/usr/share/hol88-2.02.19940316/lisp/f-ol-net.l is in hol88-source 2.02.19940316-28.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; HOL 88 Version 2.0 ;;;
;;; ;;;
;;; FILE NAME: f-ol-net.l ;;;
;;; ;;;
;;; DESCRIPTION: Descrimination nets for rewriting ;;;
;;; ;;;
;;; USES FILES: f-franz.l (or f-cl.l), f-constants.l, f-marco.l, ;;;
;;; f-ol-rec.l ;;;
;;; ;;;
;;; University of Cambridge ;;;
;;; Hardware Verification Group ;;;
;;; Computer Laboratory ;;;
;;; New Museums Site ;;;
;;; Pembroke Street ;;;
;;; Cambridge CB2 3QG ;;;
;;; England ;;;
;;; ;;;
;;; COPYRIGHT: University of Edinburgh ;;;
;;; COPYRIGHT: University of Cambridge ;;;
;;; COPYRIGHT: INRIA ;;;
;;; ;;;
;;; REVISION HISTORY: (none) ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(eval-when (compile)
#+franz (include "lisp/f-franz")
(include "lisp/f-constants")
(include "lisp/f-macro")
(include "lisp/f-ol-rec"))
#+franz
(declare
(localf keylist exec-deferred update-net-fm update-alist
combine-tips traverse-link))
;;; Discrimination net program like that in
;;; Charniak, Riesbeck, McDermott. "Artificial Intelligence Programming",
;;; Lawrence Erlbaum Associates, Inc., Hillsdale, NJ
;;; Unlike book version, table updating is purely constructive
;;; These networks are indexed by PPLAMBDA terms and formulas,
;;; for fast rewriting.
;;; Abstract syntax only is stored, and no types
;;; thus networks take up less space than the terms themselves
;;; ALL variables are considered pattern variables
;;; If you store "X" using the index p=>r|s, then any conditional
;;; will retrieve "X", and possibly other elements
;;; Lookup retrieves all possible matches, and some impossible ones.
;;; Since matching is approximate, stored data should include a proper matching
;;; function for the term index
;;; a-list nodes -- keys with entries
(eval-when (compile)
(defmacro get-key (link) `(car ,link))
(defmacro get-entry (link) `(cdr ,link))
(defmacro make-link (key entry) `(cons ,key ,entry)))
;;; tips of nets
(eval-when (compile)
(defmacro get-tiplist (x) `(cdr ,x))
(defmacro is-tip (x) `(eq (car ,x) '*tip*))
(defmacro make-tip (x) `(cons '*tip* ,x)))
;;; all the keys of an alist
(defun keylist (alist) (mapcar #'car alist)) ; keylist
;;; apply deferred parts of the formula to the net
;;; if none, enter %elem as a tip node of a net
(defun exec-deferred (net)
(if %deferred (update-net-fm (pop %deferred) net)
(make-tip (cons %elem (get-tiplist net))))
) ; exec-deferred
;;; Using a formula (or term) index, add a new element to the network
(defun enter-elem-fm (%elem fm net)
(let ((%deferred nil)) (update-net-fm fm net))
) ; enter-elem-fm
;;; add the formula (or term) fm to the net, creating a new net.
;;; keep track of deferred parts
(defun update-net-fm (fm net)
(let ((class (form-class fm)))
(let ((child (assq1 class net)))
(case class
((conj disj imp) ; iff deleted [TFM 90.01.20]
(push (get-right-form fm) %deferred)
(update-alist net class
(update-net-fm (get-left-form fm) child)))
((forall exists)
(update-alist net class
(update-net-fm (get-quant-body fm) child)))
(pred
(let ((pname (get-pred-sym fm)))
(let ((pchild (assq1 pname child)))
(update-alist net class
(update-alist child pname
(update-net-tm (get-pred-arg fm) pchild))))))
(t (update-net-tm fm net)))))
) ; update-net-fm
;;; add the formula tm to the net, creating a new net.
;;; build up the continuation
(defun update-net-tm (tm net)
(let ((class (term-class tm)))
(let ((child (assq1 class net)))
(let ((newchild
(case class
(var (exec-deferred child))
(const
(let ((cname (get-const-name tm)))
(let ((cchild (assq1 cname child)))
(update-alist child cname
(exec-deferred cchild)))))
(comb (push (get-rand tm) %deferred)
(update-net-tm (get-rator tm) child))
(abs (update-net-tm (get-abs-body tm) child))
(t (lcferror 'update-net-tm)))))
(update-alist net class newchild))))
) ; update-net-tm
;;; update an alist with a new key/entry pair
;;; does not alter list structure, instead copies when needed
;;; this assumes that there are only a small number of distinct keys
;;; such as conj, disj, imp...
(defun update-alist (alist key entry)
(if (assq key alist)
(let ((newrest (update-alist (cdr alist) key entry)))
(if (#+franz eq #-franz eql key (get-key (car alist))) newrest
(cons (car alist) newrest)))
(cons (make-link key entry) alist))
) ; update-alist
;;; merge two nets into one, sharing whenever possible
(defun ml-merge_nets (net1 net2)
(cond
((null net1) net2)
((null net2) net1)
((is-tip net1)
(make-tip (append (get-tiplist net1) (get-tiplist net2))))
(t (mapcar #'(lambda (key)
(make-link key (ml-merge_nets (assq1 key net1)
(assq1 key net2))))
(union (keylist net1) (keylist net2)))))
) ; ml-merge_nets
;;; Look up an item in the net, indexed by a term
(defun lookup-elem-tm (net tm)
(combine-tips (follow-tm tm net)))
;;; Look up an item in the net, indexed by a formula
(defun lookup-elem-fm (net fm)
(combine-tips (follow-fm fm net)))
;;; Combine results from nondeterministic search
(defun combine-tips (tiplist)
(if tiplist
(append (get-tiplist (car tiplist))
(combine-tips (cdr tiplist))))
) ; combine-tips
;;; Follow preorder expansion of index formula in the net
;;; Nondeterministic, since matching of terms is.
(defun follow-fm (fm net)
(if net
(case (form-class fm)
(pred (follow-tm (get-pred-arg fm)
(assq1 (get-pred-sym fm)
(assq1 'pred net))))
((conj disj imp) ; iff deleted [TFM 90.01.20]
(mapcan #'(lambda (link2) (follow-fm (get-right-form fm) link2))
(follow-fm (get-left-form fm) (assq1 (get-conn fm) net))))
((forall exists)
(follow-fm (get-quant-body fm)
(assq1 (get-quant fm) net)))
(t (lcferror 'follow-fm))))
) ; follow-fm
;;; Follow preorder expansion of index term in the net
;;; A nondeterministic matcher:
;;; since pattern variables match anything, returns a list of subnets
(defun follow-tm (tm net)
(nconc
(if net
(case (term-class tm)
(var nil)
(const
(traverse-link (get-const-name tm) (assq1 'const net)))
(abs
(follow-tm (get-abs-body tm) (assq1 'abs net)))
(comb
(mapcan #'(lambda (link2) (follow-tm (get-rand tm) link2))
(follow-tm (get-rator tm) (assq1 'comb net))))
(t (lcferror 'follow-tm))))
(list (assq1 'var net)))
) ; follow-tm
;;; Follow down one link in the net
;;; This is deterministic but returns a list anyway, for consistency with
;;; follow-tm and follow-fm
(defun traverse-link (key net)
(let ((link (assq1 key net))) (if link (list link)))
) ; traverse-link
;;; ML functions used only to define abstract types
(dml |merge_nets_rep| 2 ml-merge_nets
(((* |list|) |#| (* |list|)) -> (* |list|)))
(dml |enter_term_rep| 3 enter-elem-fm
((* |#| (|term| |#| (* |list|))) -> (* |list|)))
(dml |lookup_term_rep| 2 lookup-elem-tm (((* |list|) |#| |term|) -> (* |list|)))
(dml |enter_form_rep| 3 enter-elem-fm
((* |#| (|form| |#| (* |list|))) -> (* |list|)))
(dml |lookup_form_rep| 2 lookup-elem-fm (((* |list|) |#| |form|) -> (* |list|)))
|