This file is indexed.

/usr/share/gap/lib/smgrpfre.gi is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#############################################################################
##
#W  smgrpfre.gi                 GAP library                     Thomas Breuer
#W                                                             & Frank Celler
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods for free semigroups.
##
##  Element objects of free semigroups, free monoids and free groups are
##  associative words.
##  For the external representation see the file 'wordrep.gi'.
##


#############################################################################
##
#M  IsWholeFamily( <S> )  . . . . . . .  is a free semigroup the whole family
##
##  <S> contains the whole family of its elements if and only if all
##  magma generators of the family are among the semigroup generators of <S>.
##
InstallMethod( IsWholeFamily,
    "for a free semigroup",
    [ IsSemigroup and IsAssocWordCollection ],
    S -> IsSubset( MagmaGeneratorsOfFamily( ElementsFamily( FamilyObj(S) ) ),
                   GeneratorsOfMagma( S ) ) );


#############################################################################
##
#M  Iterator( <S> ) . . . . . . . . . . . . . . iterator for a free semigroup
##
##  Iterator and enumerator of free semigroups are implemented as follows.
##  Words appear in increasing length in terms of the generators
##  $s_1, s_2, \ldots s_n$.
##  So first all words of length 1 are enumerated, then words of length 2,
##  and so on.
##  There are exactly $n^l$ words of length $l$.
##  They are parametrized by $l$-tuples $(c_1, c_2, \ldots, c_l)$,
##  corresponding to $s_{c_1} s_{c_2} \cdots s_{c_l}$.
##
##  So the word corresponding to the integer
##  $m = \sum_{i=1}^{l-1} n^i + m^{\prime}$,
##  with $1 \leq m^{\prime} \leq n^l$,
##  is the $m^{\prime}$-th word of length $l$.
##  Let $m^{\prime} = \sum_{i=1}^l c_i n^{i-1}$, with $1 \leq c_i \leq n$.
##  Then this word is $s_{c_1} s_{c_2} \cdots s_{c_l}$.
##
BindGlobal( "FreeSemigroup_NextWordExp", function( iter )
    local counter,
          len,
          pos,
          word,
          maxexp,
          i,
          exp;

    counter:= iter!.counter;
    len:= iter!.length;
    pos:= 1;
    while counter[ pos ] = iter!.nrgenerators do
      pos:= pos + 1;
    od;
    if pos > len then

      # All words of length at most 'len' have been used already.
      len:= len + 1;
      iter!.length:= len;
      counter:= List( [ 1 .. len ], x -> 1 );
      Add( counter, 0 );
      iter!.counter:= counter;

      # The first word of length 'len' is the power of the first generator.
      word:= [ 1, len ];
      maxexp:= len;

    else

      # Increase the counter for words of length 'iter!.length'.
      for i in [ 1 .. pos-1 ] do
        counter[i]:= 1;
      od;
      counter[ pos ]:= counter[ pos ] + 1;

      # Convert the string of generators numbers.
      word:= [];
      i:= 1;
      maxexp:= 1;
      while i <= len do
        Add( word, counter[i] );
        exp:= 1;
        while counter[i] = counter[ i+1 ] do
          exp:= exp + 1;
          i:= i+1;
        od;
        Add( word, exp );
        if maxexp < exp then
          maxexp:= exp;
        fi;
        i:= i+1;
      od;

    fi;

    iter!.word:= word;
    iter!.exp:= maxexp;
end );

BindGlobal( "NextIterator_FreeSemigroup", function( iter )
    local word;

    word:= ObjByExtRep( iter!.family, 1, iter!.exp, iter!.word );
    FreeSemigroup_NextWordExp( iter );
    return word;
    end );

BindGlobal( "ShallowCopy_FreeSemigroup",
    iter -> rec(
                family         := iter!.family,
                nrgenerators   := iter!.nrgenerators,
                exp            := iter!.exp,
                word           := ShallowCopy( iter!.word ),
                counter        := ShallowCopy( iter!.counter ),
                length         := iter!.length ) );

InstallMethod( Iterator,
    "for a free semigroup",
    [ IsAssocWordCollection and IsWholeFamily ],
    function( S )
    # A free monoid or free group needs another method.
    # A trivial monoid/group needs another method.
    if IsAssocWordWithOneCollection( S ) or IsTrivial( S ) then
      TryNextMethod();
    fi;

    return IteratorByFunctions( rec(
               IsDoneIterator := ReturnFalse,
               NextIterator   := NextIterator_FreeSemigroup,
               ShallowCopy    := ShallowCopy_FreeSemigroup,

               family         := ElementsFamily( FamilyObj( S ) ),
               nrgenerators   := Length( GeneratorsOfMagma( S ) ),
               exp            := 1,
               word           := [ 1, 1 ],
               counter        := [ 1, 0 ],
               length         := 1 ) );
    end );


#############################################################################
##
#M  Enumerator( <S> ) . . . . . . . . . . . . enumerator for a free semigroup
##
BindGlobal( "ElementNumber_FreeMonoid", function( enum, nr )
    local n, l, power, word, exp, maxexp, cc, i, c;

    if nr = 1 then
      return One( enum!.family );
    fi;

    n:= enum!.nrgenerators;

    # Compute the length of the word corresponding to `nr'.
    l:= 0;
    power:= 1;
    nr:= nr - 1;
    while 0 < nr do
      power:= power * n;
      nr:= nr - power;
      l:= l+1;
    od;
    nr:= nr + power - 1;

    # Compute the vector of the `(nr + 1)'-th element of length `l'.
    exp:= 0;
    maxexp:= 1;
    c:= nr mod n;
    word:= [ c+1 ];
    cc:= c;
    for i in [ 1 .. l ] do
      if c = cc then
        exp:= exp + 1;
      else
        cc:= c;
        Add( word, exp );
        Add( word, c+1 );
        if maxexp < exp then
          maxexp:= exp;
        fi;
        exp:= 1;
      fi;
      nr:= ( nr - c ) / n;
      c:= nr mod n;
    od;
    if maxexp < exp then
      maxexp:= exp;
    fi;
    Add( word, exp );

    # Return the element.
    return ObjByExtRep( enum!.family, 1, maxexp, word );
end );

BindGlobal( "ElementNumber_FreeSemigroup", function( enum, nr )
    return ElementNumber_FreeMonoid( enum, nr+1 );
end );

BindGlobal( "NumberElement_FreeMonoid", function( enum, elm )
    local l, len, i, n, nr, power, c, exp;

    if not IsCollsElms( FamilyObj( enum ), FamilyObj( elm ) ) then
      return fail;
    fi;

    elm:= ExtRepOfObj( elm );
    l:= Length( elm ) / 2;

    # Calculate the length of the word.
    len:= 0;
    for i in [ 2, 4 .. 2*l ] do
      len:= len + elm[i];
    od;

    # Calculate the number of words of smaller length, plus 1.
    n:= enum!.nrgenerators;
    nr:= 1;
    power:= 1;
    for i in [ 1 .. len ] do
      nr:= nr + power;
      power:= power * n;
    od;

    # Add the position in the words of length 'len'.
    power:= 1;
    for i in [ 2, 4 .. 2*l ] do
      c:= elm[ i-1 ] - 1;
      for exp in [ 1 .. elm[i] ] do
        nr:= nr + c * power;
        power:= power * n;
      od;
    od;

    return nr;
end );

BindGlobal( "NumberElement_FreeSemigroup", function( enum, elm )
    local nr;

    nr:= NumberElement_FreeMonoid( enum, elm );
    if nr <> fail then
      nr:= nr - 1;
    fi;

    return nr;
end );

InstallMethod( Enumerator,
    "for a free semigroup",
    [ IsAssocWordCollection and IsWholeFamily and IsSemigroup ],
    function( S )

    # A free monoid or free group needs another method.
    # A trivial semigroup/monoid/group needs another method.
    if IsAssocWordWithOneCollection( S ) or IsTrivial( S ) then
      TryNextMethod();
    fi;

    return EnumeratorByFunctions( S, rec(
               ElementNumber := ElementNumber_FreeSemigroup,
               NumberElement := NumberElement_FreeSemigroup,

               family       := ElementsFamily( FamilyObj( S ) ),
               nrgenerators := Length( ElementsFamily( 
                                           FamilyObj( S ) )!.names ) ) );
    end );


#############################################################################
##
#M  IsFinite( <S> ) . . . . . . . . . . . . . for a semigroup of assoc. words
##
InstallMethod( IsFinite,
    "for a semigroup of assoc. words",
    [ IsSemigroup and IsAssocWordCollection ],
    IsTrivial );


#############################################################################
##
#M  Size( <S> ) . . . . . . . . . . . . . . . . . .  size of a free semigroup
##
InstallMethod( Size,
    "for a free semigroup",
    [ IsSemigroup and IsAssocWordWithOneCollection ],
    function( S )
    if IsTrivial( S ) then
      return 1;
    else
      return infinity;
    fi;
    end );
    
    
    #
    # I suspect this methos subsumes the one above SL
    #
    InstallImmediateMethod(Size, IsSemigroup and IsAssocWordCollection
            and HasGeneratorsOfMagma, 0, function(s)
        local x, gens;
        gens := GeneratorsOfMagma(s);
        if Length(gens) = 0 then
            return 0;
        fi;
        for x in gens do
            if Length(x) > 0 then
                return infinity;
            fi;
        od;
        return 1;
    end);
        
    
    
#############################################################################
##
#M  Random( <S> ) . . . . . . . . . . . .  random element of a free semigroup
##
#T use better method for the whole family
##
InstallMethod( Random,
    "for a free semigroup",
    [ IsSemigroup and IsAssocWordCollection ],
    function( S )
    local len, result, gens, i;

    # Get a random length for the word.
    len:= Random( Integers );
    if 0 <= len then
      len:= 2 * len;
    else
      len:= -2 * len - 1;
    fi;

    # Multiply $'len' + 1$ random generators.
    gens:= GeneratorsOfMagma( S );
    result:= Random( gens );
    for i in [ 1 .. len ] do
      result:= result * Random( gens );
    od;

    # Return the result.
    return result;
    end );


#############################################################################
##
#M  MagmaGeneratorsOfFamily( <F> )
##
InstallMethod( MagmaGeneratorsOfFamily,
    "for a family of free semigroup elements",
    [ IsAssocWordFamily ],
    F -> List( [ 1 .. Length( F!.names ) ],
                 i -> ObjByExtRep( F, 1, 1, [ i, 1 ] ) ) );

# GeneratorsOfSemigroup returns the generators in ascending order
    
InstallMethod( GeneratorsSmallest,
        "for a free semigroup",
        [ IsFreeSemigroup ],
        GeneratorsOfSemigroup);


#############################################################################
##
#F  FreeSemigroup( <rank> )
#F  FreeSemigroup( <rank>, <name> )
#F  FreeSemigroup( <name1>, <name2>, ... )
#F  FreeSemigroup( <names> )
#F  FreeSemigroup( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeSemigroup, function( arg )
    local names,      # list of generators names
          F,          # family of free semigroup element objects
          zarg,
          lesy,       # filter for letter or syllable words family
          S;          # free semigroup, result

  lesy:=IsLetterWordsFamily; # default:
  if IsFilter(arg[1]) then
    lesy:=arg[1];
    zarg:=arg{[2..Length(arg)]};
  else
    zarg:=arg;
  fi;

    # Get and check the argument list, and construct names if necessary.
    if   Length( zarg ) = 1 and zarg[1] = infinity then
      names:= InfiniteListOfNames( "s" );
    elif Length( zarg ) = 2 and zarg[1] = infinity then
      names:= InfiniteListOfNames( zarg[2] );
    elif Length( zarg ) = 3 and zarg[1] = infinity then
      names:= InfiniteListOfNames( zarg[2], zarg[3] );
    elif Length( zarg ) = 1 and IsInt( zarg[1] ) and 0 < zarg[1] then
      names:= List( [ 1 .. zarg[1] ],
                    i -> Concatenation( "s", String(i) ) );
      MakeImmutable( names );
    elif Length( zarg ) = 2 and IsInt( zarg[1] ) and 0 < zarg[1] then
      names:= List( [ 1 .. zarg[1] ],
                    i -> Concatenation( zarg[2], String(i) ) );
      MakeImmutable( names );
    elif 1 <= Length( zarg ) and ForAll( zarg, IsString ) then
      names:= zarg;
    elif Length( zarg ) = 1 and IsList( zarg[1] )
                            and not IsEmpty( zarg[1] )
                            and ForAll( zarg[1], IsString ) then
      names:= zarg[1];
    else
      Error("usage: FreeSemigroup(<name1>,<name2>..),FreeSemigroup(<rank>)");
    fi;

    # deal with letter words family types
    if lesy=IsLetterWordsFamily then
      if Length(names)>127 then
	lesy:=IsWLetterWordsFamily;
      else
	lesy:=IsBLetterWordsFamily;
      fi;
    elif lesy=IsBLetterWordsFamily and Length(names)>127 then
      lesy:=IsWLetterWordsFamily;
    fi;

    # Construct the family of element objects of our semigroup.
    F:= NewFamily( "FreeSemigroupElementsFamily", IsAssocWord,
			  CanEasilySortElements, # the free group can.
			  CanEasilySortElements # the free group can.
			  and lesy);

    # Install the data (names, no. of bits available for exponents, types).
    StoreInfoFreeMagma( F, names, IsAssocWord );

    # Make the semigroup.
    if IsFinite( names ) then
      S:= SemigroupByGenerators( MagmaGeneratorsOfFamily( F ) );
    else
      S:= SemigroupByGenerators( InfiniteListOfGenerators( F ) );
    fi;

    # store the whole semigroup in the family
    FamilyObj(S)!.wholeSemigroup:= S;
    F!.freeSemigroup:=S;

    SetIsFreeSemigroup(S,true);
    SetIsWholeFamily( S, true );
    SetIsTrivial( S, false );
    return S;
end );


#############################################################################
##
#M  ViewObj( <S> )  . . . . . . . . . . . . . . . . . .  for a free semigroup
##
InstallMethod( ViewObj,
    "for a free semigroup containing the whole family",
    [ IsSemigroup and IsAssocWordCollection and IsWholeFamily ],
    function( S )
    if GAPInfo.ViewLength * 10 < Length( GeneratorsOfMagma( S ) ) then
      Print( "<free semigroup with ", Length( GeneratorsOfMagma( S ) ),
             " generators>" );
    else
      Print( "<free semigroup on the generators ",
             GeneratorsOfMagma( S ), ">" );
    fi;
    end );


#############################################################################
##
#E