This file is indexed.

/usr/share/gap/lib/twocohom.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#############################################################################
##
#W  twocohom.gd                 GAP library                      Bettina Eick
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##


#############################################################################
##
#F  CollectedWordSQ( <C>, <u>, <v> ) 
##
##  <ManSection>
##  <Func Name="CollectedWordSQ" Arg='C, u, v'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CollectedWordSQ" );

#############################################################################
##
#F  CollectorSQ( <G>, <M>, <isSplit> )
##
##  <ManSection>
##  <Func Name="CollectorSQ" Arg='G, M, isSplit'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CollectorSQ" );

#############################################################################
##
#F  AddEquationsSQ( <eq>, <t1>, <t2> )
##
##  <ManSection>
##  <Func Name="AddEquationsSQ" Arg='eq, t1, t2'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "AddEquationsSQ" );

#############################################################################
##
#F  SolutionSQ( <C>, <eq> )
##
##  <ManSection>
##  <Func Name="SolutionSQ" Arg='C, eq'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SolutionSQ" );

#############################################################################
##
#F  TwoCocyclesSQ( <C>, <G>, <M> )
##
##  <ManSection>
##  <Func Name="TwoCocyclesSQ" Arg='C, G, M'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "TwoCocyclesSQ" );

#############################################################################
##
#F  TwoCoboundariesSQ( <C>, <G>, <M> )
##
##  <ManSection>
##  <Func Name="TwoCoboundariesSQ" Arg='C, G, M'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "TwoCoboundariesSQ" );

#############################################################################
##
#F  TwoCohomologySQ( <C>, <G>, <M> )
##
##  <ManSection>
##  <Func Name="TwoCohomologySQ" Arg='C, G, M'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "TwoCohomologySQ" );


#############################################################################
##
#O  TwoCocycles( <G>, <M> )
##
##  <#GAPDoc Label="TwoCocycles">
##  <ManSection>
##  <Oper Name="TwoCocycles" Arg='G, M'/>
##
##  <Description>
##  returns the <M>2</M>-cocycles of a pc group <A>G</A> by the
##  <A>G</A>-module <A>M</A>. 
##  The generators of <A>M</A> must correspond to the <Ref Func="Pcgs"/>
##  value of <A>G</A>. The operation
##  returns a list of vectors over the field underlying <A>M</A> and the 
##  additive group generated by these vectors is the group of
##  <M>2</M>-cocyles.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TwoCocycles", [ IsPcGroup, IsObject ] );


#############################################################################
##
#O  TwoCoboundaries( <G>, <M> )
##
##  <#GAPDoc Label="TwoCoboundaries">
##  <ManSection>
##  <Oper Name="TwoCoboundaries" Arg='G, M'/>
##
##  <Description>
##  returns the group of <M>2</M>-coboundaries of a pc group <A>G</A> by the
##  <A>G</A>-module <A>M</A>.
##  The generators of <A>M</A> must correspond to the <Ref Func="Pcgs"/>
##  value of <A>G</A>.
##  The group of coboundaries is given as vector space over the field
##  underlying <A>M</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TwoCoboundaries", [ IsPcGroup, IsObject ] );


#############################################################################
##
#O  TwoCohomology( <G>, <M> )
##
##  <#GAPDoc Label="TwoCohomology">
##  <ManSection>
##  <Oper Name="TwoCohomology" Arg='G, M'/>
##
##  <Description>
##  returns a record defining the second cohomology group as factor space of 
##  the space of cocycles by the space of coboundaries.
##  <A>G</A> must be a pc group and the generators of <A>M</A> must
##  correspond to the pcgs of <A>G</A>.
##  <Example><![CDATA[
##  gap> G := SmallGroup( 4, 2 );
##  <pc group of size 4 with 2 generators>
##  gap> mats := List( Pcgs( G ), x -> IdentityMat( 1, GF(2) ) );
##  [ <a 1x1 matrix over GF2>, <a 1x1 matrix over GF2> ]
##  gap> M := GModuleByMats( mats, GF(2) );
##  rec( dimension := 1, field := GF(2), 
##    generators := [ <an immutable 1x1 matrix over GF2>, 
##        <an immutable 1x1 matrix over GF2> ], isMTXModule := true )
##  gap> TwoCoboundaries( G, M );
##  [  ]
##  gap> TwoCocycles( G, M );
##  [ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ], 
##    [ 0*Z(2), 0*Z(2), Z(2)^0 ] ]
##  gap> cc := TwoCohomology( G, M );;
##  gap> cc.cohom;
##  <linear mapping by matrix, <vector space of dimension 3 over GF(
##  2)> -> ( GF(2)^3 )>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TwoCohomology", [ IsPcGroup, IsObject ] );


#############################################################################
##
#E