This file is indexed.

/usr/share/gnu-smalltalk/kernel/FloatD.st is in gnu-smalltalk-common 3.2.4-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"======================================================================
|
|   FloatD Method Definitions
|
|
 ======================================================================"

"======================================================================
|
| Copyright 2002, 2009 Free Software Foundation, Inc.
| Written by Paolo Bonzini.
|
| This file is part of the GNU Smalltalk class library.
|
| The GNU Smalltalk class library is free software; you can redistribute it
| and/or modify it under the terms of the GNU Lesser General Public License
| as published by the Free Software Foundation; either version 2.1, or (at
| your option) any later version.
| 
| The GNU Smalltalk class library is distributed in the hope that it will be
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser
| General Public License for more details.
| 
| You should have received a copy of the GNU Lesser General Public License
| along with the GNU Smalltalk class library; see the file COPYING.LIB.
| If not, write to the Free Software Foundation, 59 Temple Place - Suite
| 330, Boston, MA 02110-1301, USA.  
|
 ======================================================================"



Float subclass: FloatD [
    
    <shape: #byte>
    <category: 'Language-Data types'>
    <comment: 'My instances represent floating point numbers that have the same
accuracy as C''s "double" numbers.'>

    FloatD class >> coerce: aNumber [
	"Answer aNumber converted to a FloatD"

	<category: 'converting'>
	^aNumber asFloatD
    ]

    FloatD class >> signByte [
	"Answer the byte of the receiver that contains the sign bit"

	<category: 'byte-order dependencies'>
	^##(| n k |
	n := -2.0.
	1 to: n size do: [:i | (n at: i) >= 128 ifTrue: [k := i]].
	k)
    ]

    FloatD class >> fromBytes: aByteArray [
	"Answer a float with the bytes in aByteArray, which are in
	 big-endian format."

	<category: 'byte-order dependencies'>
	| b permutation |
	permutation := ##(| signByte perm |
	    signByte := FloatD signByte.
	    signByte = 1 ifTrue: [ perm := #[1 2 3 4 5 6 7 8] ].
	    signByte = 4 ifTrue: [ perm := #[4 3 2 1 8 7 6 5] ].
	    signByte = 5 ifTrue: [ perm := #[5 6 7 8 1 2 3 4] ].
	    signByte = 8 ifTrue: [ perm := #[8 7 6 5 4 3 2 1] ].
	    perm).
	b := FloatD new: 8.
	1 to: 8 do: [ :i |
	    b at: i put: (aByteArray at: (permutation at: i)) ].
	b makeReadOnly: true.
	^b
    ]

    FloatD class >> precision [
	"Answer the number of bits in the mantissa. 1 + (2^-precision) = 1"

	<category: 'characterization'>
	^CDoubleBinaryDigits
    ]

    FloatD class >> fminNormalized [
	"Return the smallest normalized FloatD that is > 0"

	<category: 'characterization'>
	^CDoubleMin
    ]

    FloatD class >> fmax [
	"Return the largest normalized FloatD that is not infinite."

	<category: 'characterization'>
	^CDoubleMax
    ]

    FloatD class >> emax [
	"Return the maximum allowable exponent for a FloatD that is finite."

	<category: 'characterization'>
	^CDoubleMaxExp
    ]

    FloatD class >> emin [
	"Return the maximum allowable exponent for a FloatD that is finite."

	<category: 'characterization'>
	^CDoubleMinExp
    ]

    FloatD class >> decimalDigits [
	"Return the number of decimal digits of precision for a FloatD.
	 Technically, if P is the precision for the representation, then
	 the decimal precision Q is the maximum number of decimal digits
	 such that any floating point number with Q base 10 digits can be
	 rounded to a floating point number with P base 2 digits and back
	 again, without change to the Q decimal digits."

	<category: 'characterization'>
	^CDoubleDigits
    ]

    FloatD class >> infinity [
	"Return a FloatD that represents positive infinity."

	<category: 'characterization'>
	^CDoublePInf
    ]

    FloatD class >> negativeInfinity [
	"Return a FloatD that represents negative infinity."

	<category: 'characterization'>
	^CDoubleNInf
    ]

    FloatD class >> nan [
	"Return a FloatD that represents a mathematically indeterminate value
	 (e.g. Inf - Inf, Inf / Inf)."

	<category: 'characterization'>
	^CDoubleNaN
    ]

    zero [
	"Coerce 0 to the receiver's class"

	<category: 'coercing'>
	^0.0
    ]

    half [
        "Coerce 0.5 to the receiver's class"

        <category: 'converting'>
	^0.5
    ]

    unity [
	"Coerce 1 to the receiver's class"

	<category: 'coercing'>
	^1.0
    ]

    coerce: aNumber [
	"Coerce aNumber to the receiver's class"

	<category: 'coercing'>
	^aNumber asFloatD
    ]

    generality [
	"Answer the receiver's generality"

	<category: 'coercing'>
	^410
    ]

    asFloatD [
	"Just defined for completeness.  Return the receiver."

	<category: 'coercing'>
	^self
    ]

    ten [
	"Private - Return 10, converted to the receiver's class."

	<category: 'private'>
	^10.0
    ]

    exponentLetter [
	"Private - Return the letter to be printed just before the exponent"

	<category: 'private'>
	^$d
    ]

    + arg [
	"Sum the receiver and arg and answer another Number"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_plus>
	^self retrySumCoercing: arg
    ]

    - arg [
	"Subtract arg from the receiver and answer another Number"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_minus>
	^self retryDifferenceCoercing: arg
    ]

    < arg [
	"Answer whether the receiver is less than arg"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_lt>
	^self retryRelationalOp: #< coercing: arg
    ]

    > arg [
	"Answer whether the receiver is greater than arg"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_gt>
	^self retryRelationalOp: #> coercing: arg
    ]

    <= arg [
	"Answer whether the receiver is less than or equal to arg"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_le>
	^self retryRelationalOp: #<= coercing: arg
    ]

    >= arg [
	"Answer whether the receiver is greater than or equal to arg"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_ge>
	^self retryRelationalOp: #>= coercing: arg
    ]

    = arg [
	"Answer whether the receiver is equal to arg"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_eq>
	^self retryEqualityCoercing: arg
    ]

    ~= arg [
	"Answer whether the receiver is not equal to arg"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_ne>
	^self retryInequalityCoercing: arg
    ]

    * arg [
	"Multiply the receiver and arg and answer another Number"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_times>
	^self retryMultiplicationCoercing: arg
    ]

    / arg [
	"Divide the receiver by arg and answer another FloatD"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_divide>
	^self generality = arg generality 
	    ifTrue: [self zeroDivide]
	    ifFalse: [self retryDivisionCoercing: arg]
    ]

    asFloatE [
	"Answer the receiver converted to a FloatE"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_asFloatE>
	self primitiveFailed
    ]

    asFloatQ [
	"Answer the receiver converted to a FloatQ"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_asFloatQ>
	self primitiveFailed
    ]

    truncated [
	"Truncate the receiver towards zero and answer the result"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_truncated>
	^super truncated
    ]

    fractionPart [
	"Answer the fractional part of the receiver"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_fractionPart>
	self checkCoercion.
	^self primitiveFailed
    ]

    exponent [
	"Answer the exponent of the receiver in mantissa*2^exponent
	 representation ( |mantissa|<=1 )"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_exponent>
	
    ]

    timesTwoPower: arg [
	"Answer the receiver multiplied by 2^arg"

	<category: 'built ins'>
	<primitive: VMpr_FloatD_timesTwoPower>
	
    ]
]