This file is indexed.

/usr/share/gap/small/small.gi is in gap-small-groups 4r7p3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#############################################################################
##
#W  small.gi                 GAP group library             Hans Ulrich Besche
##                                               Bettina Eick, Eamonn O'Brien
##
##  This file contains the basic installations for the library of small
##  groups and the group identification routines. 
##

#############################################################################
##
#F  SMALL_AVAILABLE_FUNCS
##
##  On every level of the small groups library one function is written into
##  this list. It will detect those sizes, which are contained in this
##  library level.
SMALL_AVAILABLE_FUNCS := [ ];

#############################################################################
##
#F  SMALL_AVAILABLE( size )
##
##  returns fail if the library of groups of <size> is not installed.
##  Otherwise a record with some information about the construction of the
##  groups of <size> is returned.
InstallGlobalFunction( SMALL_AVAILABLE, function( size )
    local l, r;

    for l in [ 1 .. Length( SMALL_AVAILABLE_FUNCS ) ] do
        if IsBound( SMALL_AVAILABLE_FUNCS[ l ] ) then
            r := SMALL_AVAILABLE_FUNCS[ l ]( size );
            if r <> fail then
                return r;
            fi;
        fi;
    od;
    return fail;
end );

#############################################################################
##
#F  SMALL_GROUP_FUNCS
##
##  This list will contain all functions to construct/read the groups from
##  the library.
SMALL_GROUP_FUNCS := [ ];

#############################################################################
##
#F  CODE_SMALL_GROUP_FUNCS
##
##  This list will contain those functions used to read the code of the
##  groups of some sizes from the data files.
CODE_SMALL_GROUP_FUNCS := [ ];

#############################################################################
##
#F  NUMBER_SMALL_GROUPS_FUNCS
##
NUMBER_SMALL_GROUPS_FUNCS := [ ];

#############################################################################
##
#F  SELECT_SMALL_GROUPS_FUNCS
##
SELECT_SMALL_GROUPS_FUNCS := [ ];

#############################################################################
##
#V  SMALL_GROUP_LIB
##
##  This list will contain all data for the group construction read from the
##  small group library.
SMALL_GROUP_LIB := [ ];

#############################################################################
##
#V  PROPERTIES_SMALL_GROUPS
##
##  This list will contain all data for the group selection read from the
##  small group library.
PROPERTIES_SMALL_GROUPS := [ ];

#############################################################################
##
#F  SmallGroup(<size>,<i>)
##
##  returns the <i>th  group of  order <size> in the catalogue. It will return
##  an PcGroup, if the group is soluble and a permutation group otherwise.
##  If the groups of this size are not installed, it will return an error.
InstallGlobalFunction( SmallGroup, function( arg )
    local inforec, g, size, i;

    if Length( arg ) = 1 then
        if not IsList( arg[1] ) or Length( arg[1] ) <> 2 then 
            Error( "usage: SmallGroup( order, number )" ); 
        fi;
        size := arg[ 1 ][ 1 ];
        i    := arg[ 1 ][ 2 ];
    elif Length( arg ) = 2 then 
        size := arg[ 1 ];
        i    := arg[ 2 ];
    else 
        Error( "usage: SmallGroup( order, number )" ); 
    fi;
    if not IsPosInt( size ) or not IsPosInt( i ) then 
        Error( "usage: SmallGroup( order, number )" ); 
    fi;
    inforec := SMALL_AVAILABLE( size );
    if inforec = fail then
        Error( "the library of groups of size ", size, " is not available" );
    fi;
    g := SMALL_GROUP_FUNCS[ inforec.func ]( size, i, inforec );
    SetIdGroup( g, [ size, i ] );
    IsPGroup( g );
    return g;
end );

#############################################################################
##
#F  NumberSmallGroups(<size>)
##
##  returns the  number of groups of the order <size>.
InstallGlobalFunction( NumberSmallGroups, function( size )
    local inforec;

    if not IsPosInt( size ) then 
        Error( "usage: NumberSmallGroups( order )" ); 
    fi;
    if size = 1024 then 
        return 49487365422;
    fi;

    inforec := SMALL_AVAILABLE( size );
    if inforec = fail then
        Error( "the library of groups of size ", size, " is not available" );
    fi;

    if IsBound( inforec.number ) then 
        return inforec.number;
    fi;
    return NUMBER_SMALL_GROUPS_FUNCS[ inforec.func ]( size, inforec ).number;
end );

#############################################################################
##
#F  SelectSmallGroups( argl, all, id )
##
InstallGlobalFunction( SelectSmallGroups, function( argl, all, id )
    local sizes, size, i, funcs, vals, gs, inforec, result, hasSizes, pos,
          idList;

    sizes := [ ];
    hasSizes := false;
    idList := fail;

    for i in [ 1 .. Length( argl ) ] do
        if i = 1 and argl[ i ] = Size then
            ;
        elif ( not hasSizes ) and IsList( argl[ i ] )
                              and Length( sizes ) = 1 then
            idList := argl[ i ];
        elif ( not hasSizes ) and IsList( argl[ i ] ) then
            Append( sizes, argl[ i ] );
        elif ( not hasSizes ) and IsInt( argl[ i ] ) then
            Add( sizes, argl[ i ] );
        elif ( not hasSizes ) and sizes <> [] and IsFunction( argl[i] ) then
            hasSizes     := true;
            funcs        := [ argl[ i ] ];
            vals         := [ [ ] ];
            pos          := 1;
        elif not hasSizes then 
            Error( "usage: AllSmallGroups / OneGroup(\n",
                   "             Size, [ sizes ],\n",
                   "             function1, [ values1 ],\n",
                   "             function2, [ values2 ], ... )" );
        elif vals[ pos ] <> [ ] and IsFunction( argl[ i ] ) then
            pos          := pos + 1;
            funcs[ pos ] := argl[ i ];
            vals[ pos ]  := [ ];
        elif IsFunction( argl[ i ] ) then
            vals[ pos ]  := [ true ];
            pos          := pos + 1; 
            funcs[ pos ] := argl[ i ];
            vals[ pos ]  := [ ];
        elif IsList( argl[ i ] ) and vals[ pos ] = [ ] then
            vals[ pos ]  := argl[ i ];
        elif IsList( argl[ i ] ) and IsInt( argl[ i ][ 1 ] ) and 
             IsList( vals[ pos ][ 1 ] ) and IsInt( vals[ pos ][1][ 1 ] ) then
            Add( vals[ pos ], argl[ i ] );
        elif IsList( argl[ i ] ) and IsInt( argl[ i ][ 1 ] ) and 
             IsInt( vals[ pos ][ 1 ] ) then
            vals[ pos ]  := [ vals[ pos ], argl[ i ] ];
        else 
            Add( vals[ pos ], argl[ i ] );
        fi;
    od;

    if sizes <> [ ] and ( not IsBound( vals ) ) then
        funcs := [ ];
        vals  := [ ];
    elif vals[ pos ] = [ ] then
        vals[ pos ] := [ true ];
    fi;

    result := [ ];
    for size in sizes do
        inforec := SMALL_AVAILABLE( size );
        if inforec = fail then
            Error( "AllSmallGroups / OneGroup: groups of order ", size,
                   " not available" );
        fi;
        gs := SELECT_SMALL_GROUPS_FUNCS[ inforec.func ]
                             ( size, funcs, vals, inforec, all, id, idList );
        if all then
            Append( result, gs );
        elif gs <> fail then
            return gs;
        fi;
    od;
    
    if all then
        return result;
    else
        return fail;
    fi;
end );

#############################################################################
##
#F ID_AVAILABLE_FUNCS
##
ID_AVAILABLE_FUNCS := [ ];

#############################################################################
##
#F ID_AVAILABLE
##
InstallGlobalFunction( ID_AVAILABLE, function( size )
    local l, r;

    if not IsInt( size ) then return fail; fi;

    for l in [ 1 .. Length( ID_AVAILABLE_FUNCS ) ] do
        if IsBound( ID_AVAILABLE_FUNCS[ l ] ) then
            r := ID_AVAILABLE_FUNCS[ l ]( size );
            if r <> fail then 
                return r;
            fi;
        fi;
    od;
    return fail;
end );

#############################################################################
##
#F  ID_GROUP_FUNCS
##
ID_GROUP_FUNCS := [ ];

#############################################################################
##
#M  IdGroup( G )
##
InstallMethod( IdGroup,
               "generic method for groups",
               true,
               [ IsGroup ],
               0,
function( G )
    local inforec, size;

    size := Size( G );
    if size = 1 then return [ 1, 1 ]; fi;

    inforec := ID_AVAILABLE( size );
    if inforec = fail then
        Error( "the group identification for groups of size ", size,
               " is not available" );
    fi;

    if not ( IsPcGroup( G ) or IsPermGroup( G ) ) then
        if IsSolvableGroup( G ) then
            G := Image( IsomorphismPcGroup( G ) );
        else
            G := Image( IsomorphismPermGroup( G ) );
        fi;
    fi;

    if Size( G ) > 1000 and IsPermGroup( G )
          and LargestMovedPoint( G ) > 100 and IsSolvableGroup( G ) then
        G := Image( IsomorphismPcGroup( G ) );
    fi;

    if IsPcGroup( G ) and HasParent( G ) and Size( Parent( G ) ) > 10000
       and Size( Parent( G ) ) / Size( G ) > 10 then
        G := PcGroupCode( CodePcGroup( G ), Size( G ) );
    fi;

    return [ size, ID_GROUP_FUNCS[ inforec.func ]( G, inforec ) ];
end );

#############################################################################
##
#V  ID_GROUP_TREE
##
##  Variable containing information for group identification
ID_GROUP_TREE := rec( fp := [ 1 .. 50000 ], next := [ ] );

#############################################################################
##
#F  ReadSmallLib( str, i, size, list )
##
##  universal reading function for data files
ReadSmallLib := function( str, i, size, list )
    local l, str2, str3, j;

    l := "abcdefghijklmnopqrstuvwxyz";     
    str2 := Concatenation( str, String( size ) );
    str3 :=  [ ];
    for j in list do
        if j > 702 then
            Add( str3, l[ QuoInt( j - 27, 676 ) ] );
            j := 27 + ( j - 27 ) mod 676;
        fi; 
        if j > 26 then
            Add( str3, l[ QuoInt( j - 1, 26 ) ] );        
        fi;         
        Add( str3, l[ ( j - 1 ) mod 26 + 1 ] );
    od;

    if Length( str2 ) > 8 then
        str3 := Concatenation( str2{[ 9..Length( str2 ) ]} , str3 );
        str2 := str2{[ 1..8 ]};
    elif Length( str3 ) = 0 then
        str3 := "z";
    elif Length( str3 ) > 3 then
        str2 := Concatenation( str2, str3{[ 1 .. Length( str3 ) - 3 ]} );
        str3 := str3{[ Length( str3 ) - 2 .. Length( str3 ) ]};
    fi;

    if str in [ "sml", "col", "prop", "nor" ] then
        READ_SMALL_FUNCS[ i ]( Concatenation( str2, ".", str3 ) );
    else
        READ_IDLIB_FUNCS[ i ]( Concatenation( str2, ".", str3 ) );
    fi;
end;

#############################################################################
##
#V  GAP3_CATALOGUE_ID_GROUP
##
##  List with the gap3-ids. Will be loaded before use.
GAP3_CATALOGUE_ID_GROUP := fail;

#############################################################################
##
#M  Gap3CatalogueIdGroup(<G>)
##             
InstallMethod( Gap3CatalogueIdGroup,                              
               "for permgroups or pcgroups",        
               true,         
               [ IsGroup ],
               0,
function( G )
    if Size( G ) > 100 then
        Error( "Gap3CatalogueIdGroup: the group catalogue of gap-3.0 was\n",
               "limited to size 100" );
    fi;

    if GAP3_CATALOGUE_ID_GROUP = fail then
        ReadSmall( "gap3cat.g" );
    fi;

    if not IsBound( GAP3_CATALOGUE_ID_GROUP[ Size( G ) ] ) then
        return IdGroup( G );
    fi;

    return [ Size( G ),
             GAP3_CATALOGUE_ID_GROUP[ Size( G ) ][ IdGroup( G )[ 2 ] ] ];
end );

#############################################################################
##
#F  Gap3CatalogueGroup(<size>,<i>)
##             
InstallGlobalFunction( Gap3CatalogueGroup, function( size, i )
    local p;

    if size > 100 then
        Error( "Gap3CatalogueIdGroup: the group catalogue of gap-3.0 was\n",
               "limited to size 100" );
    fi;

    if GAP3_CATALOGUE_ID_GROUP = fail then
        ReadSmall( "gap3cat.g" );
    fi;

    if not IsBound( GAP3_CATALOGUE_ID_GROUP[ size ] ) then
        return SmallGroup( size, i );
    fi;

    p := Position( GAP3_CATALOGUE_ID_GROUP[ size ], i );
    if p = fail then
        Error( "Gap3CatalogueGroup: there are just ",
               Length( GAP3_CATALOGUE_ID_GROUP[ size ] ),
               " groups of size ", size );
    fi;

    return SmallGroup( size, p );
end );

#############################################################################
##
#F  UnloadSmallGroupsData( )
##
##  will remove the data from the small groups library from memory. 
InstallGlobalFunction( UnloadSmallGroupsData, function( )
    SMALL_GROUP_LIB := [ ];
    PROPERTIES_SMALL_GROUPS := [ ];
    GAP3_CATALOGUE_ID_GROUP := fail;
    ID_GROUP_TREE := rec( fp := [ 1 .. 50000 ], next := [ ] );
end );

#############################################################################
##
#M  FrattinifactorSize(<G>)
##
InstallMethod( FrattinifactorSize,
               "generic method for groups",
               true,
               [ IsGroup ],
               0,
function( G )
    return Size( G ) / Size( FrattiniSubgroup( G ) );
end );

#############################################################################
##
#M  FrattinifactorId(<G>)
##
InstallMethod( FrattinifactorId,
               "generic method for groups",
               true,
               [ IsGroup ],
               0,
function( G )
    local ff;                                  

    ff := G / FrattiniSubgroup( G );  
    if ID_AVAILABLE( Size( ff ) ) = fail then
        Error( "FrattinifactorId: IdGroup for groups of size ", Size( ff ),
               " not available" );
    fi;
    return IdGroup( ff );                                      
end );