/usr/share/gap/lib/semicong.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | #############################################################################
##
#W semicong.gi GAP library Andrew Solomon
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for semigroup congruences.
##
## Maintenance and further development by:
## Robert F. Morse
## Andrew Solomon
##
######################################################################
##
##
#P LeftSemigroupCongruenceByGeneratingPairs( <semigroup>, <gens> )
#P RightSemigroupCongruenceByGeneratingPairs( <semigroup>, <gens> )
#P SemigroupCongruenceByGeneratingPairs( <semigroup>, <gens> )
##
##
######################################################################
InstallMethod( LeftSemigroupCongruenceByGeneratingPairs,
"for a Semigroup and a list of pairs of its elements",
IsElmsColls,
[ IsSemigroup, IsList ], 0,
function( M, gens )
local cong;
cong := LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsLeftMagmaCongruence);
SetIsLeftSemigroupCongruence(cong,true);
return cong;
end );
InstallMethod( LeftSemigroupCongruenceByGeneratingPairs,
"for a Semigroup and an empty list",
true,
[ IsSemigroup, IsList and IsEmpty ], 0,
function( M, gens )
local cong;
cong := LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsLeftMagmaCongruence);
SetIsLeftSemigroupCongruence(cong,true);
SetEquivalenceRelationPartition(cong,[]);
return cong;
end );
InstallMethod( RightSemigroupCongruenceByGeneratingPairs,
"for a Semigroup and a list of pairs of its elements",
IsElmsColls,
[ IsSemigroup, IsList ], 0,
function( M, gens )
local cong;
cong := LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsRightMagmaCongruence);
SetIsRightSemigroupCongruence(cong,true);
return cong;
end );
InstallMethod( RightSemigroupCongruenceByGeneratingPairs,
"for a Semigroup and an empty list",
true,
[ IsSemigroup, IsList and IsEmpty ], 0,
function( M, gens )
local cong;
cong := LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsRightMagmaCongruence);
SetIsRightSemigroupCongruence(cong,true);
SetEquivalenceRelationPartition(cong,[]);
return cong;
end );
InstallMethod( SemigroupCongruenceByGeneratingPairs,
"for a semigroup and a list of pairs of its elements",
IsElmsColls,
[ IsSemigroup, IsList ], 0,
function( M, gens )
local cong;
cong := LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsMagmaCongruence);
SetIsSemigroupCongruence(cong,true);
return cong;
end );
InstallMethod( SemigroupCongruenceByGeneratingPairs,
"for a semigroup and an empty list",
true,
[ IsSemigroup, IsList and IsEmpty], 0,
function( M, gens )
local cong;
cong := LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsMagmaCongruence);
SetIsSemigroupCongruence(cong,true);
SetEquivalenceRelationPartition(cong,[]);
return cong;
end );
#############################################################################
##
#P IsLeftSemigroupCongruence(<c>)
#P IsRightSemigroupCongruence(<c>)
#P IsSemigroupCongruence(<c>)
##
InstallMethod( IsLeftSemigroupCongruence,
"test whether a left magma congruence is a semigroup a congruence",
true,
[ IsLeftMagmaCongruence ], 0,
function(c)
return IsSemigroup(Source(c));
end);
InstallMethod( IsRightSemigroupCongruence,
"test whether a right magma congruence is a semigroup a congruence",
true,
[ IsRightMagmaCongruence ], 0,
function(c)
return IsSemigroup(Source(c));
end);
InstallMethod( IsSemigroupCongruence,
"test whether a magma congruence is a semigroup a congruence",
true,
[ IsMagmaCongruence ], 0,
function(c)
return IsSemigroup(Source(c));
end);
#############################################################################
##
#M IsReesCongruence(<c>)
##
## True when the congruence has at most one
## nonsingleton congruence class and that equivalence
## class forms an ideal of the semigroup.
## A special check is needed if the congruence is the
## diagonal congruence -- as this congruence is a Rees
## congruence only if the semigroup contains a zero element.
##
InstallMethod( IsReesCongruence,
"for a semigroup congruence",
true,
[ IsSemigroupCongruence ], 0,
function( cong )
local part, # partition
id, # ideal generated by non singleton block
it, # iterator of id
s, # underlying semigroup
i; # index variable
part := EquivalenceRelationPartition(cong);
# Determine if the congruence is Green's relation
# we have slightly different attributes as the
# relation is represented on points.
#
if IsGreensRelation(cong) then
s := AssociatedSemigroup(cong);
part := List(part, x->List(x,y->AsSortedList(s)[y]));
else
s := Source(cong);
fi;
if Length(part)=0 then
# if all blocks are singletons we must check to see
# if the semigroup contains a zero otherwise return false.
#
# See if it already has one -- if so return true
#
if HasMultiplicativeZero(s) then return true; fi;
# The semigroup might have a zero it just isn't identified
# yet.
#
# Using the IsMultiplicativeZero method for semigroups
# is the most efficient which only checks with the
# generators of the semigroup. We prune our search to the
# idempotents.
return ForAny(Idempotents(s), x->IsMultiplicativeZero(s,x));
elif Length(part)=1 then
# if there is one non singletion block
# check that it forms an ideal
id := MagmaIdealByGenerators(s,part[1]);
# loop through the elements of the ideal id
# until you find an element not in the non singleton block
it := Iterator(id);
while not IsDoneIterator(it) do
if not NextIterator(it) in part[1] then
return false;
fi;
od;
# here we know that the block forms an ideal
# hence the congruence is Rees
return true;
else
# if the partition has more than one non singleton class
# then it is not a Rees congruence
return false;
fi;
end);
#############################################################################
##
#M PrintObj( <smg cong> )
##
## left semigroup congruence
##
InstallMethod( PrintObj,
"for a left semigroup congruence",
true,
[ IsLeftSemigroupCongruence ], 0,
function( S )
Print( "LeftSemigroupCongruence( ... )" );
end );
InstallMethod( PrintObj,
"for a left semigroup congruence with known generating pairs",
true,
[ IsLeftSemigroupCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "LeftSemigroupCongruence( ",
GeneratingPairsOfMagmaCongruence( S ), " )" );
end );
## right semigroup congruence
InstallMethod( PrintObj,
"for a right semigroup congruence",
true,
[ IsRightSemigroupCongruence ], 0,
function( S )
Print( "RightSemigroupCongruence( ... )" );
end );
InstallMethod( PrintObj,
"for a right semigroup congruence with known generating pairs",
true,
[ IsRightSemigroupCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "RightSemigroupCongruence( ",
GeneratingPairsOfMagmaCongruence( S ), " )" );
end );
## two sided semigroup congruence
InstallMethod( PrintObj,
"for a semigroup congruence",
true,
[ IsSemigroupCongruence ], 0,
function( S )
Print( "SemigroupCongruence( ... )" );
end );
InstallMethod( PrintObj,
"for a semigroup Congruence with known generating pairs",
true,
[ IsSemigroupCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "SemigroupCongruence( ",
GeneratingPairsOfMagmaCongruence( S ), " )" );
end );
#############################################################################
##
#M ViewObj( <smg cong> )
##
## left semigroup congruence
InstallMethod( ViewObj,
"for a LeftSemigroupCongruence",
true,
[ IsLeftSemigroupCongruence ], 0,
function( S )
Print( "<LeftSemigroupCongruence>" );
end );
InstallMethod( ViewObj,
"for a LeftSemigroupCongruence with known generating pairs",
true,
[ IsLeftSemigroupCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "<LeftSemigroupCongruence with ",
Length( GeneratingPairsOfMagmaCongruence( S ) ),
" generating pairs>" );
end );
## right semigroup congruence
InstallMethod( ViewObj,
"for a RightSemigrouCongruence",
true,
[ IsRightSemigroupCongruence ], 0,
function( S )
Print( "<RightSemigroupCongruence>" );
end );
InstallMethod( ViewObj,
"for a RightSemigroupCongruence with generators",
true,
[ IsRightSemigroupCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "<RightSemigroupCongruence with ",
Length( GeneratingPairsOfMagmaCongruence( S ) ),
" generating pairs>" );
end );
## two sided semigroup congruence
InstallMethod( ViewObj,
"for a semigroup congruence",
true,
[ IsSemigroupCongruence ], 0,
function( S )
Print( "<semigroup congruence>" );
end );
InstallMethod( ViewObj,
"for a semigroup Congruence with known generating pairs",
true,
[ IsSemigroupCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "<semigroup congruence with ",
Length(GeneratingPairsOfMagmaCongruence( S )),
" generating pairs>" );
end );
#############################################################################
##
#E
|