/usr/share/gap/lib/smgrpfre.gi is in gap-libs 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | #############################################################################
##
#W smgrpfre.gi GAP library Thomas Breuer
#W & Frank Celler
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for free semigroups.
##
## Element objects of free semigroups, free monoids and free groups are
## associative words.
## For the external representation see the file 'wordrep.gi'.
##
#############################################################################
##
#M IsWholeFamily( <S> ) . . . . . . . is a free semigroup the whole family
##
## <S> contains the whole family of its elements if and only if all
## magma generators of the family are among the semigroup generators of <S>.
##
InstallMethod( IsWholeFamily,
"for a free semigroup",
[ IsSemigroup and IsAssocWordCollection ],
S -> IsSubset( MagmaGeneratorsOfFamily( ElementsFamily( FamilyObj(S) ) ),
GeneratorsOfMagma( S ) ) );
#############################################################################
##
#M Iterator( <S> ) . . . . . . . . . . . . . . iterator for a free semigroup
##
## Iterator and enumerator of free semigroups are implemented as follows.
## Words appear in increasing length in terms of the generators
## $s_1, s_2, \ldots s_n$.
## So first all words of length 1 are enumerated, then words of length 2,
## and so on.
## There are exactly $n^l$ words of length $l$.
## They are parametrized by $l$-tuples $(c_1, c_2, \ldots, c_l)$,
## corresponding to $s_{c_1} s_{c_2} \cdots s_{c_l}$.
##
## So the word corresponding to the integer
## $m = \sum_{i=1}^{l-1} n^i + m^{\prime}$,
## with $1 \leq m^{\prime} \leq n^l$,
## is the $m^{\prime}$-th word of length $l$.
## Let $m^{\prime} = \sum_{i=1}^l c_i n^{i-1}$, with $1 \leq c_i \leq n$.
## Then this word is $s_{c_1} s_{c_2} \cdots s_{c_l}$.
##
BindGlobal( "FreeSemigroup_NextWordExp", function( iter )
local counter,
len,
pos,
word,
maxexp,
i,
exp;
counter:= iter!.counter;
len:= iter!.length;
pos:= 1;
while counter[ pos ] = iter!.nrgenerators do
pos:= pos + 1;
od;
if pos > len then
# All words of length at most 'len' have been used already.
len:= len + 1;
iter!.length:= len;
counter:= List( [ 1 .. len ], x -> 1 );
Add( counter, 0 );
iter!.counter:= counter;
# The first word of length 'len' is the power of the first generator.
word:= [ 1, len ];
maxexp:= len;
else
# Increase the counter for words of length 'iter!.length'.
for i in [ 1 .. pos-1 ] do
counter[i]:= 1;
od;
counter[ pos ]:= counter[ pos ] + 1;
# Convert the string of generators numbers.
word:= [];
i:= 1;
maxexp:= 1;
while i <= len do
Add( word, counter[i] );
exp:= 1;
while counter[i] = counter[ i+1 ] do
exp:= exp + 1;
i:= i+1;
od;
Add( word, exp );
if maxexp < exp then
maxexp:= exp;
fi;
i:= i+1;
od;
fi;
iter!.word:= word;
iter!.exp:= maxexp;
end );
BindGlobal( "NextIterator_FreeSemigroup", function( iter )
local word;
word:= ObjByExtRep( iter!.family, 1, iter!.exp, iter!.word );
FreeSemigroup_NextWordExp( iter );
return word;
end );
BindGlobal( "ShallowCopy_FreeSemigroup",
iter -> rec(
family := iter!.family,
nrgenerators := iter!.nrgenerators,
exp := iter!.exp,
word := ShallowCopy( iter!.word ),
counter := ShallowCopy( iter!.counter ),
length := iter!.length ) );
InstallMethod( Iterator,
"for a free semigroup",
[ IsAssocWordCollection and IsWholeFamily ],
function( S )
# A free monoid or free group needs another method.
# A trivial monoid/group needs another method.
if IsAssocWordWithOneCollection( S ) or IsTrivial( S ) then
TryNextMethod();
fi;
return IteratorByFunctions( rec(
IsDoneIterator := ReturnFalse,
NextIterator := NextIterator_FreeSemigroup,
ShallowCopy := ShallowCopy_FreeSemigroup,
family := ElementsFamily( FamilyObj( S ) ),
nrgenerators := Length( GeneratorsOfMagma( S ) ),
exp := 1,
word := [ 1, 1 ],
counter := [ 1, 0 ],
length := 1 ) );
end );
#############################################################################
##
#M Enumerator( <S> ) . . . . . . . . . . . . enumerator for a free semigroup
##
BindGlobal( "ElementNumber_FreeMonoid", function( enum, nr )
local n, l, power, word, exp, maxexp, cc, i, c;
if nr = 1 then
return One( enum!.family );
fi;
n:= enum!.nrgenerators;
# Compute the length of the word corresponding to `nr'.
l:= 0;
power:= 1;
nr:= nr - 1;
while 0 < nr do
power:= power * n;
nr:= nr - power;
l:= l+1;
od;
nr:= nr + power - 1;
# Compute the vector of the `(nr + 1)'-th element of length `l'.
exp:= 0;
maxexp:= 1;
c:= nr mod n;
word:= [ c+1 ];
cc:= c;
for i in [ 1 .. l ] do
if c = cc then
exp:= exp + 1;
else
cc:= c;
Add( word, exp );
Add( word, c+1 );
if maxexp < exp then
maxexp:= exp;
fi;
exp:= 1;
fi;
nr:= ( nr - c ) / n;
c:= nr mod n;
od;
if maxexp < exp then
maxexp:= exp;
fi;
Add( word, exp );
# Return the element.
return ObjByExtRep( enum!.family, 1, maxexp, word );
end );
BindGlobal( "ElementNumber_FreeSemigroup", function( enum, nr )
return ElementNumber_FreeMonoid( enum, nr+1 );
end );
BindGlobal( "NumberElement_FreeMonoid", function( enum, elm )
local l, len, i, n, nr, power, c, exp;
if not IsCollsElms( FamilyObj( enum ), FamilyObj( elm ) ) then
return fail;
fi;
elm:= ExtRepOfObj( elm );
l:= Length( elm ) / 2;
# Calculate the length of the word.
len:= 0;
for i in [ 2, 4 .. 2*l ] do
len:= len + elm[i];
od;
# Calculate the number of words of smaller length, plus 1.
n:= enum!.nrgenerators;
nr:= 1;
power:= 1;
for i in [ 1 .. len ] do
nr:= nr + power;
power:= power * n;
od;
# Add the position in the words of length 'len'.
power:= 1;
for i in [ 2, 4 .. 2*l ] do
c:= elm[ i-1 ] - 1;
for exp in [ 1 .. elm[i] ] do
nr:= nr + c * power;
power:= power * n;
od;
od;
return nr;
end );
BindGlobal( "NumberElement_FreeSemigroup", function( enum, elm )
local nr;
nr:= NumberElement_FreeMonoid( enum, elm );
if nr <> fail then
nr:= nr - 1;
fi;
return nr;
end );
InstallMethod( Enumerator,
"for a free semigroup",
[ IsAssocWordCollection and IsWholeFamily and IsSemigroup ],
function( S )
# A free monoid or free group needs another method.
# A trivial semigroup/monoid/group needs another method.
if IsAssocWordWithOneCollection( S ) or IsTrivial( S ) then
TryNextMethod();
fi;
return EnumeratorByFunctions( S, rec(
ElementNumber := ElementNumber_FreeSemigroup,
NumberElement := NumberElement_FreeSemigroup,
family := ElementsFamily( FamilyObj( S ) ),
nrgenerators := Length( ElementsFamily(
FamilyObj( S ) )!.names ) ) );
end );
#############################################################################
##
#M IsFinite( <S> ) . . . . . . . . . . . . . for a semigroup of assoc. words
##
InstallMethod( IsFinite,
"for a semigroup of assoc. words",
[ IsSemigroup and IsAssocWordCollection ],
IsTrivial );
#############################################################################
##
#M Size( <S> ) . . . . . . . . . . . . . . . . . . size of a free semigroup
##
InstallMethod( Size,
"for a free semigroup",
[ IsSemigroup and IsAssocWordWithOneCollection ],
function( S )
if IsTrivial( S ) then
return 1;
else
return infinity;
fi;
end );
#
# I suspect this methos subsumes the one above SL
#
InstallImmediateMethod(Size, IsSemigroup and IsAssocWordCollection
and HasGeneratorsOfMagma, 0, function(s)
local x, gens;
gens := GeneratorsOfMagma(s);
if Length(gens) = 0 then
return 0;
fi;
for x in gens do
if Length(x) > 0 then
return infinity;
fi;
od;
return 1;
end);
#############################################################################
##
#M Random( <S> ) . . . . . . . . . . . . random element of a free semigroup
##
#T use better method for the whole family
##
InstallMethod( Random,
"for a free semigroup",
[ IsSemigroup and IsAssocWordCollection ],
function( S )
local len, result, gens, i;
# Get a random length for the word.
len:= Random( Integers );
if 0 <= len then
len:= 2 * len;
else
len:= -2 * len - 1;
fi;
# Multiply $'len' + 1$ random generators.
gens:= GeneratorsOfMagma( S );
result:= Random( gens );
for i in [ 1 .. len ] do
result:= result * Random( gens );
od;
# Return the result.
return result;
end );
#############################################################################
##
#M MagmaGeneratorsOfFamily( <F> )
##
InstallMethod( MagmaGeneratorsOfFamily,
"for a family of free semigroup elements",
[ IsAssocWordFamily ],
F -> List( [ 1 .. Length( F!.names ) ],
i -> ObjByExtRep( F, 1, 1, [ i, 1 ] ) ) );
# GeneratorsOfSemigroup returns the generators in ascending order
InstallMethod( GeneratorsSmallest,
"for a free semigroup",
[ IsFreeSemigroup ],
GeneratorsOfSemigroup);
#############################################################################
##
#F FreeSemigroup( <rank> )
#F FreeSemigroup( <rank>, <name> )
#F FreeSemigroup( <name1>, <name2>, ... )
#F FreeSemigroup( <names> )
#F FreeSemigroup( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeSemigroup, function( arg )
local names, # list of generators names
F, # family of free semigroup element objects
zarg,
lesy, # filter for letter or syllable words family
S; # free semigroup, result
lesy:=IsLetterWordsFamily; # default:
if IsFilter(arg[1]) then
lesy:=arg[1];
zarg:=arg{[2..Length(arg)]};
else
zarg:=arg;
fi;
# Get and check the argument list, and construct names if necessary.
if Length( zarg ) = 1 and zarg[1] = infinity then
names:= InfiniteListOfNames( "s" );
elif Length( zarg ) = 2 and zarg[1] = infinity then
names:= InfiniteListOfNames( zarg[2] );
elif Length( zarg ) = 3 and zarg[1] = infinity then
names:= InfiniteListOfNames( zarg[2], zarg[3] );
elif Length( zarg ) = 1 and IsInt( zarg[1] ) and 0 < zarg[1] then
names:= List( [ 1 .. zarg[1] ],
i -> Concatenation( "s", String(i) ) );
MakeImmutable( names );
elif Length( zarg ) = 2 and IsInt( zarg[1] ) and 0 < zarg[1] then
names:= List( [ 1 .. zarg[1] ],
i -> Concatenation( zarg[2], String(i) ) );
MakeImmutable( names );
elif 1 <= Length( zarg ) and ForAll( zarg, IsString ) then
names:= zarg;
elif Length( zarg ) = 1 and IsList( zarg[1] )
and not IsEmpty( zarg[1] )
and ForAll( zarg[1], IsString ) then
names:= zarg[1];
else
Error("usage: FreeSemigroup(<name1>,<name2>..),FreeSemigroup(<rank>)");
fi;
# deal with letter words family types
if lesy=IsLetterWordsFamily then
if Length(names)>127 then
lesy:=IsWLetterWordsFamily;
else
lesy:=IsBLetterWordsFamily;
fi;
elif lesy=IsBLetterWordsFamily and Length(names)>127 then
lesy:=IsWLetterWordsFamily;
fi;
# Construct the family of element objects of our semigroup.
F:= NewFamily( "FreeSemigroupElementsFamily", IsAssocWord,
CanEasilySortElements, # the free group can.
CanEasilySortElements # the free group can.
and lesy);
# Install the data (names, no. of bits available for exponents, types).
StoreInfoFreeMagma( F, names, IsAssocWord );
# Make the semigroup.
if IsFinite( names ) then
S:= SemigroupByGenerators( MagmaGeneratorsOfFamily( F ) );
else
S:= SemigroupByGenerators( InfiniteListOfGenerators( F ) );
fi;
# store the whole semigroup in the family
FamilyObj(S)!.wholeSemigroup:= S;
F!.freeSemigroup:=S;
SetIsFreeSemigroup(S,true);
SetIsWholeFamily( S, true );
SetIsTrivial( S, false );
return S;
end );
#############################################################################
##
#M ViewObj( <S> ) . . . . . . . . . . . . . . . . . . for a free semigroup
##
InstallMethod( ViewObj,
"for a free semigroup containing the whole family",
[ IsSemigroup and IsAssocWordCollection and IsWholeFamily ],
function( S )
if GAPInfo.ViewLength * 10 < Length( GeneratorsOfMagma( S ) ) then
Print( "<free semigroup with ", Length( GeneratorsOfMagma( S ) ),
" generators>" );
else
Print( "<free semigroup on the generators ",
GeneratorsOfMagma( S ), ">" );
fi;
end );
#############################################################################
##
#E
|