/usr/share/doc/ghostscript/Lib.htm is in ghostscript-doc 9.06~dfsg-2+deb8u7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=us-ascii">
<title>The Ghostscript library</title>
<!-- Originally: lib.txt -->
<link rel="stylesheet" type="text/css" href="gs.css" title="Ghostscript Style">
</head>
<body>
<!-- [1.0 begin visible header] ============================================ -->
<!-- [1.1 begin headline] ================================================== -->
<h1>The Ghostscript Library</h1>
<!-- [1.1 end headline] ==================================================== -->
<!-- [1.2 begin table of contents] ========================================= -->
<h2>Table of contents</h2>
<blockquote><ul>
<li><a href="#GS_library">The Ghostscript library</a>
<li><a href="#PS_operator_API">PostScript operator API</a>
<ul>
<li><a href="#Patterns">Patterns</a>
<li><a href="#Lower_level_API">Lower-level API</a>
</ul>
<li><a href="#Visual_trace">Visual Trace instructions</a>
<li><a href="#Full_example">A full example</a>
</ul></blockquote>
<!-- [1.2 end table of contents] =========================================== -->
<!-- [1.3 begin hint] ====================================================== -->
<p>For other information, see the <a href="Readme.htm">Ghostscript
overview</a>.
<!-- [1.3 end hint] ======================================================== -->
<hr>
<!-- [1.0 end visible header] ============================================== -->
<!-- [2.0 begin contents] ================================================== -->
<h2><a name="GS_library"></a>The Ghostscript library</h2>
<p>
This document describes the Ghostscript library, a set of procedures
to implement the graphics and filtering capabilities that are primitive
operations in the PostScript language and in Adobe Portable Document Format
(PDF).
<p>
Ghostscript is actually two programs: a language interpreter, and a
graphics library. The library provides, in the form of C procedures, all
the graphics functions of the language, that is, approximately those
facilities listed in section 8.1 of the <cite>PostScript
Language Reference Manual</cite>, starting with the
graphics state operators. In addition, the library provides some
lower-level graphics facilities that offer higher performance in exchange
for less generality.
<hr>
<h2><a name="PS_operator_API"></a>PostScript operator API</h2>
<p>
The highest level of the library, which is the one that most clients will
use, directly implements the PostScript graphics operators with procedures
named <code>gs_XXX</code>, for instance <code>gs_moveto</code> and
<code>gs_fill</code>. Nearly all of these procedures take graphics
state objects as their first arguments, such as
<blockquote><code>
int gs_moveto(gs_state *, double, double);
</code></blockquote>
<p>
Nearly every procedure returns an integer code which is >= 0 for a
successful return or <0 for a failure. The failure codes correspond
directly to PostScript errors, and are defined in
<code>gserrors.h</code>.
<p>
The library implements all the operators in the following sections of the
<cite>PostScript Language Reference Manual</cite>, with the indicated
omissions and with the APIs defined in the indicated <code>.h</code>
files. A header of the form <b><em>A.h(B.h)</em></b> indicates that
<b><em>A.h</em></b> is included in <b><em>B.h</em></b>, so
<b><em>A.h</em></b> need not be included explicitly if <b><em>B.h</em></b>
is included. Operators marked with * in the "omissions" column are not
implemented directly; the library provides lower-level procedures that can
be used to implement the operator.
<p>
There are slight differences in the operators that return multiple values,
since C's provisions for this are awkward. Also, the control structure for
the operators involving callback procedures (<code>pathforall</code>,
<code>image</code>, <code>colorimage</code>,
<code>imagemask</code>) is partly inverted: the client calls a procedure
to set up an enumerator object, and then calls another procedure for each
iteration. The <code>...show</code> operators,
<code>charpath</code>, and <code>stringwidth</code> also use an
inverted control structure.
<blockquote><table cellpadding=0 cellspacing=0>
<tr valign=bottom>
<th align=left>Section<br>(operators)
<td>
<th align=left>Headers
<td>
<th align=left>Omissions
<tr> <td colspan=5><hr>
<tr valign=top> <td>Graphics state -- device-independent
<td>
<td><code>gscolor.h</code>(<code>gsstate.h</code>)<br><code>gscolor1.h</code><br><code>gscolor2.h</code><br><code>gscspace.h</code><br><code>gshsb.h</code><br><code>gsline.h</code>(<code>gsstate.h</code>)<br><code>gsstate.h</code>
<td>
<td>
<tr> <td>
<tr valign=top> <td>Graphics state -- device-dependent
<td>
<td><code>gscolor.h</code>(<code>gsstate.h</code>)<br><code>gscolor1.h</code><br><code>gscolor2.h</code><br><code>gsht.h</code>(<code>gsht1.h</code>,<code>gsstate.h</code>)<br><code>gsht1.h</code><br><code>gsline.h</code>(<code>gsstate.h</code>)
<td>
<td>
<tr> <td>
<tr valign=top> <td>Coordinate system and matrix
<td>
<td><code>gscoord.h</code><br><code>gsmatrix.h</code>
<td>
<td><code>*matrix</code>, <code>*identmatrix</code>, <code>*concatmatrix</code>, <code>*invertmatrix</code>
<tr> <td>
<tr valign=top> <td>Path construction
<td>
<td><code>gspath.h</code><br><code>gspath2.h</code>
<td>
<td><code>*arct</code>, <code>*pathforall</code>, <code>ustrokepath</code>, <code>uappend</code>, <code>upath</code>, <code>ucache</code>
<tr> <td>
<tr valign=top> <td>Painting
<td>
<td><code>gsimage.h</code><br><code>gspaint.h</code><br><code>gspath2.h</code>
<td>
<td><code>*image</code>, <code>*colorimage</code>, <code>*imagemask</code>, <code>ufill</code>, <code>ueofill</code>, <code>ustroke</code>
<tr> <td>
<tr valign=top> <td>Form and pattern
<td>
<td><code>gscolor2.h</code>
<td>
<td><code>execform</code>
<tr> <td>
<tr valign=top> <td>Device setup and output
<td>
<td><code>gsdevice.h</code>
<td>
<td><code>*showpage</code>, <code>*set</code>/<code>currentpagedevice</code>
<tr> <td>
<tr valign=top> <td>Character and font
<td>
<td><code>gschar.h</code><br><code>gsfont.h</code>
<td>
<td>*(all the <code>show</code> operators), <code>definefont</code>, <code>undefinefont</code>, <code>findfont</code>, <code>*scalefont</code>, <code>*makefont</code>, <code>selectfont</code>, <code>[Global]FontDirectory</code>, <code>Standard</code>/<code>ISOLatin1Encoding</code>, <code>findencoding</code>
</table></blockquote>
<p>
The following procedures from the list above operate differently from their
PostScript operator counterparts, as explained here:
<dl>
<dt><code>gs_makepattern(gscolor2.h)</code>
<dd>Takes an explicit current color, rather than using the current color in
the graphics state. Takes an explicit allocator for allocating the pattern
implementation. See below for more details on
<code>gs_makepattern</code>.
</dl>
<dl>
<dt><code>gs_setpattern(gscolor2.h)</code>
<dt><code>gs_setcolor(gscolor2.h)</code>
<dt><code>gs_currentcolor(gscolor2.h)</code>
<dd>Use <code>gs_client_color</code> rather than a set of color
parameter values. See below for more details on
<code>gs_setpattern</code>.
</dl>
<dl>
<dt><code>gs_currentdash_length/pattern/offset(gsline.h)</code>
<dd>Splits up <code>currentdash</code> into three separate procedures.
</dl>
<dl>
<dt><code>gs_screen_init/currentpoint/next/install(gsht.h)</code>
<dd>Provide an "enumeration style" interface to <code>setscreen</code>.
(<code>gs_setscreen</code> is also implemented.)
</dl>
<dl>
<dt><code>gs_rotate/scale/translate(gscoord.h)</code>
<dt><code>gs_[i][d]transform(gscoord.h)</code>
<dd>These always operate on the graphics state CTM. The corresponding
operations on free-standing matrices are in <code>gsmatrix.h</code> and
have different names.
</dl>
<dl>
<dt><code>gs_path_enum_alloc/init/next/cleanup(gspath.h)</code>
<dd>Provide an "enumeration style" implementation of
<code>pathforall</code>.
</dl>
<dl>
<dt><code>gs_image_enum_alloc(gsimage.h)</code>
<dt><code>gs_image_init/next/cleanup(gsimage.h)</code>
<dd>Provide an "enumeration style" interface to the equivalent of
<code>image</code>, <code>imagemask</code>, and
<code>colorimage</code>. In the <code>gs_image_t</code>,
<code>ColorSpace</code> provides an explicit color space, rather than
using the current color space in the graphics state;
<code>ImageMask</code> distinguishes <code>imagemask</code> from
<code>[color]image</code>.
</dl>
<dl>
<dt><code>gs_get/putdeviceparams(gsdevice.h)</code>
<dd>Take a <code>gs_param_list</code> for specifying or receiving the
parameter values. See <code>gsparam.h</code> for more details.
</dl>
<dl>
<dt><code>gs_show_enum_alloc/release(gschar.h)</code>
<dt><code>gs_xxxshow_[n_]init(gschar.h)</code>
<dt><code>gs_show_next(gschar.h)</code>
<dd>Provide an "enumeration style" interface to writing text. Note that
control returns to the caller if the character must be rasterized.
</dl>
<p>
This level of the library also implements the following operators from other
sections of the Manual:
<blockquote><table cellpadding=0 cellspacing=0>
<tr valign=bottom>
<th align=left>Section<br>(operators)
<td>
<th align=left>Headers
<td>
<th align=left>Operators
<tr> <td colspan=5><hr>
<tr valign=top> <td>Interpreter parameter
<td>
<td><code>gsfont.h</code>
<td>
<td><code>cachestatus</code>, <code>setcachelimit</code>, <code>*set/currentcacheparams</code>
<tr valign=top> <td>Display PostScript
<td>
<td><code>gsstate.h</code>
<td>
<td><code>set/currenthalftonephase</code>
</table></blockquote>
<p>
In order to obtain the full PostScript Level 2 functionality listed above,
<code>FEATURE_DEVS</code> must be set in the makefile to include at least the following:
<blockquote><code>
FEATURE_DEVS=patcore.dev cmykcore.dev psl2core.dev dps2core.dev ciecore.dev path1core.dev hsbcore.dev
</code></blockquote>
<p>
The <code>*lib.mak</code> makefiles mentioned below do not always
include all of these features.
<p>
Files named <code>gs*.c</code> implement the higher level of the
graphics library. As might be expected, all procedures, variables, and
structures available at this level begin with "<code>gs_</code>".
Structures that appear in these interfaces, but whose definitions may be
hidden from clients, also have names beginning with "<code>gs_</code>",
that is, the prefix, not the implementation, reflects at what level the
abstraction is made available.
<h3><a name="Patterns"></a>Patterns</h3>
<p>
Patterns are the most complicated PostScript language objects that the
library API deals with. As in PostScript, defining a pattern color and
using the color are two separate operations.
<p>
<code>gs_makepattern</code> defines a pattern color. Its arguments are as follows:
<blockquote><table cellpadding=0 cellspacing=0>
<tr valign=top> <td><code>gs_client_color *</code>
<td>
<td>The resulting <code>Pattern</code> color is stored here. This is different from PostScript, which has no color objects <em>per se</em>, and hence returns a modified copy of the dictionary.
<tr valign=top> <td><code>const gs_client_pattern *</code>
<td>
<td>The analogue of the original <code>Pattern</code> dictionary, described in detail just below.
<tr valign=top> <td><code>const gs_matrix *</code>
<td>
<td>Corresponds to the matrix argument of the <code>makepattern</code> operator.
<tr valign=top> <td><code>gs_state *</code>
<td>
<td>The current graphics state.
<tr valign=top> <td><code>gs_memory_t *</code>
<td>
<td>The allocator to use for allocating the saved data for the
<code>Pattern</code> color. If this is
<code>NULL</code>, <code>gs_makepattern</code> uses the
same allocator that allocated the graphics state. Library
clients should probably always use <code>NULL</code>.
</table></blockquote>
<p>
The <code>gs_client_pattern</code> structure defined in
<code>gscolor2.h</code> corresponds to the <code>Pattern</code>
dictionary that is the argument to the PostScript language
<code>makepattern</code> operator. This structure has one extra member,
<code>void *client_data</code>, which is a place for clients to
store a pointer to additional data for the <code>PaintProc</code>; this
provides the same functionality as putting additional keys in the
<code>Pattern</code> dictionary at the PostScript language level. The
<code>PaintProc</code> is an ordinary C procedure that takes as
parameters a <code>gs_client_color *</code>, which is the
<code>Pattern</code> color that is being used for painting, and a
<code>gs_state *</code>, which is the same graphics state that
would be presented to the <code>PaintProc</code> in PostScript.
Currently the <code>gs_client_color *</code> is always the current
color in the graphics state, but the <code>PaintProc</code> should not
rely on this. The <code>PaintProc</code> can retrieve the
<code>gs_client_pattern *</code> from the
<code>gs_client_color *</code> with the
<code>gs_getpattern</code> procedure, also defined in
<code>gscolor2.h</code>, and from there, it can retrieve the
<code>client_data</code> pointer.
<p>
The normal way to set a <code>Pattern</code> color is to call
<code>gs_setpattern</code> with the graphics state and with the
<code>gs_client_color</code> returned by <code>gs_makepattern</code>.
After that, one can use <code>gs_setcolor</code> to set further
<code>Pattern</code> colors (colored, or uncolored with the same
underlying color space); the rules are the same as those in PostScript.
Note that for <code>gs_setpattern</code>, the
<code>paint.values</code> in the <code>gs_client_color</code> must be
filled in for uncolored patterns; this corresponds to the additional
arguments for the PostScript <code>setpattern</code> operator in the
uncolored case.
<p>
There is a special procedure <code>gs_makebitmappattern</code> for creating bitmap-based
patterns. Its API is documented in <code>gscolor2.h</code>; its implementation, in
<code>gspcolor.c</code>, may be useful as an example of a pattern using a particularly
simple <code>PaintProc.</code>
<h3><a name="Lower_level_API"></a>Lower-level API</h3>
<p>
Files named <code>gx*.c</code> implement the lower level of the graphics
library. The interfaces at the <code>gx</code> level are less stable,
and expose more of the implementation detail, than those at the
<code>gs</code> level: in particular, the <code>gx</code> interfaces
generally use device coordinates in an internal fixed-point representation,
as opposed to the <code>gs</code> interfaces that use floating point
user coordinates. Named entities at this level begin with
<code>gx_</code>.
<p>
Files named <code>gz*.c</code> and <code>gz*.h</code> are internal to
the Ghostscript implementation, and are not designed to be called by
clients.
<hr>
<h2><a name="Visual_trace"></a>Visual Trace instructions</h2>
<p>
Visual Trace instructions may be inserted in code to provide debug output in
a graphical form. Graphics Library doesn't provide a rasterisation of the
output, because it is platform dependent. Instead this, client application
shpuld set <code>vd_trace0</code> external variable to Graphics Library,
passing a set of callbacks which provide the rasterization.
<p>
Visual Trace instructions are defined in <code>vdtrace.h</code>.
Debug output must be opened with <code>vd_get_dc</code> instruction,
which obtains a drawing context for the debug output, and must be closed
with <code>vd_release_dc</code> instruction. After opening the output,
scale, origin and shift to be set for mapping the debugee coordinate space
to window coordinate space. Than painting instructions to be used.
Painting may be either immediate or indirect.
<p>
Indirect painting uses <code>vd_beg_path</code> before
line output and <code>vd_end_path</code> after line output,
to store a path into a temporary storage. After this
<code>vd_stroke</code> may be used for stroking the path,
or <code>vd_fill</code> may be used for filling the region inside the path.
<p>
Immediate painting happens when path construction instructions are
involved without <code>vd_beg_path</code> and <code>vd_end_path</code>.
In this case lines and curves are being drawed immediately, when a path construction
instruction is executed.
<p>
The following table explains the semantics of Visual Trace instructions.
<p>
<table cellpadding=0 cellspacing=0>
<tr><th colspan=5 bgcolor="#CCCC00"><hr><font size="+1">Visual Trace instructions</font><hr>
<tr> <th align=left>Instruction
<td>
<th align=left>Function
<td>
<th align=left>Parameters
<tr> <td colspan=5><hr>
<tr> <td><code>vd_get_dc</code>
<td>
<td>Obtain drawing context
<td>
<td><code>-T</code> option flag value, for which the subsequent output is enabled.
<tr> <td><code>vd_release_dc</code>
<td>
<td>Release drawing context
<td>
<td>
<tr> <td><code>vd_enabled</code>
<td>
<td>Is trace currently enabled ?
<td>
<td>
<tr> <td><code>vd_get_size_unscaled_x</code>
<td>
<td>Get the horizontal size of the output window in pixels.
<td>
<td>
<tr> <td><code>vd_get_size_unscaled_y</code>
<td>
<td>Get the vertical size of the output window in pixels.
<td>
<td>
<tr> <td><code>vd_get_size_caled_x</code>
<td>
<td>Get the horizontal size of the output window in debuggee coordinate units.
<td>
<td>
<tr> <td><code>vd_get_size_caled_y</code>
<td>
<td>Get the vertical size of the output window in debuggee coordinate units.
<td>
<td>
<tr> <td><code>vd_get_scale_x</code>
<td>
<td>Get the horizontal scale.
<td>
<td>
<tr> <td><code>vd_get_scale_y</code>
<td>
<td>Get the vertical scale.
<td>
<td>
<tr> <td><code>vd_get_origin_x</code>
<td>
<td>Get the horizontal position of the draft origin in debuggee coordinate space.
<td>
<td>
<tr> <td><code>vd_get_origin_y</code>
<td>
<td>Get the vertical position of the draft origin in debuggee coordinate space.
<td>
<td>
<tr> <td><code>vd_set_scale(s)</code>
<td>
<td>Set isotripic scale.
<td>
<td>Debugee space to window space mapping scale, same for both dimentions.
<tr> <td><code>vd_set_scaleXY(sx,sy)</code>
<td>
<td>Set anisotripic scale.
<td>
<td>Debugee space to window space mapping scale, one for each dimention.
<tr> <td><code>vd_set_origin(x,y)</code>
<td>
<td>Set the draft origin.
<td>
<td>Origin of the draft in debugee space.
<tr> <td><code>vd_set_shift(x,y)</code>
<td>
<td>Set the draft position.
<td>
<td>Position of the draft origin in window space (in pixels).
<tr> <td><code>vd_set_central_shift</code>
<td>
<td>Set the draft position to window center.
<td>
<td>
<tr> <td><code>vd_erase(c)</code>
<td>
<td>Fill entire window.
<td>
<td>Color to fill.
<tr> <td><code>vd_beg_path</code>
<td>
<td>Begin path construction.
<td>
<td>
<tr> <td><code>vd_end_path</code>
<td>
<td>End path construction.
<td>
<td>
<tr> <td><code>vd_moveto(x,y)</code>
<td>
<td>Path construction : Set the draft current point.
<td>
<td>Debugee coordinates.
<tr> <td><code>vd_lineto(x,y)</code>
<td>
<td>Path construction : Line from current point to specified point.
<td>
<td>Debugee coordinates.
<tr> <td><code>vd_lineto_mupti(p,n)</code>
<td>
<td>Path construction : Poliline from current point to specified points.
<td>
<td>Array of points and its size, debugee coordinates.
<tr> <td><code>vd_curveto(x0,y0,x1,y1,x2,y2)</code>
<td>
<td>Path construction : Curve (3rd-order Bezier) from current
point to specified point, with specified poles.
<td>
<td>2 poles and the curve ending point, debuggee coordinates.
<tr> <td><code>vd_closepath</code>
<td>
<td>Path construction : Close the path (is necessary for filling an area).
<td>
<td>
<tr> <td><code>vd_bar(x0,y0,x1,y1,w,c)</code>
<td>
<td>Bar from point to point.
<td>
<td>2 points (debugee coordinates), width (in pixels) and color.
<tr> <td><code>vd_square(x0,y0,w,c)</code>
<td>
<td>Square with specified center and size.
<td>
<td>The center (debugee coordinates), size (in pixels) and color.
<tr> <td><code>vd_rect(x0,y0,x1,y1,w,c)</code>
<td>
<td>Canonic rectangle with specified coordinites.
<td>
<td>Coordinates of boundaries (debugee coordinates), line width (in pixels) and color.
<tr> <td><code>vd_quad(x0,y0,x1,y1,x2,y2,x3,y3,w,c)</code>
<td>
<td>Quadrangle with specified coordinites.
<td>
<td>Coordinates of vertices (debugee coordinates), line width (in pixels) and color.
<tr> <td><code>vd_curve(x0,y0,x1,y1,x2,y2,x3,y3,c,w)</code>
<td>
<td>Curve with width.
<td>
<td>4 curve poles (debugee coordinates), color, and width (in pixels).
<tr> <td><code>vd_circle(x,y,r,c)</code>
<td>
<td>Circle.
<td>
<td>Center (debugee coordinates), radius (in pixels) and color.
<tr> <td><code>vd_round(x,y,r,c)</code>
<td>
<td>Filled circle.
<td>
<td>Center (debugee coordinates), radius (in pixels) and color.
<tr> <td><code>vd_stroke</code>
<td>
<td>Stroke a path constructed with vd_beg_path, vd_moveto, vd_lineto,
vd_curveto, vd_closepath, vd_end_path.
<td>
<td>
<tr> <td><code>vd_fill</code>
<td>
<td>Fill a path constructed with vd_beg_path, vd_moveto, vd_lineto,
vd_curveto, vd_closepath, vd_end_path.
<td>
<td>
<tr> <td><code>vd_setcolor(c)</code>
<td>
<td>Set a color.
<td>
<td>Color (an integer consisting of red, green, blue bytes).
<tr> <td><code>vd_setlinewidth(w)</code>
<td>
<td>Set line width.
<td>
<td>Width (in pixels).
<tr> <td><code>vd_text(x,y,s,c)</code>
<td>
<td>Paint a text.
<td>
<td>Origin point (debugee coordinates), a string, and a color.
<tr> <td><code>vd_wait</code>
<td>
<td>Delay execution until a resuming command is entered through user interface.
<td>
<td>
</table>
<p>
Graphics Library doesn't provide a rasterization of the debug output.
Instead it calls callbacks, which are specified by a client, and which may
have a platform dependent implementation. The implementation must not
use Graphics Library to exclude recursive calls to it from Visual Trace
instructions. The callbacks and auxiliary data are collected in
the structure <code>vd_trace_interface</code>, explained in the table below.
<p>
<table cellpadding=0 cellspacing=0>
<tr><th colspan=5 bgcolor="#CCCC00"><hr><font size="+1">vd_trace_interface structure</font><hr>
<tr> <th align=left>Field
<td>
<th align=left>Purpose
<td>
<th align=left>Parameters
<tr> <td colspan=5><hr>
<tr> <td><code>host</code>
<td>
<td>A pointer to the rasterizer control block - to be provided by client application.
The type of the fild is client dependent.
<td>
<td>
<tr> <td><code>scale_x, scale_y</code>
<td>
<td>Scale of debugee coordinate to window coordinate mapping - internal work data, don't change.
<td>
<td>
<tr> <td><code>orig_x, orig_y</code>
<td>
<td>Draft origin in debugee coordinates - internal work data, don't change.
<td>
<td>
<tr> <td><code>shift_x, shift_y</code>
<td>
<td>Draft shift in window coordinates - internal work data, don't change.
<td>
<td>
<tr> <td><code>get_size_x(I)</code>
<td>
<td>Get window width in pixels.
<td>
<td>
<tr> <td><code>get_size_y(I)</code>
<td>
<td>Get window height in pixels.
<td>
<td>
<tr> <td><code>get_dc(I,I1)</code>
<td>
<td>Obtain drawing context.
<td>
<td>Pointer to interface block, and pointer to copy of the pointer.
Implementation must set *I1 if it succeeds to get a drawing context.
<tr> <td><code>release_dc(I,I1)</code>
<td>
<td>Release drawing context.
<td>
<td>Pointer to interface block, and pointer to copy of the pointer.
Implementation must reset *I1 if it succeeds to release the drawing context.
<tr> <td><code>erase(I,c)</code>
<td>
<td>Erase entire window.
<td>
<td>Background color.
<tr> <td><code>beg_path(I)</code>
<td>
<td>Begin path construction.
<td>
<td>
<tr> <td><code>end_path(I)</code>
<td>
<td>End path construction.
<td>
<td>
<tr> <td><code>moveto(I,x,y)</code>
<td>
<td>Set current point.
<td>
<td>A point in window coordinates.
<tr> <td><code>lineto(I,x,y)</code>
<td>
<td>Line from current point to specified point.
<td>
<td>A point in window coordinates.
<tr> <td><code>curveto(I,x0,y0,x1,y1,x2,y2)</code>
<td>
<td>Curve from current point with specified poles to specified point.
<td>
<td>3 points in window coordinates.
<tr> <td><code>closepath(I)</code>
<td>
<td>Close the path.
<td>
<td>
<tr> <td><code>circle(I,x,y,r)</code>
<td>
<td>Circle.
<td>
<td>Center and radius, window coordinates.
<tr> <td><code>round(I,x,y,r)</code>
<td>
<td>Filled circle.
<td>
<td>Center and radius, window coordinates.
<tr> <td><code>fill(I)</code>
<td>
<td>Fill the path.
<td>
<td>
<tr> <td><code>stroke(I)</code>
<td>
<td>Stroke the path.
<td>
<td>
<tr> <td><code>setcolor(I,c)</code>
<td>
<td>Set color.
<td>
<td>An integer, consisting of red, green, blue bytes.
<tr> <td><code>setlinewidth(I,w)</code>
<td>
<td>Set line width.
<td>
<td>Line width in pixels.
<tr> <td><code>text(I,x,y,s)</code>
<td>
<td>Draw a text.
<td>
<td>Coodrinates in pixels, and a string.
<tr> <td><code>wait(I)</code>
<td>
<td>Delay execution untill resume command is inputted from user.
<td>
<td>
</table>
<p>
<hr>
<h2><a name="Full_example"></a>A full example</h2>
<p>
The file <code>gslib.c</code> in the Ghostscript fileset is a complete
example program that initializes the library and produces output using it;
files named <code>*lib.mak</code> (such as <code>ugcclib.mak</code>
and <code>bclib.mak</code>) are makefiles using <code>gslib.c</code>
as the main program. The following annotated excerpts from this file are
intended to provide a roadmap for applications that call the library.
<blockquote><pre>/* Capture stdin/out/err before gs.h redefines them. */
#include <stdio.h>
static FILE *real_stdin, *real_stdout, *real_stderr;
static void
get_real(void)
{ real_stdin = stdin, real_stdout = stdout, real_stderr = stderr;
}</pre></blockquote>
<p>
Any application using Ghostscript should include the fragment above at the
very beginning of the main program.
<blockquote><pre>#include "gx.h"</pre></blockquote>
<p>
The <code>gx.h</code> header includes a wealth of declarations related
to the Ghostscript memory manager, portability machinery, debugging
framework, and other substrate facilities. Any application file that calls
any Ghostscript API functions should probably include <code>gx.h</code>.
<blockquote><pre>/* Configuration information imported from gconfig.c. */
extern gx_device *gx_device_list[];
/* Other imported procedures */
/* from gsinit.c */
extern void gs_lib_init(P1(FILE *));
extern void gs_lib_finit(P2(int, int));
/* from gsalloc.c */
extern gs_ref_memory_t *ialloc_alloc_state(P2(gs_memory_t *, uint));</pre></blockquote>
<p>
The externs above are needed for initializing the library.
<blockquote><pre> gs_ref_memory_t *imem;
#define mem ((gs_memory_t *)imem)
gs_state *pgs;
gx_device *dev = gx_device_list[0];
gp_init();
get_real();
gs_stdin = real_stdin;
gs_stdout = real_stdout;
gs_stderr = real_stderr;
gs_lib_init(stdout);
....
imem = ialloc_alloc_state(&gs_memory_default, 20000);
imem->space = 0;
....
pgs = gs_state_alloc(mem);</pre></blockquote>
<p>
The code above initializes the library and its memory manager. <code>pgs</code> now
points to the graphics state that will be passed to the drawing routines in
the library.
<blockquote><pre> gs_setdevice_no_erase(pgs, dev); /* can't erase yet */
{ gs_point dpi;
gs_screen_halftone ht;
gs_dtransform(pgs, 72.0, 72.0, &dpi);
ht.frequency = min(fabs(dpi.x), fabs(dpi.y)) / 16.001;
ht.angle = 0;
ht.spot_function = odsf;
gs_setscreen(pgs, &ht);
}</pre></blockquote>
<p>
The code above initializes the default device and sets a default halftone
screen. (For brevity, we have omitted the definition of odsf, the spot
function.)
<blockquote><pre> /* gsave and grestore (among other places) assume that */
/* there are at least 2 gstates on the graphics stack. */
/* Ensure that now. */
gs_gsave(pgs);</pre></blockquote>
<p>
The call above completes initializing the graphics state. When the program
is finished, it should execute:
<blockquote><pre> gs_lib_finit(0, 0);</pre></blockquote>
<!-- [2.0 end contents] ==================================================== -->
<!-- [3.0 begin visible trailer] =========================================== -->
<hr>
<p>
<small>Copyright © 2000-2006 Artifex Software, Inc. All rights reserved.</small>
<p>
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied, modified
or distributed except as expressly authorized under the terms of that
license. Refer to licensing information at http://www.artifex.com/
or contact Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134,
San Rafael, CA 94903, U.S.A., +1(415)492-9861, for further information.
<p>
<small>Ghostscript version 9.06, 8 August 2012
<!-- [3.0 end visible trailer] ============================================= -->
</body>
</html>
|