This file is indexed.

/usr/share/gap/lib/unknown.gi is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#############################################################################
##
#W  unknown.gi                 GAP Library                   Martin Schönert
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This  file  implements the  arithmetic  for unknown values,  unknowns for
##  short.  Unknowns  are written as `Unknown(<n>)'  where  <n> is an integer
##  that distingishes  different unknowns.  Every unknown stands for a fixed,
##  well defined, but unknown  scalar value,  i.e., an  unknown  integer,  an
##  unknown rational, or an unknown cyclotomic.
##
##  Being unknown is a contagious property.  That is  to say  that the result
##  of  a scalar operation involving an  unknown is   also  unknown, with the
##  exception of multiplication by 0,  which  is  0.  Every scalar  operation
##  involving an  unknown operand is  a  new  unknown, with  the exception of
##  addition of 0 or multiplication by 1, which is the old unknown.
##
##  Note that infinity is not regarded as a well defined scalar value.   Thus
##  an unknown never stands for infinity. Therefore division by 0 still gives
##  an  error, not an unknown.  Also  division by an  unknown gives an error,
##  because the unknown could stand for 0.
##


#############################################################################
##
#R  IsUnknownDefaultRep( <obj> )
##
DeclareRepresentation( "IsUnknownDefaultRep",
    IsPositionalObjectRep, [ 1 ] );


#############################################################################
##
#V  UnknownsType
##
BindGlobal( "UnknownsType", NewType( CyclotomicsFamily,
    IsUnknown and IsUnknownDefaultRep ) );


#############################################################################
##
#M  Unknown( <n> )  . . . . . . . . . . . . . . . . . .  construct an unknown
##
InstallMethod( Unknown,
    "for positive integer",
    [ IsPosInt ],
    function( n )
    if LargestUnknown < n then
      LargestUnknown:= n;
    fi;
    return Objectify( UnknownsType, [ n ] );
    end );


#############################################################################
##
#M  Unknown( )  . . . . . . . . . . . . . . . . . . . construct a new unknown
##
InstallMethod( Unknown,
    "for empty argument",
    [],
    function()
    LargestUnknown:= LargestUnknown + 1;
    return Objectify( UnknownsType, [ LargestUnknown ] );
    end );


#############################################################################
##
#M  PrintObj( <obj> ) . . . . . . . . . . . . . . . . . . .  print an unknown
##
##  prints the unknown <obj> in the form `Unknown(<n>)'.
##
InstallMethod( PrintObj,
    "for unknown in default representation",
    [ IsUnknown and IsUnknownDefaultRep ],
    function( obj )
    Print( "Unknown(", obj![1], ")" );
    end );


#############################################################################
##
#M  `<x> = <y>' . . . . . . . . . . .  . . . . test if two unknowns are equal
##
##  is `true' if the two unknowns <x> and <y> are equal,
##  and `false' otherwise.
##
##  Note that two unknowns with different <n> are assumed to be different.
##  I dont like this at all.
##
InstallMethod( \=,
    "for unknown and cyclotomic",
    [ IsUnknown, IsCyc ],
    ReturnFalse );

InstallMethod( \=,
    "for cyclotomic and unknown",
    [ IsCyc, IsUnknown ],
    ReturnFalse );

InstallMethod( \=,
    "for two unknowns in default representation",
    [ IsUnknown and IsUnknownDefaultRep,
      IsUnknown and IsUnknownDefaultRep ],
    function( x, y ) return x![1] = y![1]; end );


#############################################################################
##
#M  `<x> \< <y>'  . . . . . . . . .  test if one unknown is less than another
##
##  is `true' if the unknown <x> is less than the unknown <y>,
##  and `false' otherwise.
##
##  Note that two unknowns with different <n> are assumed to be different.
##  I don't like this at all.
##
InstallMethod( \<,
    "for unknown and cyclotomic",
    [ IsUnknown, IsCyc ],
    ReturnFalse );

InstallMethod( \<,
    "for cyclotomic and unknown",
    [ IsCyc, IsUnknown ],
    ReturnTrue );

InstallMethod( \<,
    "for two unknowns in default representation",
    [ IsUnknown and IsUnknownDefaultRep,
      IsUnknown and IsUnknownDefaultRep ],
    function( x, y ) return x![1] < y![1]; end );


#############################################################################
##
#M  `<x> + <y>' . . . . . . . . . . . . . . . . . . . . . sum of two unknowns
##
##  is the sum of the two unknowns <x> and <y>.
##  Either operand may also be a known scalar value.
##
InstallMethod( \+,
    "for unknown and cyclotomic",
    [ IsUnknown, IsCyc ],
    function( x, y )
    if y = 0 then
      return x;
    else
      return Unknown();
    fi;
    end );

InstallMethod( \+,
    "for cyclotomic and unknown",
    [ IsCyc, IsUnknown ],
    function( x, y )
    if x = 0 then
      return y;
    else
      return Unknown();
    fi;
    end );

InstallMethod( \+,
    "for two unknowns",
    [ IsUnknown, IsUnknown ],
    function( x, y ) return Unknown(); end );


#############################################################################
##
#M  `- <x>' . . . . . . . . . . . . . . . . .  additive inverse of an unknown
#M  `<x> - <y>' . . . . . . . . . . . . . . . . .  difference of two unknowns
##
##  is the difference of the two unknowns <x> and <y>.
##  Either operand may also be a known scalar value.
##
InstallMethod( \-,
    "for unknown and cyclotomic",
    [ IsUnknown, IsCyc ],
    function( x, y )
    if y = 0 then
      return x;
    else
      return Unknown();
    fi;
    end );

InstallMethod( \-,
    "for cyclotomic and unknown",
    [ IsCyc, IsUnknown ],
    function( x, y )
    return Unknown();
    end );

InstallMethod( \-,
    "for two unknowns in default representation",
    [ IsUnknown and IsUnknownDefaultRep,
      IsUnknown and IsUnknownDefaultRep ],
    function( x, y )
    if x![1] = y![1] then
      return 0;
    else
      return Unknown();
    fi;
    end );

InstallMethod( AINV_MUT,
    "for an unknown",
    [ IsUnknown ],
    x -> Unknown() );


#############################################################################
##
#M  `<x> \* <y>'  . . . . . . . . . . . . . . . . . . product of two unknowns
##
##  is the product of the two unknowns <x> and <y>.
##  Either operand may also be a known scalar value.
##
InstallMethod( \*,
    "for unknown and cyclotomic",
    [ IsUnknown, IsCyc ],
    function( x, y )
    if y = 0 then
      return 0;
    elif y = 1 then
      return x;
    else
      return Unknown();
    fi;
    end );

InstallMethod( \*,
    "for cyclotomic and unknown",
    [ IsCyc, IsUnknown ],
    function( x, y )
    if x = 0 then
      return 0;
    elif x = 1 then
      return y;
    else
      return Unknown();
    fi;
    end );

InstallMethod( \*,
    "for two unknowns",
    [ IsUnknown, IsUnknown ],
    function( x, y )
    return Unknown();
    end );


#############################################################################
##
#M  `<x> / <y>' . . . . . . . . . . . . . . . . . .  quotient of two unknowns
##
##  is the quotient of the unknown <x> and the scalar <y>.
##  <y> must not be zero, and must not be an unknown,
##  because the unknown could stand for zero.
##
InstallMethod( \/,
    "for unknown and cyclotomic",
    [ IsUnknown, IsCyc ],
    function( x, y )
    if y = 0 then
      Error( "divisor must be nonzero" );
    elif y = 1 then
      return x;
    else
      return Unknown();
    fi;
    end );


#############################################################################
##
#M  `<x> \^ <y>'  . . . . . . . . . . . . . . . . . . . . power of an unknown
##
##  is the unknown <x> raised to the integer power <y>.
##  If <y> is 0, the result is the integer 1.
##  <y> must not be less than 0, because <x> could stand for 0.
##
InstallMethod( \^,
    "for unknown and positive integer",
    [ IsUnknown, IsPosInt ],
    function( x, y )
    if y = 1 then
      return x;
    else
      return Unknown();
    fi;
    end );

InstallMethod( \^,
    "for unknown and zero",
    [ IsUnknown, IsZeroCyc ],
    function( x, zero )
    return 1;
    end );


#############################################################################
##
#M  String( <unknown> ) . . . . . . . . . . . . . . . . . . .  for an unknown
##
InstallMethod( String,
    "for an unknown in default representation",
    [ IsUnknown and IsUnknownDefaultRep ],
    unknown -> Concatenation( "Unknown(", String( unknown![1] ), ")" ) );


#############################################################################
##
#E