This file is indexed.

/usr/share/gnu-smalltalk/kernel/Fraction.st is in gnu-smalltalk-common 3.2.4-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
"======================================================================
|
|   Class Fraction Definitions
|
|
 ======================================================================"

"======================================================================
|
| Copyright 1992,94,95,99,2000,2001,2002,2008,2009
| Free Software Foundation, Inc.
| Written by David Duke.
| Slightly modified by Steve Byrne and Paolo Bonzini.
|
| This file is part of the GNU Smalltalk class library.
|
| The GNU Smalltalk class library is free software; you can redistribute it
| and/or modify it under the terms of the GNU Lesser General Public License
| as published by the Free Software Foundation; either version 2.1, or (at
| your option) any later version.
| 
| The GNU Smalltalk class library is distributed in the hope that it will be
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser
| General Public License for more details.
| 
| You should have received a copy of the GNU Lesser General Public License
| along with the GNU Smalltalk class library; see the file COPYING.LIB.
| If not, write to the Free Software Foundation, 59 Temple Place - Suite
| 330, Boston, MA 02110-1301, USA.  
|
 ======================================================================"



Number subclass: Fraction [
    | numerator denominator |
    
    <category: 'Language-Data types'>
    <comment: ' I represent rational numbers in the form (p/q) where p and q are integers.
The arithmetic operations  *, +, -, /,  on fractions, all return a reduced 
fraction.'>

    Zero := nil.
    One := nil.

    Fraction class >> coerce: aNumber [
	"Answer aNumber converted to a Fraction"

	<category: 'converting'>
	^aNumber asExactFraction
    ]

    Fraction class >> initialize [
	"Initialize the receiver's class variables"

	<category: 'instance creation'>
	Zero := self numerator: 0 denominator: 1.
	One := self numerator: 1 denominator: 1
    ]

    Fraction class >> numerator: nInteger denominator: dInteger [
	"Answer a new instance of fraction (nInteger/dInteger)"

	<category: 'instance creation'>
	^self new setNumerator: nInteger setDenominator: dInteger
    ]

    denominator [
	"Answer the receiver's denominator"

	<category: 'accessing'>
	^denominator
    ]

    numerator [
	"Answer the receiver's numerator"

	<category: 'accessing'>
	^numerator
    ]

    * aNumber [
	"Multiply two numbers and answer the result."

	<category: 'arithmetic'>
	| num den gcd |
	aNumber generality = self generality 
	    ifFalse: [^self retryMultiplicationCoercing: aNumber].
	aNumber numerator = 0 ifTrue: [^aNumber].
	self numerator = 0 ifTrue: [^self].
	num := numerator * aNumber numerator.
	den := denominator * aNumber denominator.
	aNumber == self 
	    ifFalse: 
		[gcd := (numerator gcd: aNumber denominator) 
			    * (denominator gcd: aNumber numerator).
		num := num divExact: gcd.
		den := den divExact: gcd].
	den = 1 ifTrue: [^num].
	^Fraction numerator: num denominator: den
    ]

    + aNumber [
	"Sum two numbers and answer the result."

	<category: 'arithmetic'>
	| gcd num den |
	aNumber generality = self generality 
	    ifFalse: [^self retrySumCoercing: aNumber].
	gcd := denominator gcd: aNumber denominator.
	gcd == 1 
	    ifTrue: 
		[^Fraction numerator: numerator * aNumber denominator 
			    + (aNumber numerator * denominator)
		    denominator: denominator * aNumber denominator].
	num := numerator * (aNumber denominator divExact: gcd) 
		    + (aNumber numerator * (denominator divExact: gcd)).
	den := denominator * aNumber denominator divExact: gcd.

	"Compute a GCD on smaller operands"
	gcd := num gcd: den.
	num := num divExact: gcd.
	den := den divExact: gcd.
	den = 1 ifTrue: [^num].
	^Fraction numerator: num denominator: den
    ]

    - aNumber [
	"Subtract aNumber from the receiver and answer the result."

	<category: 'arithmetic'>
	| gcd num den |
	aNumber generality = self generality 
	    ifFalse: [^self retryDifferenceCoercing: aNumber].
	gcd := denominator gcd: aNumber denominator.
	gcd == 1 
	    ifTrue: 
		[^Fraction numerator: numerator * aNumber denominator 
			    - (aNumber numerator * denominator)
		    denominator: denominator * aNumber denominator].
	num := numerator * (aNumber denominator divExact: gcd) 
		    - (aNumber numerator * (denominator divExact: gcd)).
	den := denominator * aNumber denominator divExact: gcd.

	"Compute a GCD on smaller operands"
	gcd := num gcd: den.
	num := num divExact: gcd.
	den := den divExact: gcd.
	den = 1 ifTrue: [^num].
	^Fraction numerator: num denominator: den
    ]

    / aNumber [
	"Divide the receiver by aNumber and answer the result."

	<category: 'arithmetic'>
	| num den gcd |
	aNumber generality = self generality 
	    ifFalse: [^self retryDivisionCoercing: aNumber].
	aNumber numerator = 0 ifTrue: [^self zeroDivide].
	self numerator = 0 ifTrue: [^self].
	num := numerator * aNumber denominator.
	den := denominator * aNumber numerator.
	gcd := (numerator gcd: aNumber numerator) 
		    * (denominator gcd: aNumber denominator).
	num := num divExact: gcd.
	den := den divExact: gcd.
	den = 1 ifTrue: [^num].
	^Fraction numerator: num denominator: den
    ]

    // aNumber [
	"Return the integer quotient of dividing the receiver by aNumber with
	 truncation towards negative infinity."

	<category: 'arithmetic'>
	^(self / aNumber) floor
    ]

    \\ aNumber [
	"Return the remainder from dividing the receiver by aNumber, (using //)."

	<category: 'arithmetic'>
	^self - (self // aNumber * aNumber)
    ]

    estimatedLog [
	"Answer an estimate of (self abs floorLog: 10)"

	<category: 'arithmetic'>
	^numerator estimatedLog - denominator estimatedLog
    ]

    zero [
	"Coerce 0 to the receiver's class"

	<category: 'coercing'>
	^Zero
    ]

    unity [
	"Coerce 1 to the receiver's class"

	<category: 'coercing'>
	^One
    ]

    coerce: aNumber [
	"Coerce aNumber to the receiver's class"

	<category: 'coercing'>
	^aNumber asExactFraction
    ]

    generality [
	"Return the receiver's generality"

	<category: 'coercing'>
	^300
    ]

    floor [
	"Truncate the receiver towards negative infinity
	 and return the truncated result"

	<category: 'coercing'>
	^numerator // denominator
    ]

    ceiling [
	"Truncate the receiver towards positive infinity
	 and return the truncated result"

	<category: 'coercing'>
	^(numerator + denominator - 1) // denominator
    ]

    truncated [
	"Truncate the receiver and return the truncated result"

	<category: 'coercing'>
	^numerator quo: denominator
    ]

    < arg [
	"Test if the receiver is less than arg."

	<category: 'comparing'>
	arg generality = self generality 
	    ifFalse: [^self retryRelationalOp: #< coercing: arg].
	^(self compare: arg) < 0
    ]

    <= arg [
	"Test if the receiver is less than or equal to arg."

	<category: 'comparing'>
	arg generality = self generality 
	    ifFalse: [^self retryRelationalOp: #<= coercing: arg].
	^(self compare: arg) <= 0
    ]

    > arg [
	"Test if the receiver is more than arg."

	<category: 'comparing'>
	arg generality = self generality 
	    ifFalse: [^self retryRelationalOp: #> coercing: arg].
	^(self compare: arg) > 0
    ]

    >= arg [
	"Test if the receiver is greater than or equal to arg."

	<category: 'comparing'>
	arg generality = self generality 
	    ifFalse: [^self retryRelationalOp: #>= coercing: arg].
	^(self compare: arg) >= 0
    ]

    = arg [
	"Test if the receiver equals arg."

	<category: 'comparing'>
	(arg isKindOf: Number) ifFalse: [^false].
	arg generality = self generality 
	    ifFalse: [^self retryEqualityCoercing: arg].
	^self numerator = arg numerator and: [self denominator = arg denominator]
    ]

    hash [
	"Answer an hash value for the receiver"

	<category: 'comparing'>
	denominator = 1 ifTrue: [^numerator hash].
	^self asFloatD hash
    ]

    compare: arg [
	"Answer an integer <, >, = 0 depending on the ordering
	 between the receiver and arg."

	<category: 'private - comparing'>
	"Comparing numbers with different signs, we just care about that;
	 canonical form further restricts the check to the numerator."

	| n1 n2 delta |
	self numerator sign = arg numerator sign 
	    ifFalse: [^numerator sign - arg numerator sign].
	n1 := numerator abs.
	n2 := arg numerator abs.

	"The first line is (n1 * d2) highBit +/- 1, and similarly for the second."
	delta := numerator abs highBit + arg denominator highBit 
		    - arg numerator abs highBit - denominator highBit.
	delta < -1 ifTrue: [^delta * numerator sign].
	delta > 1 ifTrue: [^delta * numerator sign].

	"Cross multiply and compare.  Sending #* to the denominators is
	 faster because they cannot be LargeNegativeIntegers."
	^(arg denominator * numerator - (denominator * arg numerator)) sign
    ]

    isRational [
	"Answer whether the receiver is rational - true"

	<category: 'testing'>
	^true
    ]

    integerPart [
	"Answer the integer part of the receiver, expressed as a Fraction"

	<category: 'converting'>
	^Fraction numerator: self truncated denominator: 1
    ]

    asCNumber [
	"Convert the receiver to a kind of number that is understood by
	 the C call-out mechanism."
	<category: 'coercion'>
	^self asFloat: FloatD
    ]

    asFloatD [
	"Answer the receiver converted to a FloatD"

	<category: 'converting'>
	^self asFloat: FloatD
    ]

    asFloatE [
	"Answer the receiver converted to a FloatD"

	<category: 'converting'>
	^self asFloat: FloatE
    ]

    asFloatQ [
	"Answer the receiver converted to a FloatD"

	<category: 'converting'>
	^self asFloat: FloatQ
    ]

    asExactFraction [
	"Answer the receiver, it is already a Fraction"

	<category: 'converting'>
	^self
    ]

    asFraction [
	"Answer the receiver, it is already a Fraction"

	<category: 'converting'>
	^self
    ]

    printOn: aStream [
	"Print a representation of the receiver on aStream"

	<category: 'printing'>
	aStream
	    print: numerator;
	    nextPut: $/;
	    print: denominator
    ]

    storeOn: aStream [
	"Store Smalltalk code compiling to the receiver on aStream"

	<category: 'printing'>
	aStream
	    nextPutAll: '(Fraction numerator: ';
	    store: numerator;
	    nextPutAll: ' denominator: ';
	    store: denominator;
	    nextPut: $)
    ]

    asFloat: characterization [
	"Answer the receiver converted to a Float"

	"Answer the receiver converted to a Float"

	<category: 'private'>
	| n d sign hn hd hq nBits q q1 r exponent floatExponent |
	sign := numerator sign * denominator sign.
	n := numerator abs.
	d := denominator abs.
	hn := n highBit.
	hd := d highBit.

	"If both numerator and denominator are represented exactly in floating
	 point number, then fastest thing to do is to use hardwired float division"
	nBits := characterization precision + 1.
	(hn < nBits and: [hd < nBits]) 
	    ifTrue: 
		[^(characterization coerce: numerator) 
		    / (characterization coerce: denominator)].

	"Try and obtain a mantissa with characterization precision + 1 bits by integer division.
	 Additional bit is a helper for rounding mode.
	 First guess is rough, we might get one more bit or one less"
	exponent := hn - hd - nBits.
	exponent > 0 
	    ifTrue: [d := d bitShift: exponent]
	    ifFalse: [n := n bitShift: exponent negated].
	q := n quo: d.
	r := n - (q * d).
	hq := q highBit.

	"check for gradual underflow, in which case we should use less bits"
	floatExponent := exponent + hq.
	floatExponent >= (characterization emin - 1) 
	    ifFalse: [nBits := nBits + floatExponent - characterization emin + 1].

	"Use exactly nBits"
	hq > nBits 
	    ifTrue: 
		[exponent := exponent + hq - nBits.
		r := (q bitAnd: (1 bitShift: hq - nBits) - 1) * d + r.
		q := q bitShift: nBits - hq].
	hq < nBits 
	    ifTrue: 
		[exponent := exponent + hq - nBits.
		q1 := (r bitShift: nBits - hq) quo: d.
		q := (q bitShift: nBits - hq) bitAnd: q1.
		r := (r bitShift: nBits - hq) - (q1 * d)].

	"check if we should round upward.
	 The case of exact half (q bitAnd: 1) = 1 & (r = 0)
	 will be handled by Integer>>asFloat:"
	((q bitAnd: 1) = 0 or: [r = 0]) ifFalse: [q := q + 1].

	"build the Float"
	^(sign > 0 
	    ifTrue: [characterization coerce: q]
	    ifFalse: [(characterization coerce: q) negated]) timesTwoPower: exponent
    ]

    reduce [
	"Reduce the fraction."

	<category: 'private'>
	| gcd |
	numerator = 1 ifTrue: [^self].
	denominator = 1 ifTrue: [^numerator].
	numerator = 0 ifTrue: [^0].
	numerator = denominator ifTrue: [^1].
	gcd := numerator gcd: denominator.
	gcd = 1 ifTrue: [^self].
	denominator = gcd ifTrue: [^numerator divExact: gcd].
	numerator := numerator divExact: gcd.
	denominator := denominator divExact: gcd.
	^self
    ]

    setNumerator: numInteger setDenominator: denInteger [
	"Set the fraction's numerator and denominator"

	<category: 'private'>
	denInteger = 0 ifTrue: [^numInteger zeroDivide].
	denInteger < 0 
	    ifTrue: 
		[numerator := numInteger negated.
		denominator := denInteger negated]
	    ifFalse: 
		[numerator := numInteger.
		denominator := denInteger]
    ]

    negated [
	"Return the receiver, with its sign changed."

	<category: 'optimized cases'>
	^Fraction numerator: 0 - numerator denominator: denominator
    ]

    raisedToInteger: anInteger [
	"Return self raised to the anInteger-th power."

	"No need to reduce"

	<category: 'optimized cases'>
	anInteger < 0 ifTrue: [^self reciprocal raisedToInteger: 0 - anInteger].
	^Fraction numerator: (numerator raisedToInteger: anInteger)
	    denominator: (denominator raisedToInteger: anInteger)
    ]

    reciprocal [
	"Return the reciprocal of the receiver"

	<category: 'optimized cases'>
	denominator < 0 
	    ifTrue: 
		[^Fraction numerator: denominator negated denominator: numerator negated]
	    ifFalse: [^Fraction numerator: denominator denominator: numerator]
    ]

    sqrt [
	"Return the square root of the receiver."

	<category: 'optimized cases'>
	| n d |
	n := numerator sqrt.
	d := denominator sqrt.

	"If both are integers the gcd is known to be 1, don't use n/d straight."
	(n isInteger and: [ d isInteger ]) ifFalse: [ ^n / d ].
	^Fraction numerator: n denominator: d
    ]

    squared [
	"Return the square of the receiver."

	<category: 'optimized cases'>
	^Fraction numerator: numerator squared denominator: denominator squared
    ]
]