/usr/share/gap/small/small.gd is in gap-small-groups 4r7p3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | #############################################################################
##
#W small.gd GAP group library Hans Ulrich Besche
## Bettina Eick, Eamonn O'Brien
##
#############################################################################
##
## tell GAP about the component
##
DeclareComponent("small","2.1");
InfoIdgroup := NewInfoClass( "InfoIdgroup" );
UnbindGlobal( "SMALL_AVAILABLE" );
#############################################################################
##
#F SMALL_AVAILABLE( <order> )
##
## <ManSection>
## <Func Name="SMALL_AVAILABLE" Arg='order'/>
##
## <Description>
## returns fail if the library of groups of <A>order</A> is not installed.
## Otherwise a record with some information about the construction of the
## groups of <A>order</A> is returned.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SMALL_AVAILABLE" );
UnbindGlobal( "SmallGroup" );
#############################################################################
##
#F SmallGroup( <order>, <i> )
#F SmallGroup( [<order>, <i>] )
##
## <#GAPDoc Label="SmallGroup">
## <ManSection>
## <Func Name="SmallGroup" Arg='order, i'
## Label="for group order and index"/>
## <Func Name="SmallGroup" Arg='pair' Label="for a pair [ order, index ]"/>
##
## <Description>
## returns the <A>i</A>-th group of order <A>order</A> in the catalogue.
## If the group is solvable, it will be given as a PcGroup;
## otherwise it will be given as a permutation group.
## If the groups of order <A>order</A> are not installed,
## the function reports an error and enters a break loop.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SmallGroup" );
#############################################################################
##
#F SelectSmallGroups( <argl>, <all>, <id> )
##
## <ManSection>
## <Func Name="SelectSmallGroups" Arg='argl, all, id'/>
##
## <Description>
## universal function for 'AllGroups', 'OneGroup' and 'IdsOfAllGroups'.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SelectSmallGroups" );
UnbindGlobal( "AllGroups" );
#############################################################################
##
#F AllSmallGroups( <arg> )
##
## <#GAPDoc Label="AllSmallGroups">
## <ManSection>
## <Func Name="AllSmallGroups" Arg='arg'/>
##
## <Description>
## returns all groups with certain properties as specified by <A>arg</A>.
## If <A>arg</A> is a number <M>n</M>, then this function returns all groups
## of order <M>n</M>.
## However, the function can also take several arguments which then
## must be organized in pairs <C>function</C> and <C>value</C>.
## In this case the first function must be <Ref Func="Size"/>
## and the first value an order or a range of orders.
## If value is a list then it is considered a list of possible function
## values to include.
## The function returns those groups of the specified orders having those
## properties specified by the remaining functions and their values.
## <P/>
## Precomputed information is stored for the properties
## <Ref Func="IsAbelian"/>, <Ref Func="IsNilpotentGroup"/>,
## <Ref Func="IsSupersolvableGroup"/>, <Ref Func="IsSolvableGroup"/>,
## <Ref Func="RankPGroup"/>, <Ref Func="PClassPGroup"/>,
## <Ref Func="LGLength"/>, <C>FrattinifactorSize</C> and
## <C>FrattinifactorId</C> for the groups of order at most
## <M>2000</M> which have more than three prime factors,
## except those of order <M>512</M>, <M>768</M>,
## <M>1024</M>, <M>1152</M>, <M>1536</M>, <M>1920</M> and those of order
## <M>p^n \cdot q > 1000</M>
## with <M>n > 2</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
AllSmallGroups := function( arg )
return SelectSmallGroups( arg, true, false );
end;
DeclareSynonym( "AllGroups", AllSmallGroups );
UnbindGlobal( "OneGroup" );
#############################################################################
##
#F OneSmallGroup( <arg> )
##
## <#GAPDoc Label="OneSmallGroup">
## <ManSection>
## <Func Name="OneSmallGroup" Arg='arg'/>
##
## <Description>
## returns one group with certain properties as specified by <A>arg</A>.
## The permitted arguments are those supported by
## <Ref Func="AllSmallGroups"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
OneSmallGroup := function( arg )
return SelectSmallGroups( arg, false, false );
end;
DeclareSynonym( "OneGroup", OneSmallGroup );
UnbindGlobal( "IdsOfAllGroups" );
#############################################################################
##
#F IdsOfAllSmallGroups( <arg> )
##
## <#GAPDoc Label="IdsOfAllSmallGroups">
## <ManSection>
## <Func Name="IdsOfAllSmallGroups" Arg='arg'/>
##
## <Description>
## similar to <C>AllSmallGroups</C> but returns ids instead of groups. This may
## prevent workspace overflows, if a large number of groups are expected in
## the output.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
IdsOfAllGroups := function( arg )
return SelectSmallGroups( arg, true, true );
end;
DeclareSynonym( "IdsOfAllSmallGroups", IdsOfAllGroups );
UnbindGlobal( "NumberSmallGroups" );
#############################################################################
##
#F NumberSmallGroups( <order> )
##
## <#GAPDoc Label="NumberSmallGroups">
## <ManSection>
## <Func Name="NumberSmallGroups" Arg='order'/>
##
## <Description>
## returns the number of groups of order <A>order</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "NumberSmallGroups" );
DeclareSynonym( "NrSmallGroups",NumberSmallGroups );
#############################################################################
##
#F UnloadSmallGroupsData( )
##
## <#GAPDoc Label="UnloadSmallGroupsData">
## <ManSection>
## <Func Name="UnloadSmallGroupsData" Arg=''/>
##
## <Description>
## &GAP; loads all necessary data from the library automatically,
## but it does not delete the data from the workspace again.
## Usually, this will be not necessary, since the data is stored in a
## compressed format. However, if
## a large number of groups from the library have been loaded, then the user
## might wish to remove the data from the workspace and this can be done by
## the above function call.
## <Example><![CDATA[
## gap> G := SmallGroup( 768, 1000000 );
## <pc group of size 768 with 9 generators>
## gap> G := SmallGroup( [768, 1000000] );
## <pc group of size 768 with 9 generators>
## gap> AllSmallGroups( 6 );
## [ <pc group of size 6 with 2 generators>,
## <pc group of size 6 with 2 generators> ]
## gap> AllSmallGroups( Size, 120, IsSolvableGroup, false );
## [ Group(
## [ (1,2,4,8)(3,6,9,5)(7,12,13,17)(10,14,11,15)(16,20,21,24)(18,22,
## 19,23), (1,3,7)(2,5,10)(4,9,13)(6,11,8)(12,16,20)(14,18,
## 22)(15,19,23)(17,21,24) ]), Group([ (1,2,3,4,5), (1,2) ]),
## Group([ (1,2,3,5,4), (1,3)(2,4)(6,7) ]) ]
## gap> G := OneSmallGroup( 120, IsNilpotentGroup, false );
## <pc group of size 120 with 5 generators>
## gap> IdSmallGroup(G);
## [ 120, 1 ]
## gap> G := OneSmallGroup( Size, [1..1000], IsSolvableGroup, false );
## Group([ (1,2,3,4,5), (1,2,3) ])
## gap> IdSmallGroup(G);
## [ 60, 5 ]
## gap> UnloadSmallGroupsData();
## gap> IdSmallGroup( GL( 2,3 ) );
## [ 48, 29 ]
## gap> IdSmallGroup( Group( (1,2,3,4),(4,5) ) );
## [ 120, 34 ]
## gap> IdsOfAllSmallGroups( Size, 60, IsSupersolvableGroup, true );
## [ [ 60, 1 ], [ 60, 2 ], [ 60, 3 ], [ 60, 4 ], [ 60, 6 ], [ 60, 7 ],
## [ 60, 8 ], [ 60, 10 ], [ 60, 11 ], [ 60, 12 ], [ 60, 13 ] ]
## gap> NumberSmallGroups( 512 );
## 10494213
## gap> NumberSmallGroups( 2^8 * 23 );
## 1083472
## ]]></Example>
## <P/>
## <Log><![CDATA[
## gap> NumberSmallGroups( 2^9 * 23 );
## Error, the library of groups of size 11776 is not available called from
## <function>( <arguments> ) called from read-eval-loop
## Entering break read-eval-print loop ...
## you can 'quit;' to quit to outer loop, or
## you can 'return;' to continue
## brk> quit;
## gap>
## ]]></Log>
## <P/>
## <Example><![CDATA[
## gap> SmallGroupsInformation( 32 );
##
## There are 51 groups of order 32.
## They are sorted by their ranks.
## 1 is cyclic.
## 2 - 20 have rank 2.
## 21 - 44 have rank 3.
## 45 - 50 have rank 4.
## 51 is elementary abelian.
##
## For the selection functions the values of the following attributes
## are precomputed and stored:
## IsAbelian, PClassPGroup, RankPGroup, FrattinifactorSize and
## FrattinifactorId.
##
## This size belongs to layer 2 of the SmallGroups library.
## IdSmallGroup is available for this size.
##
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "UnloadSmallGroupsData" );
UnbindGlobal( "ID_AVAILABLE" );
#############################################################################
##
#F ID_AVAILABLE( <order> )
##
## <ManSection>
## <Func Name="ID_AVAILABLE" Arg='order'/>
##
## <Description>
## returns false, if the identification routines for of groups of <A>order</A> is
## not installed. Otherwise a record with some information about the
## identification of groups of <A>order</A> is returned.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ID_AVAILABLE" );
UnbindGlobal( "IdGroup" );
#############################################################################
##
#A IdSmallGroup( <G> )
#A IdGroup( <G> )
##
## <#GAPDoc Label="IdSmallGroup">
## <ManSection>
## <Attr Name="IdSmallGroup" Arg='G'/>
## <Attr Name="IdGroup" Arg='G'/>
##
## <Description>
## returns the library number of <A>G</A>; that is, the function returns a pair
## <C>[<A>order</A>, <A>i</A>]</C> where <A>G</A> is isomorphic to <C>SmallGroup( <A>order</A>, <A>i</A> )</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IdGroup", IsGroup );
DeclareSynonym( "IdSmallGroup",IdGroup );
UnbindGlobal( "IdStandardPresented512Group" );
#############################################################################
##
#F IdStandardPresented512Group( <G> )
#F IdStandardPresented512Group( <pcgs> )
##
## <ManSection>
## <Func Name="IdStandardPresented512Group" Arg='G'/>
## <Func Name="IdStandardPresented512Group" Arg='pcgs'/>
##
## <Description>
## returns the catalogue number of a group <A>G</A> of order 512 if <C>Pcgs(<A>G</A>)</C>
## or <C>pcgs</C> is a pcgs corresponding to a power-commutator presentation
## which forms an ANUPQ-standard presentation of <A>G</A>. If the input is not
## corresponding to a standard presentation, then a warning is printed
## and <K>fail</K> is returned.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "IdStandardPresented512Group" );
#############################################################################
##
#F SmallGroupsInformation( <order> )
##
## <#GAPDoc Label="SmallGroupsInformation">
## <ManSection>
## <Func Name="SmallGroupsInformation" Arg='order'/>
##
## <Description>
## prints information on the groups of the specified order.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SmallGroupsInformation" );
UnbindGlobal( "Gap3CatalogueIdGroup" );
#############################################################################
##
#A IdGap3SolvableGroup( <G> )
#A Gap3CatalogueIdGroup( <G> )
##
## <#GAPDoc Label="IdGap3SolvableGroup">
## <ManSection>
## <Attr Name="IdGap3SolvableGroup" Arg='G'/>
## <Attr Name="Gap3CatalogueIdGroup" Arg='G'/>
##
## <Description>
## returns the catalogue number of <A>G</A> in the &GAP; 3 catalogue
## of solvable groups;
## that is, the function returns a pair <C>[<A>order</A>, <A>i</A>]</C> meaning that
## <A>G</A> is isomorphic to the group
## <C>SolvableGroup( <A>order</A>, <A>i</A> )</C> in &GAP; 3.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Gap3CatalogueIdGroup", IsGroup );
DeclareSynonym( "IdGap3SolvableGroup", Gap3CatalogueIdGroup );
#############################################################################
##
#F Gap3CatalogueGroup( <order>, <i> )
##
## <ManSection>
## <Func Name="Gap3CatalogueGroup" Arg='order, i'/>
##
## <Description>
## returns the <A>i</A>-th group of order <A>order</A> in the &GAP; 3
## catalogue of solvable groups.
## This group is isomorphic to the group returned by
## <C>SolvableGroup( <A>order</A>, <A>i</A> )</C> in &GAP; 3.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "Gap3CatalogueGroup" );
#############################################################################
##
#A FrattinifactorSize( <G> )
##
## <ManSection>
## <Attr Name="FrattinifactorSize" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "FrattinifactorSize", IsGroup );
#############################################################################
##
#A FrattinifactorId( <G> )
##
## <ManSection>
## <Attr Name="FrattinifactorId" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "FrattinifactorId", IsGroup );
#############################################################################
##
#E
|