesRepresentative(s,np/nk);
h:=h*elp[Position(el,np/nk)];
k:=nk;
od;
#Print(PreImagesRepresentative(s,Image(s,h))*h,"\n");
#a:=a/PreImagesRepresentative(s,Image(s,h))*h;
a:=a/h*elp[Position(el,Image(s,h))];
od;
Add(evals,[r,a]);
od;
CompletionBar(InfoSchur,2,"Relator Loop: ",false);
return evals;
end);
InstallGlobalFunction(RelatorFixedMultiplier,function(hom,p)
local G,B,P,F,FH,U,s,D,shom,i,j,v,r,ri,iso,rank,bas,basr,row,rel,sol,
Dg,Dgi,car,dgh,snf,mat;
G:=Source(hom);
rank:=Length(GeneratorsOfGroup(G));
B:=ImagesSource(hom);
P:=SylowSubgroup(B,p);
# the corresponding free group (where the relators live)
F:=FreeGroupOfFpGroup(G);
FH:=GroupHomomorphismByImagesNC(F,B,FreeGeneratorsOfFpGroup(G),
List(GeneratorsOfGroup(G),i->Image(hom,i)));
s:=SchuMu(B,p);
D:=Source(s);
ri:=CorestEval(hom,s);
# now rel is a list of relators and their images in M(B).
# find relator relations in F/F' and evaluate these in M(B) to find
# M_R(B).
bas := [];
basr := [];
mat:=[];
for rel in ri do
row := ListWithIdenticalEntries(rank,0);
for i in [1..NrSyllables(rel[1])] do
j := GeneratorSyllable(rel[1],i);
row[j]:=row[j]+ExponentSyllable(rel[1],i);
od;
Add(mat,row);
od;
# SNF
snf:=NormalFormIntMat(mat,15);
mat:=mat*snf.coltrans; # changed coordinates (parent presentation)
bas:=snf.rowtrans*mat;
v:=Filtered([1..Length(bas)],i-> not IsZero(bas[i]));
# express the basis elements
bas:=bas{v};
basr:=[];
for i in v do
rel:=One(Source(s));
for j in [1..Length(mat)] do
rel:=rel*ri[j][2]^snf.rowtrans[i][j];
od;
Add(basr,rel);
od;
# now collect relations
v:=TrivialSubgroup(D);
for i in [1..Length(mat)] do
sol:=SolutionMat(bas,mat[i]);
rel:=ri[i][2];
for j in [1..Length(sol)] do
rel:=rel/basr[j]^sol[j];
od;
if not rel in v then
#NC is safe
v:=ClosureSubgroupNC(v,rel);
fi;
od;
for i in basr do
for j in basr do
# NC is safe
v:=ClosureSubgroupNC(v,Comm(i,j));
od;
od;
Info(InfoSchur,1,"Extra central part:",
Index(KernelOfMultiplicativeGeneralMapping(s),v));
# form the quotient
j:=NaturalHomomorphismByNormalSubgroupNC(D,v);
i:=GeneratorsOfGroup(Image(j));
i:=GroupHomomorphismByImagesNC(Image(j),P,i,
List(i,k->ImageElm(s,PreImagesRepresentative(j,k))));
SetKernelOfMultiplicativeGeneralMapping(i,
Image(j,KernelOfMultiplicativeGeneralMapping(s)));
return i;
end);
BindGlobal("MulExt",function(G,pl)
local hom, #isomorphism fp
ng,ngl, # nr generators,list
s,sl, # SchuMu,list
ab,ms, # abelian invariants, multiplier size
pll, # relevant primes
F, # free group
rels, # relators
rel2, # cohomology relators
ce, # corestriction
p,pp, # prime, index
mg, # multiplier generators
sdc, # decomposition function
gens,free,# generators
i,j, # loop
q,qhom; # quotient
# eliminate useless primes
pl:=Intersection(pl,
List(Filtered(Collected(Factors(Size(G))),i->i[2]>1),i->i[1]));
hom:=IsomorphismFpGroup(G);
hom:=hom*IsomorphismSimplifiedFpGroup(Image(hom));
Info(InfoSchur,2,Length(RelatorsOfFpGroup(Range(hom)))," relators");
# think positive...
#if SYF then
# hom:=PositiveExponentsPresentationFpHom(hom);
#fi;
hom:=InverseGeneralMapping(hom);
ng:=Length(GeneratorsOfGroup(Source(hom)));
sl:=[];
ngl:=[ng];
pll:=[];
ms:=1;
for p in pl do
s:=SchuMu(G,p);
if Size(KernelOfMultiplicativeGeneralMapping(s))>1 then
Add(pll,p);
Add(sl,SchuMu(G,p));
ab:=AbelianInvariants(KernelOfMultiplicativeGeneralMapping(s));
ms:=ms*Product(ab);
Add(ngl,ngl[Length(ngl)]+Length(ab));
fi;
od;
Info(InfoSchur,1,"Relevant primes:",pll);
Info(InfoSchur,1,"Multiplicator size:",ms);
if Length(pll)=0 then
return IdentityMapping(G);
fi;
#F:=FreeGroup(List([1..ngl[Length(ngl)]],x->Concatenation("@",String(x))));
F:=FreeGroup(ngl[Length(ngl)]);
rels:=[];
rel2:=[];
for pp in [1..Length(pll)] do
p:=pll[pp];
Info(InfoSchur,2,"Cohomology for prime :",p);
s:=sl[pp];
mg:=IsomorphismPermGroup(KernelOfMultiplicativeGeneralMapping(s));
mg:=List(IndependentGeneratorsOfAbelianGroup(Image(mg)),
i->PreImagesRepresentative(mg,i));
sdc:=ListWithIdenticalEntries(ngl[Length(ngl)],One(Source(s)));
sdc{[ngl[pp]+1..ngl[pp+1]]}:=mg;
sdc:=GroupHomomorphismByImagesNC(F,KernelOfMultiplicativeGeneralMapping(s),
GeneratorsOfGroup(F),sdc);
gens:=GeneratorsOfGroup(F){[ngl[pp]+1..ngl[pp+1]]};
ce:=CorestEval(hom,s);
for i in gens do
Add(rels,i^Order(Image(sdc,i)));
for j in GeneratorsOfGroup(F) do
if i<>j then
Add(rels,Comm(i,j));
fi;
od;
od;
q:=[];
for i in ce do
Add(q,PreImagesRepresentative(sdc,i[2]));
od;
rel2[pp]:=q;
od;
# now run through the last ce
gens:=GeneratorsOfGroup(F){[1..ng]};
free:=FreeGeneratorsOfFpGroup(Source(hom));
for i in [1..Length(ce)] do
q:=One(F);
for j in [1..Length(pll)] do
q:=q*rel2[j][i];
od;
Add(rels,MappedWord(ce[i][1],free,gens)/q);
od;
q:=F/rels;
if AssertionLevel()>0 then
if Size(q)<>Size(G)*ms then
Error("oops!");
fi;
else
SetSize(q,Size(G)*ms);
fi;
qhom:=GroupHomomorphismByImages(q,G,GeneratorsOfGroup(q),
Concatenation(List(GeneratorsOfGroup(Source(hom)),i->Image(hom,i)),
List([ng+1..Length(GeneratorsOfGroup(q))],
i->One(G)) ));
SetIsSurjective(qhom,true);
SetSize(Source(qhom),Size(G)*ms);
return qhom;
end);
DoMulExt:=function(arg)
local G,pl;
G:=arg[1];
if not IsFinite(G) then
Error("cover is only defined for finite groups");
elif Size(G)=1 then
return IdentityMapping(G);
elif IsPGroup(G) then
TryNextMethod(); # we recursively call the algorithm for the p-sylow
fi;
Info(InfoWarning,1,"Warning: EpimorphismSchurCover via Holt's algorithm is under construction");
if Length(arg)>1 then
pl:=arg[2];
else
pl:=Set(Factors(Size(G)));
fi;
return MulExt(G,pl);
end;
InstallMethod(EpimorphismSchurCover,"Holt's algorithm",true,[IsGroup],0,
DoMulExt);
InstallOtherMethod(EpimorphismSchurCover,"Holt's algorithm, primes",true,
[IsGroup,IsList],0,DoMulExt);
InstallMethod(SchurCover,"general: Holt's algorithm",true,[IsGroup],0,
G->Source(EpimorphismSchurCover(G)));
############################################################################
############################################################################
##
## Additional attributes and properties Robert F. Morse
## derived from computing the Schur Cover
## of a group.
##
## A Epicentre
## O NonabelianExteriorSquare
## O EpimorphismNonabelianExteriorSquare
## P IsCapable
##
############################################################################
##
#A Epicentre(<G>)
##
## There are various ways of describing the epicentre of a group. It is
## the smallest normal subgroup $N$ of $G$ such that $G/N$ is a central
## quotient of some group $H$. It is also the exterior center of a group.
##
InstallMethod(Epicentre,"Naive Method",true,[IsGroup],0,
function(G)
local epi;
epi := EpimorphismSchurCover(G);
return Image(epi,Center(Source(epi)));
end
);
#############################################################################
##
#A Epicentre(G,N)
##
## Place holder attribute for computing the epicentre relative to a normal
## subgroup $N$. This is an attribute of $N$.
##
InstallOtherMethod(Epicentre,"Naive method",true,[IsGroup,IsGroup],0,
function(G,N)
TryNextMethod();
end
);
#############################################################################
##
#O NonabelianExteriorSquare
##
## Computes the Nonabelian Exterior Square $G\wedge G$ of a group $G$.
## For finitely generated groups this is the derived subgroup of the
## Schur cover -- which is an invariant for all Schur covers of group.
##
InstallMethod(NonabelianExteriorSquare, "Naive method", true, [IsGroup],0,
G->DerivedSubgroup(SchurCover(G)));
#############################################################################
##
#O EpimorphismNonabelianExteriorSquare(<G>)
##
## Computes the mapping $G\wedge G \to G$. The kernel of this
## mapping is isomorphic to the Schur Multiplicator.
##
InstallMethod(EpimorphismNonabelianExteriorSquare, "Naive method", true,
[IsGroup],0,
function(G)
local epi, ## Epimorphism from the Schur cover to G
D; ## Derived subgroup of the Schur Cover
epi := EpimorphismSchurCover(G);
D := DerivedSubgroup(Source(epi));
## Compute the restricted mapping of epi from
## D --> G
##
## Need to check that D is trivial i.e. has no generators.
## In this case we create the homomorphism using the group's
## elements rather than generators.
##
if IsTrivial(D) then
return GroupHomomorphismByImages(
D, Image(epi,D),
Elements(D), Elements(Image(epi,D)));
fi;
return GroupHomomorphismByImages(
D, Image(epi,D),
GeneratorsOfGroup(D),
List(GeneratorsOfGroup(D),x->Image(epi,x)));
end
);
#############################################################################
##
#P IsCentralFactor(<G>)
##
## Dertermines if $G$ is a central factor of some group $H$ or not.
##
InstallMethod(IsCentralFactor, "Naive method", true, [IsGroup], 0,
G -> IsTrivial(Epicentre(G)));
#############################################################################
##
#E
##
|