/usr/share/gnu-smalltalk/kernel/FloatQ.st is in gnu-smalltalk-common 3.2.4-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | "======================================================================
|
| FloatQ Method Definitions
|
|
======================================================================"
"======================================================================
|
| Copyright 2002, 2009 Free Software Foundation, Inc.
| Written by Paolo Bonzini.
|
| This file is part of the GNU Smalltalk class library.
|
| The GNU Smalltalk class library is free software; you can redistribute it
| and/or modify it under the terms of the GNU Lesser General Public License
| as published by the Free Software Foundation; either version 2.1, or (at
| your option) any later version.
|
| The GNU Smalltalk class library is distributed in the hope that it will be
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
| General Public License for more details.
|
| You should have received a copy of the GNU Lesser General Public License
| along with the GNU Smalltalk class library; see the file COPYING.LIB.
| If not, write to the Free Software Foundation, 59 Temple Place - Suite
| 330, Boston, MA 02110-1301, USA.
|
======================================================================"
Float subclass: FloatQ [
<shape: #byte>
<category: 'Language-Data types'>
<comment: 'My instances represent floating point numbers that have the same
accuracy as C''s "long double" numbers.'>
FloatQ class >> coerce: aNumber [
"Answer aNumber converted to a FloatQ"
<category: 'converting'>
^aNumber asFloatQ
]
FloatQ class >> signByte [
"Answer the byte of the receiver that contains the sign bit"
<category: 'byte-order dependancies'>
^##(| n k |
n := -2.0q.
1 to: n size do: [:i | (n at: i) >= 128 ifTrue: [k := i]].
k)
]
FloatQ class >> e [
"Returns the value of e. Hope is that it is precise enough"
<category: 'characterization'>
^16r2.B7E151628AED2A6ABF7158809CF4F3C75Eq
]
FloatQ class >> precision [
"Answer the number of bits in the mantissa. 1 + (2^-precision) = 1"
<category: 'characterization'>
^CLongDoubleBinaryDigits
]
FloatQ class >> fminNormalized [
"Return the smallest normalized FloatQ that is > 0"
<category: 'characterization'>
^CLongDoubleMin
]
FloatQ class >> fmax [
"Return the largest normalized FloatQ that is not infinite."
<category: 'characterization'>
^CLongDoubleMax
]
FloatQ class >> emax [
"Return the maximum allowable exponent for a FloatQ that is finite."
<category: 'characterization'>
^CLongDoubleMaxExp
]
FloatQ class >> emin [
"Return the maximum allowable exponent for a FloatQ that is finite."
<category: 'characterization'>
^CLongDoubleMinExp
]
FloatQ class >> decimalDigits [
"Return the number of decimal digits of precision for a FloatQ.
Technically, if P is the precision for the representation, then
the decimal precision Q is the maximum number of decimal digits
such that any floating point number with Q base 10 digits can be
rounded to a floating point number with P base 2 digits and back
again, without change to the Q decimal digits."
<category: 'characterization'>
^CLongDoubleDigits
]
FloatQ class >> log10Base2 [
"Returns the value of log2 10. Hope is that it is precise enough"
<category: 'characterization'>
^16r3.5269E12F346E2BF924AFDBFD36BF6D3362q
]
FloatQ class >> ln10 [
"Returns the value of ln 10. Hope is that it is precise enough"
<category: 'characterization'>
^16r2.4D763776AAA2B05BA95B58AE0B4C28A38Aq
]
FloatQ class >> infinity [
"Return a FloatQ that represents positive infinity."
<category: 'characterization'>
^CLongDoublePInf
]
FloatQ class >> negativeInfinity [
"Return a FloatQ that represents negative infinity."
<category: 'characterization'>
^CLongDoubleNInf
]
FloatQ class >> nan [
"Return a FloatQ that represents a mathematically indeterminate value
(e.g. Inf - Inf, Inf / Inf)."
<category: 'characterization'>
^CLongDoubleNaN
]
FloatQ class >> pi [
"Returns the value of pi. Hope is that it is precise enough"
<category: 'characterization'>
^16r3.243F6A8885A308D313198A2E0370734483q
]
zero [
"Coerce 0 to the receiver's class"
<category: 'coercing'>
^0.0q
]
half [
"Coerce 0.5 to the receiver's class"
<category: 'converting'>
^0.5q
]
unity [
"Coerce 1 to the receiver's class"
<category: 'coercing'>
^1.0q
]
coerce: aNumber [
"Coerce aNumber to the receiver's class"
<category: 'coercing'>
^aNumber asFloatQ
]
generality [
"Answer the receiver's generality"
<category: 'coercing'>
^420
]
asFloatQ [
"Just defined for completeness. Return the receiver."
<category: 'coercing'>
^self
]
ten [
"Private - Return 10, converted to the receiver's class."
<category: 'private'>
^10.0q
]
exponentLetter [
"Private - Return the letter to be printed just before the exponent"
<category: 'private'>
^$q
]
+ arg [
"Sum the receiver and arg and answer another Number"
<category: 'built ins'>
<primitive: VMpr_FloatQ_plus>
^self retrySumCoercing: arg
]
- arg [
"Subtract arg from the receiver and answer another Number"
<category: 'built ins'>
<primitive: VMpr_FloatQ_minus>
^self retryDifferenceCoercing: arg
]
< arg [
"Answer whether the receiver is less than arg"
<category: 'built ins'>
<primitive: VMpr_FloatQ_lt>
^self retryRelationalOp: #< coercing: arg
]
> arg [
"Answer whether the receiver is greater than arg"
<category: 'built ins'>
<primitive: VMpr_FloatQ_gt>
^self retryRelationalOp: #> coercing: arg
]
<= arg [
"Answer whether the receiver is less than or equal to arg"
<category: 'built ins'>
<primitive: VMpr_FloatQ_le>
^self retryRelationalOp: #<= coercing: arg
]
>= arg [
"Answer whether the receiver is greater than or equal to arg"
<category: 'built ins'>
<primitive: VMpr_FloatQ_ge>
^self retryRelationalOp: #>= coercing: arg
]
= arg [
"Answer whether the receiver is equal to arg"
<category: 'built ins'>
<primitive: VMpr_FloatQ_eq>
^self retryEqualityCoercing: arg
]
~= arg [
"Answer whether the receiver is not equal to arg"
<category: 'built ins'>
<primitive: VMpr_FloatQ_ne>
^self retryInequalityCoercing: arg
]
* arg [
"Multiply the receiver and arg and answer another Number"
<category: 'built ins'>
<primitive: VMpr_FloatQ_times>
^self retryMultiplicationCoercing: arg
]
/ arg [
"Divide the receiver by arg and answer another FloatQ"
<category: 'built ins'>
<primitive: VMpr_FloatQ_divide>
^self generality = arg generality
ifTrue: [self zeroDivide]
ifFalse: [self retryDivisionCoercing: arg]
]
asFloatD [
"Answer the receiver converted to a FloatD"
<category: 'built ins'>
<primitive: VMpr_FloatQ_asFloatD>
self primitiveFailed
]
asFloatE [
"Answer the receiver converted to a FloatE"
<category: 'built ins'>
<primitive: VMpr_FloatQ_asFloatE>
self primitiveFailed
]
truncated [
"Truncate the receiver towards zero and answer the result"
<category: 'built ins'>
<primitive: VMpr_FloatQ_truncated>
^super truncated
]
fractionPart [
"Answer the fractional part of the receiver"
<category: 'built ins'>
<primitive: VMpr_FloatQ_fractionPart>
self checkCoercion.
^self primitiveFailed
]
exponent [
"Answer the exponent of the receiver in mantissa*2^exponent
representation ( |mantissa|<=1 )"
<category: 'built ins'>
<primitive: VMpr_FloatQ_exponent>
]
timesTwoPower: arg [
"Answer the receiver multiplied by 2^arg"
<category: 'built ins'>
<primitive: VMpr_FloatQ_timesTwoPower>
]
]
|