/usr/share/gnu-smalltalk/kernel/Fraction.st is in gnu-smalltalk-common 3.2.4-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | "======================================================================
|
| Class Fraction Definitions
|
|
======================================================================"
"======================================================================
|
| Copyright 1992,94,95,99,2000,2001,2002,2008,2009
| Free Software Foundation, Inc.
| Written by David Duke.
| Slightly modified by Steve Byrne and Paolo Bonzini.
|
| This file is part of the GNU Smalltalk class library.
|
| The GNU Smalltalk class library is free software; you can redistribute it
| and/or modify it under the terms of the GNU Lesser General Public License
| as published by the Free Software Foundation; either version 2.1, or (at
| your option) any later version.
|
| The GNU Smalltalk class library is distributed in the hope that it will be
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
| General Public License for more details.
|
| You should have received a copy of the GNU Lesser General Public License
| along with the GNU Smalltalk class library; see the file COPYING.LIB.
| If not, write to the Free Software Foundation, 59 Temple Place - Suite
| 330, Boston, MA 02110-1301, USA.
|
======================================================================"
Number subclass: Fraction [
| numerator denominator |
<category: 'Language-Data types'>
<comment: ' I represent rational numbers in the form (p/q) where p and q are integers.
The arithmetic operations *, +, -, /, on fractions, all return a reduced
fraction.'>
Zero := nil.
One := nil.
Fraction class >> coerce: aNumber [
"Answer aNumber converted to a Fraction"
<category: 'converting'>
^aNumber asExactFraction
]
Fraction class >> initialize [
"Initialize the receiver's class variables"
<category: 'instance creation'>
Zero := self numerator: 0 denominator: 1.
One := self numerator: 1 denominator: 1
]
Fraction class >> numerator: nInteger denominator: dInteger [
"Answer a new instance of fraction (nInteger/dInteger)"
<category: 'instance creation'>
^self new setNumerator: nInteger setDenominator: dInteger
]
denominator [
"Answer the receiver's denominator"
<category: 'accessing'>
^denominator
]
numerator [
"Answer the receiver's numerator"
<category: 'accessing'>
^numerator
]
* aNumber [
"Multiply two numbers and answer the result."
<category: 'arithmetic'>
| num den gcd |
aNumber generality = self generality
ifFalse: [^self retryMultiplicationCoercing: aNumber].
aNumber numerator = 0 ifTrue: [^aNumber].
self numerator = 0 ifTrue: [^self].
num := numerator * aNumber numerator.
den := denominator * aNumber denominator.
aNumber == self
ifFalse:
[gcd := (numerator gcd: aNumber denominator)
* (denominator gcd: aNumber numerator).
num := num divExact: gcd.
den := den divExact: gcd].
den = 1 ifTrue: [^num].
^Fraction numerator: num denominator: den
]
+ aNumber [
"Sum two numbers and answer the result."
<category: 'arithmetic'>
| gcd num den |
aNumber generality = self generality
ifFalse: [^self retrySumCoercing: aNumber].
gcd := denominator gcd: aNumber denominator.
gcd == 1
ifTrue:
[^Fraction numerator: numerator * aNumber denominator
+ (aNumber numerator * denominator)
denominator: denominator * aNumber denominator].
num := numerator * (aNumber denominator divExact: gcd)
+ (aNumber numerator * (denominator divExact: gcd)).
den := denominator * aNumber denominator divExact: gcd.
"Compute a GCD on smaller operands"
gcd := num gcd: den.
num := num divExact: gcd.
den := den divExact: gcd.
den = 1 ifTrue: [^num].
^Fraction numerator: num denominator: den
]
- aNumber [
"Subtract aNumber from the receiver and answer the result."
<category: 'arithmetic'>
| gcd num den |
aNumber generality = self generality
ifFalse: [^self retryDifferenceCoercing: aNumber].
gcd := denominator gcd: aNumber denominator.
gcd == 1
ifTrue:
[^Fraction numerator: numerator * aNumber denominator
- (aNumber numerator * denominator)
denominator: denominator * aNumber denominator].
num := numerator * (aNumber denominator divExact: gcd)
- (aNumber numerator * (denominator divExact: gcd)).
den := denominator * aNumber denominator divExact: gcd.
"Compute a GCD on smaller operands"
gcd := num gcd: den.
num := num divExact: gcd.
den := den divExact: gcd.
den = 1 ifTrue: [^num].
^Fraction numerator: num denominator: den
]
/ aNumber [
"Divide the receiver by aNumber and answer the result."
<category: 'arithmetic'>
| num den gcd |
aNumber generality = self generality
ifFalse: [^self retryDivisionCoercing: aNumber].
aNumber numerator = 0 ifTrue: [^self zeroDivide].
self numerator = 0 ifTrue: [^self].
num := numerator * aNumber denominator.
den := denominator * aNumber numerator.
gcd := (numerator gcd: aNumber numerator)
* (denominator gcd: aNumber denominator).
num := num divExact: gcd.
den := den divExact: gcd.
den = 1 ifTrue: [^num].
^Fraction numerator: num denominator: den
]
// aNumber [
"Return the integer quotient of dividing the receiver by aNumber with
truncation towards negative infinity."
<category: 'arithmetic'>
^(self / aNumber) floor
]
\\ aNumber [
"Return the remainder from dividing the receiver by aNumber, (using //)."
<category: 'arithmetic'>
^self - (self // aNumber * aNumber)
]
estimatedLog [
"Answer an estimate of (self abs floorLog: 10)"
<category: 'arithmetic'>
^numerator estimatedLog - denominator estimatedLog
]
zero [
"Coerce 0 to the receiver's class"
<category: 'coercing'>
^Zero
]
unity [
"Coerce 1 to the receiver's class"
<category: 'coercing'>
^One
]
coerce: aNumber [
"Coerce aNumber to the receiver's class"
<category: 'coercing'>
^aNumber asExactFraction
]
generality [
"Return the receiver's generality"
<category: 'coercing'>
^300
]
floor [
"Truncate the receiver towards negative infinity
and return the truncated result"
<category: 'coercing'>
^numerator // denominator
]
ceiling [
"Truncate the receiver towards positive infinity
and return the truncated result"
<category: 'coercing'>
^(numerator + denominator - 1) // denominator
]
truncated [
"Truncate the receiver and return the truncated result"
<category: 'coercing'>
^numerator quo: denominator
]
< arg [
"Test if the receiver is less than arg."
<category: 'comparing'>
arg generality = self generality
ifFalse: [^self retryRelationalOp: #< coercing: arg].
^(self compare: arg) < 0
]
<= arg [
"Test if the receiver is less than or equal to arg."
<category: 'comparing'>
arg generality = self generality
ifFalse: [^self retryRelationalOp: #<= coercing: arg].
^(self compare: arg) <= 0
]
> arg [
"Test if the receiver is more than arg."
<category: 'comparing'>
arg generality = self generality
ifFalse: [^self retryRelationalOp: #> coercing: arg].
^(self compare: arg) > 0
]
>= arg [
"Test if the receiver is greater than or equal to arg."
<category: 'comparing'>
arg generality = self generality
ifFalse: [^self retryRelationalOp: #>= coercing: arg].
^(self compare: arg) >= 0
]
= arg [
"Test if the receiver equals arg."
<category: 'comparing'>
(arg isKindOf: Number) ifFalse: [^false].
arg generality = self generality
ifFalse: [^self retryEqualityCoercing: arg].
^self numerator = arg numerator and: [self denominator = arg denominator]
]
hash [
"Answer an hash value for the receiver"
<category: 'comparing'>
denominator = 1 ifTrue: [^numerator hash].
^self asFloatD hash
]
compare: arg [
"Answer an integer <, >, = 0 depending on the ordering
between the receiver and arg."
<category: 'private - comparing'>
"Comparing numbers with different signs, we just care about that;
canonical form further restricts the check to the numerator."
| n1 n2 delta |
self numerator sign = arg numerator sign
ifFalse: [^numerator sign - arg numerator sign].
n1 := numerator abs.
n2 := arg numerator abs.
"The first line is (n1 * d2) highBit +/- 1, and similarly for the second."
delta := numerator abs highBit + arg denominator highBit
- arg numerator abs highBit - denominator highBit.
delta < -1 ifTrue: [^delta * numerator sign].
delta > 1 ifTrue: [^delta * numerator sign].
"Cross multiply and compare. Sending #* to the denominators is
faster because they cannot be LargeNegativeIntegers."
^(arg denominator * numerator - (denominator * arg numerator)) sign
]
isRational [
"Answer whether the receiver is rational - true"
<category: 'testing'>
^true
]
integerPart [
"Answer the integer part of the receiver, expressed as a Fraction"
<category: 'converting'>
^Fraction numerator: self truncated denominator: 1
]
asCNumber [
"Convert the receiver to a kind of number that is understood by
the C call-out mechanism."
<category: 'coercion'>
^self asFloat: FloatD
]
asFloatD [
"Answer the receiver converted to a FloatD"
<category: 'converting'>
^self asFloat: FloatD
]
asFloatE [
"Answer the receiver converted to a FloatD"
<category: 'converting'>
^self asFloat: FloatE
]
asFloatQ [
"Answer the receiver converted to a FloatD"
<category: 'converting'>
^self asFloat: FloatQ
]
asExactFraction [
"Answer the receiver, it is already a Fraction"
<category: 'converting'>
^self
]
asFraction [
"Answer the receiver, it is already a Fraction"
<category: 'converting'>
^self
]
printOn: aStream [
"Print a representation of the receiver on aStream"
<category: 'printing'>
aStream
print: numerator;
nextPut: $/;
print: denominator
]
storeOn: aStream [
"Store Smalltalk code compiling to the receiver on aStream"
<category: 'printing'>
aStream
nextPutAll: '(Fraction numerator: ';
store: numerator;
nextPutAll: ' denominator: ';
store: denominator;
nextPut: $)
]
asFloat: characterization [
"Answer the receiver converted to a Float"
"Answer the receiver converted to a Float"
<category: 'private'>
| n d sign hn hd hq nBits q q1 r exponent floatExponent |
sign := numerator sign * denominator sign.
n := numerator abs.
d := denominator abs.
hn := n highBit.
hd := d highBit.
"If both numerator and denominator are represented exactly in floating
point number, then fastest thing to do is to use hardwired float division"
nBits := characterization precision + 1.
(hn < nBits and: [hd < nBits])
ifTrue:
[^(characterization coerce: numerator)
/ (characterization coerce: denominator)].
"Try and obtain a mantissa with characterization precision + 1 bits by integer division.
Additional bit is a helper for rounding mode.
First guess is rough, we might get one more bit or one less"
exponent := hn - hd - nBits.
exponent > 0
ifTrue: [d := d bitShift: exponent]
ifFalse: [n := n bitShift: exponent negated].
q := n quo: d.
r := n - (q * d).
hq := q highBit.
"check for gradual underflow, in which case we should use less bits"
floatExponent := exponent + hq.
floatExponent >= (characterization emin - 1)
ifFalse: [nBits := nBits + floatExponent - characterization emin + 1].
"Use exactly nBits"
hq > nBits
ifTrue:
[exponent := exponent + hq - nBits.
r := (q bitAnd: (1 bitShift: hq - nBits) - 1) * d + r.
q := q bitShift: nBits - hq].
hq < nBits
ifTrue:
[exponent := exponent + hq - nBits.
q1 := (r bitShift: nBits - hq) quo: d.
q := (q bitShift: nBits - hq) bitAnd: q1.
r := (r bitShift: nBits - hq) - (q1 * d)].
"check if we should round upward.
The case of exact half (q bitAnd: 1) = 1 & (r = 0)
will be handled by Integer>>asFloat:"
((q bitAnd: 1) = 0 or: [r = 0]) ifFalse: [q := q + 1].
"build the Float"
^(sign > 0
ifTrue: [characterization coerce: q]
ifFalse: [(characterization coerce: q) negated]) timesTwoPower: exponent
]
reduce [
"Reduce the fraction."
<category: 'private'>
| gcd |
numerator = 1 ifTrue: [^self].
denominator = 1 ifTrue: [^numerator].
numerator = 0 ifTrue: [^0].
numerator = denominator ifTrue: [^1].
gcd := numerator gcd: denominator.
gcd = 1 ifTrue: [^self].
denominator = gcd ifTrue: [^numerator divExact: gcd].
numerator := numerator divExact: gcd.
denominator := denominator divExact: gcd.
^self
]
setNumerator: numInteger setDenominator: denInteger [
"Set the fraction's numerator and denominator"
<category: 'private'>
denInteger = 0 ifTrue: [^numInteger zeroDivide].
denInteger < 0
ifTrue:
[numerator := numInteger negated.
denominator := denInteger negated]
ifFalse:
[numerator := numInteger.
denominator := denInteger]
]
negated [
"Return the receiver, with its sign changed."
<category: 'optimized cases'>
^Fraction numerator: 0 - numerator denominator: denominator
]
raisedToInteger: anInteger [
"Return self raised to the anInteger-th power."
"No need to reduce"
<category: 'optimized cases'>
anInteger < 0 ifTrue: [^self reciprocal raisedToInteger: 0 - anInteger].
^Fraction numerator: (numerator raisedToInteger: anInteger)
denominator: (denominator raisedToInteger: anInteger)
]
reciprocal [
"Return the reciprocal of the receiver"
<category: 'optimized cases'>
denominator < 0
ifTrue:
[^Fraction numerator: denominator negated denominator: numerator negated]
ifFalse: [^Fraction numerator: denominator denominator: numerator]
]
sqrt [
"Return the square root of the receiver."
<category: 'optimized cases'>
| n d |
n := numerator sqrt.
d := denominator sqrt.
"If both are integers the gcd is known to be 1, don't use n/d straight."
(n isInteger and: [ d isInteger ]) ifFalse: [ ^n / d ].
^Fraction numerator: n denominator: d
]
squared [
"Return the square of the receiver."
<category: 'optimized cases'>
^Fraction numerator: numerator squared denominator: denominator squared
]
]
|