/usr/share/hol88-2.02.19940316/lisp/hol-writ.l is in hol88-source 2.02.19940316-28.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; HOL 88 Version 2.0 ;;;
;;; ;;;
;;; FILE NAME: hol-writ.l ;;;
;;; ;;;
;;; DESCRIPTION: Lisp functions for printing HOL terms ;;;
;;; ;;;
;;; USES FILES: f-franz.l (or f-cl.l), f-constants.l, f-macro.l, ;;;
;;; f-ol-rec.l, genmacs.l ;;;
;;; ;;;
;;; University of Cambridge ;;;
;;; Hardware Verification Group ;;;
;;; Computer Laboratory ;;;
;;; New Museums Site ;;;
;;; Pembroke Street ;;;
;;; Cambridge CB2 3QG ;;;
;;; England ;;;
;;; ;;;
;;; COPYRIGHT: University of Edinburgh ;;;
;;; COPYRIGHT: University of Cambridge ;;;
;;; COPYRIGHT: INRIA ;;;
;;; ;;;
;;; REVISION HISTORY: (none) ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; RJB 16.11.92 - All occurrences of <=> deleted.
(eval-when (compile)
#+franz (include "lisp/f-franz")
(include "lisp/f-constants")
(include "lisp/f-macro")
(include "lisp/f-ol-rec")
(include "lisp/genmacs")
(special ol-lam-sym hol-unops hol-binops binders |%show_types-flag|
|%interface_print-flag| %turnstile |%print_top_types-flag|
|%print_list-flag| |%print_cond-flag|
|%print_quant-flag| |%print_restrict-flag|
|%print_let-flag| |%print_uncurry-flag| |%print_infix-flag|
|%print_lettypes-flag| |%print_top_val-flag| |%print_set-flag|
|%empty-set| |%finite-set-constructor| |%set-abstraction-constructor|
|%pp_sexpr-flag| |%print_sexpr-flag| %pt1 |%print_parse_trees-flag|))
#+franz
(declare
(localf subtract is-subset nargtys polytys uninferred-poly-remnant
prep-ol-let
print-ol-bnd
print-ol-let
prep-ol-uncurry
is-ol-cons
is-ol-list
pre-prep-ol-list
prep-ol-list
print-ol-list
is-ol-set-cons
is-ol-finite-set
pre-prep-ol-finite-set
prep-ol-finite-set
print-ol-finite-set
prep-ol-set-abstraction
print-ol-set-abstraction
prep-ol-cond
is-special-comb
prep-ol-quant
prep-ol-restrict
prep-ol-unop
prep-ol-binop
print-ol-unop
print-eq
print-ol-binop
print-neg
print-ol-quant
print-ol-restrict))
;;; If T1 is a 'closes property of T2 then brackets will be put around
;;; T1 when it is printed in the context of T2
(eval-when (load)
(mapc
#'(lambda (x) (putprop (car x) (cdr x) 'closes))
'((|~| . (quant restrict /\\ \\/ |==>| |,| |=|))
(/\\ . (quant restrict /\\ \\/ |==>| |,| |=|))
(\\/ . (quant restrict \\/ |==>| |,| |=|))
(|==>| . (quant restrict |==>| |,| |=|))
(|,| . (quant restrict |,| /\\ \\/ |==>| ol-let |=|))
(|=| . (quant restrict ol-let |=|))
(then . (quant restrict then |=| /\\ \\/ |~| |==>|))
(else . (quant restrict then |,| |=| /\\ \\/ |==>|))
(listcomb . (quant restrict listcomb ratorofcomb infixcomb then
|,| typed ol-let |=| /\\ \\/ ==> ))
(ratorofcomb . (quant restrict listcomb ratorofcomb infixcomb then
|,| typed ol-let |=| /\\ \\/ ==> ))
(infixcomb . (quant restrict listcomb ratorofcomb infixcomb then
|,| typed ol-let |=| /\\ \\/ ==> |~|))
(varstruct . (|,| typed))
(varstructrator . (|,| typed))
(let-rhs . (|=| |,| typed))
(let-body . (quant restrict |=| /\\ \\/ |~| |==>|))
(typed . (infixcomb))
(fun . (fun))
(sum . (sum fun))
(prod . (prod sum fun))
(quant . (|,| typed))
(restrict . (|,| typed))
(fin-set . (|,|))
(set-abs1 . (|,|))
(eqn-rhs . (quant restrict listcomb ratorofcomb infixcomb then
|,| typed)))))
;;; MJCG 17/1/89 for HOL88
;;; Code change from Davis Shepherd for changing lambda symbol
;;; (ol-lam-sym for lam-sym)
;;; MJCG 31/1/89 for HOL88
;;; Modified to support print_flags
;;; MJCG 5/8/90 for HOL88.1.12
;;; |%print_set-flag| added
(eval-when (load)
(mapc
(function (lambda (x) (set x t)))
'(|%print_list-flag| |%print_cond-flag| |%print_restrict-flag|
|%print_quant-flag| |%print_infix-flag| |%print_let-flag|
|%print_comb-flag|))
(setq |%print_set-flag| nil))
;;; MJCG 5/8/90 for HOL88.1.12
;;; Modified to print sets
(defun prep-tm (tm)
(case (term-class tm)
(var tm)
(const (cond ((and |%print_set-flag| (eq (get-const-name tm) %empty-set))
`(ol-finite-set . (nil . ,(get-ol-set-type tm))))
((and |%print_list-flag| (eq (get-const-name tm) 'NIL))
`(ol-list . (nil . ,(get-ol-list-type tm))))
(t tm)))
(abs (list 'quant ol-lam-sym (get-abs-var tm) (prep-tm (get-abs-body tm))))
(comb (let ((rator (get-rator tm))
(rand (get-rand tm))
(ty (get-type tm)))
(or (and |%print_set-flag| (prep-ol-finite-set tm))
(and |%print_set-flag| (prep-ol-set-abstraction rator rand ty))
(and |%print_list-flag| (prep-ol-list tm))
(and |%print_cond-flag| (prep-ol-cond rator rand ty))
(and |%print_restrict-flag|(prep-ol-restrict rator rand ty))
(and |%print_quant-flag| (prep-ol-quant rator rand ty))
(and |%print_let-flag| (prep-ol-let tm))
(and |%print_infix-flag| (prep-ol-binop rator rand ty))
(and |%print_infix-flag| (prep-ol-unop rator rand ty))
(and |%print_uncurry-flag| (prep-ol-uncurry tm))
(prep-comb rator rand ty))))
(t (lcferror "prep-tm"))))
;;; Added by RJB 16.11.92
;;; Set difference
(defun subtract (l1 l2)
(if (null l1) nil
(if (member (car l1) l2) (subtract (cdr l1) l2)
(cons (car l1) (subtract (cdr l1) l2)))))
;;; Added by RJB 16.11.92
(defun is-subset (l1 l2)
(if (null l1) t (and (member (car l1) l2) (is-subset (cdr l1) l2))))
;;; Added by RJB 16.11.92
;;; Given a type and a number n this function returns a cons cell whose car is
;;; a list of the first n argument types and the cdr is the remainder of the
;;; type. If the number of arguments is less than n, the function stops pulling
;;; off argument types when they are exhausted.
(defun nargtys (ty n)
(if (or (< n 1) (not (eq (get-type-op ty) '|fun|))) (cons nil ty)
(let ((tyargs (get-type-args ty)))
(let ((argty (car tyargs)) (restty (cadr tyargs)))
(let ((result (nargtys restty (- n 1))))
(cons (cons argty (car result)) (cdr result)))))))
;;; Added by RJB 16.11.92
;;; Obtains a list of the type variables present in a type.
(defun polytys (ty)
(if (is-vartype ty) (list ty)
(itlist 'union (cons nil (mapcar 'polytys (get-type-args ty))) nil)))
;;; Added by RJB 16.11.92
;;; This function takes a name of an object language constant and a number.
;;; Suppose the constant has been applied to that number of arguments and the
;;; types of those arguments are known. Then, this function returns non-nil if
;;; it is still not possible to infer the type of the application.
;;; It does this by testing the remnant of the most general type of the
;;; constant to see if it contains a type variable that does not appear in the
;;; types of the arguments.
(defun uninferred-poly-remnant (cname num-of-args)
(let ((cty (constp cname)))
(let ((splitty (nargtys cty num-of-args)))
(let ((argtys (car splitty)) (resty (cdr splitty)))
(not (is-subset (polytys resty)
(itlist 'union (cons nil (mapcar 'polytys argtys)) nil)))))))
;;; RJB 16.11.92: Pretty-printing with `show_types' true re-implemented.
;;;
;;; The basic idea is:
;;; (1) Type the bound variables of abstractions. Note that this ensures that
;;; terms such as "@(x:*). T" are printed with enough type information.
;;; (2) Type each free variable exactly once.
;;; (3) Type polymorphic constants (including NIL) if they are not the operator
;;; of an application.
;;; (4) Type an application (combination) if its operator is a constant whose
;;; most general type contains a type variable which cannot be inferred
;;; from the arguments (see uninferred-poly-remnant).
;;; This is achieved by passing around a list of variables (actually name/type
;;; pairs) that have already been adorned with type information during the
;;; term traversal. The only tricky bit is dealing with bound variables.
;;; As a binding is entered the bound variables are added to the list of typed
;;; variables coming down the term tree (The bound variables are typed at the
;;; binding so don't need to be done in the body.). As the traversal comes
;;; back up through the binding, the new variables added to the list (that is
;;; those variables that were adorned with type information inside the body)
;;; are extracted and added to the original list of typed variables. This
;;; allows the bound variables to be removed from the list so that free
;;; variables of the same name will still be typed, but without removing such
;;; variables from the list if they had already been typed.
;;;
;;; An additional optimisation is performed: A term is not printed with type
;;; information if it is a direct subterm of ~, /\, \/, or ==>. However, if
;;; the term is a variable it *is* added to the typed-variable list since we
;;; know its type can be inferred.
;;;
;;; This scheme certainly doesn't keep type information to a minimum but I
;;; don't think the amount will be excessive, and I think it will provide
;;; enough information for the type of the term to be inferred which was not
;;; the case for the old version.
;;;
;;; - RJB
;;;
;;; Printing of $ before infixed variables added
;;; MJCG 01.02.94
(defun print-tm (tm op1 typedvars)
(let ((op2 (term-class tm))
(tml (get-term-list tm))
(ty (get-type tm)))
(let ((tyflag ; print type of this particular term?
(and |%show_types-flag|
(case op2
(var (not (member (cdr tm) typedvars)))
(const (and (not (eq op1 'ratorofcomb))
(opoly (constp (get-const-name tm)))))
((listcomb infixcomb)
(let ((r (first tml)) ; find innermost operator
(n (- (length tml) 1)))
(if (eq (term-class r) 'infixcomb)
(setq n (+ n (- (length (get-term-list r)) 1))
r (first (get-term-list r))))
(and (is-const r)
(uninferred-poly-remnant (get-const-name r) n))))
((ol-list ol-finite-set) (eq tml nil))
(t nil))))
(knownty (memq op1 '(|~| /\\ \\/ |==>| varstructrator))))
(let ((printty (and tyflag (not knownty))))
; possibly one pair of parens for precedence, another for typing
(let ((cl1 (closes op1 (if printty 'typed op2)))
(cl2 (and printty (closes 'typed op2))))
(if cl1 (ptoken |(|))
(if cl2 (ptoken |(|))
(pbegin 0)
(setq typedvars
(case op2
(var (progn (if (memq (get-var-name tm) hol-var-binops)
(ptoken |$|))
(pstring (get-var-name tm))
(if tyflag (cons (cdr tm) typedvars) typedvars)))
(const (progn (print-const (get-const-name tm)) typedvars))
(cond (print-cond tml typedvars))
(listcomb (print-listcomb tml typedvars))
(infixcomb (print-infixcomb tml typedvars))
(restrict (print-ol-restrict tm typedvars))
(quant (print-ol-quant tm typedvars))
(|~| (print-ol-unop tm typedvars))
((|=| /\\ \\/ |==>| |,|) (print-ol-binop tm typedvars))
(ol-let (print-ol-let tm typedvars))
(ol-list (print-ol-list tm typedvars))
(ol-finite-set (print-ol-finite-set tm typedvars))
(ol-set-abstraction (print-ol-set-abstraction tml typedvars))
(t (lcferror "print-tm"))))
(cond (printty ; print type
(if cl2 (ptoken |)|)
(ifn (memq op2 '(var const ol-list ol-finite-set))
(ptoken | |)))
(pbreak 0 0)
(ptoken |:|)
(print-ty (case op2 (ol-list (list '|list| ty))
(ol-finite-set (list '|set| ty))
(t ty)) t)))
(if cl1 (ptoken |)|))
(pend))
typedvars))))
;;; MJCG 20/10/88 for HOL88
;;; string printing function that inverts interface
(defun pistring (str)
(pstring (or (and |%interface_print-flag| (get str 'interface-print))
str)))
;;; MJCG 19/10/88 for HOL88
;;; print a constant (may be a prefix, infix or binder standing alone)
;;; modified to invert interface-map
(defun print-const (name)
(cond ((or (get name 'olinfix)
(get name 'prefix)
(get name 'binder))
(ptoken |$|)))
(pistring name))
;;; MJCG 3/2/89 for HOL88
;;; Function for stripping of the varstructs of a function
;;; "\v1 v2 ... vn. t" --> ((v1 v2 ... vn) . t)
;;; "t" --> (nil . t) -- t not a function
;;; (vi either a variable or a varstruct)
;;; MJCG 27/6/92
;;; Strip off at most n lambdas if n is a number and all lambdas otherwise
;;; (strip-abs ("\x1 ... xm ... xn. e" m)) = ((x1 ... xm) "\x(m+1) ... xn. e")
(defun strip-abs (tm n)
(or (and (numberp n) (eq n 0) (cons nil tm))
(and (is-abs tm)
(let* ((v (get-abs-var tm))
(b (get-abs-body tm))
(p (strip-abs b (if (numberp n) (sub1 n) n))))
(cons (cons v (car p)) (cdr p))))
(and (is-special-comb tm '(UNCURRY))
(let* ((p (dest-uncurry tm))
(q (strip-abs (cdr p) (if (numberp n) (sub1 n) n))))
(cons (cons (car p) (car q)) (cdr q))))
(cons nil tm)))
;;; MJCG 3/2/89 for HOL88
;;; Function for exploding an application
;;; "LET ( ... (LET t1 t2) ... ) tn" --> (t1 t2 ... tn)
;;; "t" --> (t) -- t not of this form
(defun strip-let (tm)
(or (and (is-comb tm)
(is-special-comb (get-rator tm) '(LET))
(let ((args (strip-let(get-rand(get-rator tm)))))
(append args (list (get-rand tm)))))
(list tm)))
;;; code for printing "let ... in ... "
;;; MJCG 3/2/89 for HOL88
;;; Extended to deal with fancier let constructs
;;;
;;; "let x=u in tm"
;;;
;;; "LET (\x. tm) u" --> (ol-let (((x) . u)) tm)
;;;
;;; "let f v1 ... vn = u in tm"
;;;
;;; "LET (\f. tm) (\v1 ... vn. u)" --> (ol-let (((f v1 ... vn) . u)) tm)
;;;
;;; "let x1=u1 and ... and xn=un in tm"
;;;
;;; "LET ( ... (LET (\x1 ... xn. tm) u1) ... ) un"
;;; -->
;;; (ol-let ((x1 . u2) ... (xn .un)) tm)
;;;
;;; Modified by MJCG 27/6/92 to use new strip-abs with second argument
(defun prep-ol-let (tm)
(and (is-comb tm)
(is-special-comb (get-rator tm) `(LET))
(let* ((tms (strip-let tm))
(args (cdr tms)) ; (u1 ... un)
(p (strip-abs (car tms) (length args)))
(params (car p)) ; (x1 ... xn)
(body (cdr p))) ; tm
(and (= (length params) (length args))
(list
'ol-let
(mapcar
(function
(lambda (x u)
(let ((q (strip-abs u nil)))
(cons
(cons (prep-tm x) (mapcar (function prep-tm) (car q)))
(prep-tm(cdr q))))))
params
args)
(prep-tm body))))))
;;; MJCG 3/2/89 for HOL88
;;; Printing of let bindings
;;; ((x) . u) --> x = u
;;;
;;; ((f v1 ... vn) . u) --> f v1 ... vn = u
;;;
;;; Modified by RJB 16.11.92
;;;
;;; The variable being declared by the let binding is not printed with type
;;; information, but any occurrence of it within the body (as a recursive call)
;;; is printed with type information otherwise it may not be possible to infer
;;; the type of the body. If a structure is being declared (e.g. "(x,y)") all
;;; the variables in it *are* given types. This is because the `varstructrator'
;;; context gets lost once the structure is entered and I don't want to
;;; complicate the code with a more sophisticated technique.
;;;
;;; Note that the result returned by this function is not the usual list of
;;; variables that have already been typed but a cons of the variables declared
;;; by the let binding and that list.
(defun print-ol-bnd (b typedvars)
(pibegin 0)
(let ((letvars (print-tm (caar b) 'varstructrator nil))
(boundvars nil))
(pbreak 0 0)
(mapc
(function
(lambda (y) (ptoken | |) (pbreak 0 1)
(setq boundvars
(append (print-tm y 'varstruct nil) boundvars))))
(cdar b))
(ptoken | = |)
(pbreak 0 2)
(let ((bodyvars (append boundvars typedvars)))
(let ((newlytypedvars (ldiff (print-tm (cdr b) 'let-rhs bodyvars)
bodyvars)))
(pend)
(cons letvars
(append (subtract newlytypedvars letvars) typedvars))))))
;;; MJCG 3/2/89 for HOL88
;;; Modified printing of let-terms
;;; Modified by RJB 16.11.92
(defun print-ol-let (tm typedvars)
(let ((bnd (cadr tm))
(body (caddr tm))
(letvars nil))
(pbegin 0)
(ptoken |let |)
(let ((result (print-ol-bnd (car bnd) typedvars)))
(setq letvars (append (car result) letvars))
(setq typedvars (cdr result)))
(mapc
#'(lambda (y) (pbreak 1 0 ) (ptoken |and |)
(let ((result (print-ol-bnd y typedvars)))
(setq letvars (append (car result) letvars))
(setq typedvars (cdr result))))
(cdr bnd))
(pbreak 1 0)
(ptoken |in|)
(pbreak 1 1)
(let ((bodyvars (append letvars typedvars)))
(setq typedvars
(append
(ldiff (print-tm body 'let-body bodyvars) bodyvars)
typedvars)))
(pend)
typedvars))
;;; MJCG 2/2/89 for HOL88
;;; code for printing "\(v1,v2,...,vn).t"
;;; MJCG 2/2/89 for HOL88
;;; function for making pairs: ("t1" "t2") --> "(t1,t2)"
(defun make-pair (t1 t2)
(let* ((ty1 (get-type t1))
(ty2 (get-type t2))
(prodty (make-type 'prod (list ty1 ty2)))
(fun1ty (make-type 'fun (list ty2 prodty)))
(fun2ty (make-type 'fun (list ty1 fun1ty))))
(make-comb
(make-comb (make-const comma-sym fun2ty) t1 fun1ty)
t2
prodty)))
;;; dest-uncurry is defined by the rules:
;;;
;;; ------------------------------------
;;; "UNCURRY(\x.\y. t)" --> ("x,y" . t)
;;;
;;; "(UNCURRY t)" --> ("p" . t1)
;;; -----------------------------------------
;;; "UNCURRY(\x. UNCURRY t)" --> ("x,p" . t1)
;;;
;;; "(UNCURRY t)" --> ("p" . "\x.t1")
;;; -------------------------------------
;;; "UNCURRY(UNCURRY t)" --> ("p,x" . t1)
;;;
;;; "(UNCURRY t)" --> ("p" . "\q.t1")
;;; ------------------------------------- ("q" a tuple)
;;; "UNCURRY(UNCURRY t)" --> ("p,q" . t1)
;;;
;;; If none of these apply, then nil is returned
;;; The Lisp code below shows why Prolog is such a nice language!
;;; Bugfix for Common Lisp: added test that argument is a combination (is-comb)
;;; MJCG 3 March 1991
(defun dest-uncurry (tm)
(and
(is-comb tm)
(let ((t1 (get-rand tm)))
(or (and (is-abs t1)
(is-abs (get-abs-body t1))
(cons
(make-pair (get-abs-var t1) (get-abs-var(get-abs-body t1)))
(get-abs-body(get-abs-body t1))))
(and (is-abs t1)
(is-special-comb (get-abs-body t1) '(UNCURRY))
(let ((p (dest-uncurry (get-abs-body t1))))
(and p
(cons (make-pair (get-abs-var t1) (car p))
(cdr p)))))
(and (is-special-comb t1 '(UNCURRY))
(let ((p (dest-uncurry t1)))
(and p
(or
(and (is-abs (cdr p))
(cons (make-pair (car p) (get-abs-var (cdr p)))
(get-abs-body(cdr p))))
(and (is-special-comb (cdr p) '(UNCURRY))
(let ((q (dest-uncurry(cdr p))))
(and q
(cons (make-pair (car p) (car q))
(cdr q)))))))))))))
;;; (prep-ol-uncurry "\(v1,v2,...,vn).t") --> (quant \\ "v1,...,vn" t)
(defun prep-ol-uncurry (tm)
(and (is-special-comb tm '(UNCURRY))
(let ((p (dest-uncurry tm)))
(and p (list 'quant ol-lam-sym (prep-tm(car p)) (prep-tm(cdr p)))))))
;;; code for printing "[t1; ... ;tn]"
;;; is-ol-list tests whether tm is of the form:
;;; CONS t1 (CONS t2 ... (CONS tn nil) ... )
(defun is-ol-cons (tm)
(and (is-comb tm)
(let ((rator (get-rator tm)))
(and (is-comb rator)
(is-const (get-rator rator))
(eq (get-const-name(get-rator rator)) 'CONS)))))
(defun is-ol-list (tm)
(or (null-ol-list tm)
(and (is-ol-cons tm)
(is-ol-list(tl-ol-list tm)))))
;;; pre-prep-ol-list gets a list of the elements of an OL value representing
;;; a list - e.g CONS 1(CONS 2(CONS 3 NIL)) -> (1 2 3)
(defun pre-prep-ol-list (tm)
(cond ((null-ol-list tm) nil)
(t (cons (prep-tm (hd-ol-list tm))
(pre-prep-ol-list (tl-ol-list tm))))))
(defun prep-ol-list (tm)
(if (is-ol-list tm)
(make-prep-term 'ol-list
(pre-prep-ol-list tm)
(get-ol-list-type tm))))
;;; Modified by RJB 16.11.92
(defun print-ol-list (tm typedvars)
(let ((termlist (get-term-list tm)))
(pibegin 1)
(ptoken |[|)
(cond (termlist
(setq typedvars (print-tm (car termlist) t typedvars))
(mapc
#'(lambda (y) (ptoken |;|) (pbreak 0 0)
(setq typedvars (print-tm y t typedvars)))
(cdr termlist))))
(ptoken |]|)
(pend)
typedvars))
;;; code for printing "{t1, ... ,tn}"
;;; Duplicates code for lists -- would be more space-efficientr to fold set
;;; and list printing code into one set of routines.
;;; The current empty set and finite set constructor are held in the globals
;;; %empty-set, %finite-set-constructor.
;;; The current set abstraction constructor is held in the global
;;; %set-abstraction-constructor
;;; is-ol-finite-set tests whether tm is of the form:
;;; INSERT t1 (INSERT t2 ... (INSERT tn EMPTY) ... )
(defun is-ol-set-cons (tm)
(and (is-comb tm)
(let ((rator (get-rator tm)))
(and (is-comb rator)
(is-const (get-rator rator))
(eq (get-const-name(get-rator rator)) %finite-set-constructor)))))
(defun is-ol-finite-set (tm)
(or (null-ol-set tm)
(and (is-ol-set-cons tm)
(is-ol-finite-set(tl-ol-set tm)))))
;;; pre-prep-ol-finite-set gets a list of the elements of an OL value
;;; representing a finite set
;;; - e.g INSERT 1(INSERT 2(INSERT 3 EMPTY)) -> (1 2 3)
(defun pre-prep-ol-finite-set (tm)
(cond ((null-ol-set tm) nil)
(t (cons (prep-tm (hd-ol-set tm))
(pre-prep-ol-finite-set (tl-ol-set tm))))))
(defun prep-ol-finite-set (tm)
(if (is-ol-finite-set tm)
(make-prep-term 'ol-finite-set
(pre-prep-ol-finite-set tm)
(get-ol-set-type tm))))
;;; Modified by RJB 16.11.92
(defun print-ol-finite-set (tm typedvars)
(let ((termlist (get-term-list tm)))
(pibegin 1)
(ptoken |{|)
(cond (termlist
(setq typedvars (print-tm (car termlist) 'fin-set typedvars))
(mapc
#'(lambda (y) (ptoken |,|)
(pbreak 0 0)
(setq typedvars (print-tm y 'fin-set typedvars)))
(cdr termlist))))
(ptoken |}|)
(pend)
typedvars))
;;; Prepare set abstractions for printing
;;; MJCG 12/11/90: Modified not to print set abstractions if no variables bound
(defun prep-ol-set-abstraction (rator rand ty)
(and (is-const rator)
(eq (get-const-name rator) %set-abstraction-constructor)
(or (is-abs rand) (dest-uncurry rand))
(let ((vp (if (is-abs rand)
(cons (get-abs-var rand) (get-abs-body rand))
(dest-uncurry rand))))
(if (is-pair (cdr vp))
(let ((p1 (get-fst (cdr vp))) ;;; p1 in GSPEC(\vars.(p1,p2))
(p2 (get-snd (cdr vp))) ;;; p2 in GSPEC(\vars.(p1,p2))
(vs (freevars(car vp)))) ;;; vars in GSPEC(\vars.(p1,p2))
(and (equal vs (intersect (freevars p1) (freevars p2)))
(make-prep-term
'ol-set-abstraction
(list (prep-tm p1) (prep-tm p2))
ty)))))))
;;; Modified by RJB 16.11.92
(defun print-ol-set-abstraction (tml typedvars)
(ptoken |{|)
(setq typedvars (print-tm (first tml) 'set-abs1 typedvars))
(ptoken | \| |)
(pbreak 0 1)
(setq typedvars (print-tm (second tml) 'set-abs2 typedvars))
(ptoken |}|)
typedvars)
;;; prepare conditional for printing
;;; put the combination (((COND P) X) Y) into a special format
(defun prep-ol-cond (rator rand ty)
(if (is-comb rator)
(let ((ratrat (get-rator rator)))
(if (is-comb ratrat)
(let ((ratratrat (get-rator ratrat)))
(if (and (is-const ratratrat)
(eq (get-const-name ratratrat) 'COND))
(make-prep-term
'cond
(list (prep-tm (get-rand ratrat))
(prep-tm (get-rand rator))
(prep-tm rand))
ty)))))))
;;; print conditionals
;;; Modified by RJB 16.11.92
(defun print-cond (tml typedvars)
(ptoken |(|)
(setq typedvars (print-tm (first tml) 'then typedvars))
(ptoken | => |)
(pbreak 0 1)
(setq typedvars (print-tm (second tml) 'else typedvars))
(ptoken " | ") ; vertical bar
(pbreak 0 1)
(setq typedvars (print-tm (third tml) 'else typedvars))
(ptoken |)|)
typedvars)
;;; print a long combination (f x1 ... xn)
;;; Copied from f-writol.l and modified by RJB 16.11.92
(defun print-listcomb (tml typedvars)
(let ((y (pop tml)) (prev nil))
(setq typedvars (print-tm y 'ratorofcomb typedvars))
(while tml
(setq prev y) (setq y (pop tml))
(if (and(memq (term-class prev) '(var const))
(memq (term-class y) '(var const)))
(ptoken | |)) ; space between two identifiers
(pbreak 0 0)
(setq typedvars (print-tm y 'listcomb typedvars)))
typedvars))
;;; (is-special-comb tm '(tok1 tok2 ...)) checks that tm has the form "F t"
;;; where "F" is a constant.
(defun is-special-comb (tm tokl)
(and (is-comb tm)
(let ((rator (get-rator tm)))
(and (is-const rator)
(memq (get-const-name rator) tokl)))))
;;; MJCG 27/10/88 for HOL88
;;; replace a name by its interface-print property (if it exists)
(defmacro get-print-name (name)
`(or (get ,name 'interface-print) ,name))
;;; MJCG 27/10/88 for HOL88
;;; (prep-ol-quant "Q" "\x.t" ty) --> (quant 'Q "x" "t")
;;; Modified to use get-print-name
;;; MJCG 3/2/88 for HOL88
;;; Modified to handle uncurried functions
(defun prep-ol-quant (t1 t2 ty)
(and (is-const t1)
(get (get-print-name(get-const-name t1)) 'binder)
(or (and (is-abs t2)
(list
'quant
(get-const-name t1)
(prep-tm(get-abs-var t2))
(prep-tm(get-abs-body t2))))
(and (is-special-comb t2 '(UNCURRY))
(let ((p (dest-uncurry t2)))
(and p
(list
'quant
(get-const-name t1)
(prep-tm (car p))
(prep-tm (cdr p)))))))))
;;; MJCG 24/1/91
;;; (prep-ol-restrict "Q P" "\x.t" ty) --> (restrict 'Q "P" "x" "t")
(defun prep-ol-restrict (t1 t2 ty)
(and (is-comb t1)
(is-const (get-rator t1))
(get (get-print-name(get-const-name(get-rator t1))) 'unrestrict)
(or (and (is-abs t2)
(list
'restrict
(get (get-const-name (get-rator t1)) 'unrestrict)
(prep-tm (get-rand t1))
(prep-tm(get-abs-var t2))
(prep-tm(get-abs-body t2))))
(and (is-special-comb t2 '(UNCURRY))
(let ((p (dest-uncurry t2)))
(and p
(list
'restrict
(get (get-const-name(get-rator t1)) 'unrestrict)
(prep-tm (get-rand t1))
(prep-tm (car p))
(prep-tm (cdr p)))))))))
(setq hol-unops '(|~|))
(setq hol-binops '(/\\ \\/ |==>| |=| |,|))
(setq binders '(\\ |!| |?| |@|))
;;; (prep-ol-unop "F" "t" ty) --> (F t)
;;; where F is an atom and t is a term
(defun prep-ol-unop (t1 t2 ty)
(if (and (is-const t1) (memq (get-const-name t1) hol-unops))
(list (get-const-name t1)
(prep-tm t2))))
;;; (prep-ol-binop "F t1" "t2" ty) --> (F t1 t2)
;;; where F is an atom and t1,t2 are terms
(defun prep-ol-binop (t1 t2 ty)
(if (is-special-comb t1 hol-binops)
(list (get-const-name(get-rator t1))
(prep-tm(get-rand t1))
(prep-tm t2))))
;;; print a formula built from a unary operator
;;; Modified by RJB 16.11.92
(defun print-ol-unop (fm typedvars)
(case (first fm)
(|~| (print-neg fm typedvars))))
;;; print a formula built from a binary operator
;;; suppress parentheses using right-associativity (except for =)
;;; print tuples as an inconsistent block
;;; first an ad-hoc function for printing equations
;;; MJCG 20/10/88 for HOL88
;;; modified to use pistring
;;; Modified by RJB 16.11.92
(defun print-eq (fm typedvars)
(setq typedvars (print-tm (second fm) '|=| typedvars))
;;; (ptoken | =|) ; old code
(ptoken | |)(pistring '|=|)
(pbreak 1 0)
(print-tm (third fm) '|=| typedvars))
;;; MJCG 19/10/88 for HOL88
;;; print a user-defined infix operator
;;; modified to invert interface-map
;;; Modified by RJB 16.11.92
;;; MJCG added comment on 31/01/94 for HOL88.2.02
(defun print-infixcomb (tml typedvars)
(setq typedvars (print-tm (second tml) 'infixcomb typedvars))
(ptoken | |)
(pistring (get-const-name (first tml))) ;;; N.B. OK for infixed variables as
(pbreak 1 0) ;;; get-const-name = get-var-name (ugh!)
(print-tm (third tml) 'infixcomb typedvars)) ; print-infixcomb
;;; MJCG 19/10/88 for HOL88
;;; print a binary operator
;;; modified to invert interface-map
;;; Modified by RJB 16.11.92
(defun print-ol-binop (fm typedvars)
(let ((op (first fm)))
(case op
(|=| (print-eq fm typedvars))
(t (case op
(|,| (pibegin 0))
(t (pbegin 0)))
(while (eq op (first fm))
(setq typedvars (print-tm (second fm) op typedvars))
(case (first fm)
;;; (|,| (ptoken |,|) (pbreak 0 0))
;;; (|=| (ptoken | =|) (pbreak 1 0))
;;; (/\\ (ptoken \ /\\) (pbreak 1 0))
;;; (\\/ (ptoken \ \\/ (pbreak 1 0))
;;; (|==>| (ptoken | ==>|) (pbreak 1 0)))
(|,| (cond
((and |%interface_print-flag|
(get '|,| 'interface-print))
(ptoken | |)(pistring '|,|) (pbreak 1 0))
(t (ptoken |,|) (pbreak 0 0))))
(/\\ (ptoken | |)(pistring '/\\) (pbreak 1 0))
(\\/ (ptoken | |)(pistring '\\/) (pbreak 1 0))
(|==>| (ptoken | |)(pistring '|==>|) (pbreak 1 0)))
(setq fm (third fm)))
(setq typedvars (print-tm fm op typedvars))
(pend)
typedvars))))
;;; MJCG 20/10/88 for HOL88
;;; modified to use pistring
;;; print a negation
;;; Modified by RJB 16.11.92
(defun print-neg (fm typedvars)
(pistring '|~|) (print-tm (second fm) (first fm) typedvars))
;;; print Qx y z.w instead of Qx. Qy. Qz. (where Q is a binder)
;;; this makes a big difference if the formula is broken over several lines
;;; "\" is treated as a quantifier for printing purposes
(eval-when (load)
(putprop lam-sym t 'binder))
;;; MJCG 19/10/88 for HOL88
;;; print a quantifier
;;; modified to invert interface-map
(setq |%print_uncurry-flag| t)
;;; Modified by RJB 16.11.92
(defun print-ol-quant (fm typedvars)
(let ((quant (second fm))
(vars (third fm))
(body (fourth fm)))
(pbegin 1)
(pistring quant)
(if (not(memq quant binders)) (ptoken | |))
(pibegin 0)
(let ((boundvars (print-tm vars 'quant nil)))
(while (and (eq (first body) 'quant) (eq (second body) quant))
(pbreak 1 0)
(setq boundvars
(append (print-tm (third body) 'quant nil) boundvars))
(setq body (fourth body)))
(pend)
(ptoken |.|)
(pend)
(pbreak 1 1)
(let ((bodyvars (append boundvars typedvars)))
(append (ldiff (print-tm body 'quant bodyvars) bodyvars)
typedvars)))))
;;; MJCG 24.1.91
;;; Modified by RJB 16.11.92
(defun print-ol-restrict (fm typedvars)
(let ((quant (second fm))
(restrict (third fm))
(vars (fourth fm))
(body (fifth fm)))
(pbegin 1)
(pistring quant)
(if (not(memq quant binders)) (ptoken | |))
(pibegin 0)
(let ((boundvars (print-tm vars 'restrict nil)))
(while (and (eq (first body) 'restrict)
(eq (second body) quant)
(equal (third body) restrict))
(pbreak 1 0)
(setq boundvars
(append (print-tm (fourth body) 'restrict nil) boundvars))
(setq body (fifth body)))
(pend)
(ptoken | ::|)
(pbreak 1 1)
(setq typedvars (print-tm restrict 'restrict typedvars))
(ptoken |.|)
(pend)
(pbreak 1 1)
(let ((bodyvars (append boundvars typedvars)))
(append
(ldiff (print-tm body 'restrict bodyvars) bodyvars)
typedvars)))))
;;; Change printing of predicate formulae to suppress HOL_ASSERT
;;; Modified by RJB 16.11.92
(defun print-pred-form (fm)
(cond ((not (eq (get-pred-sym fm) 'HOL_ASSERT))
(pstring (get-pred-sym fm))
(pbreak 1 0)))
(print-tm (get-pred-arg fm) t nil))
;;; MJCG 10.12.90 for Centaur:
;;; Flag to determine whether to pretty-print lisp
(setq |%pp_sexpr-flag| t)
;;; MJCG 10.12.90 for Centaur:
;;; Flag to determine whether to print in S-expression form
(setq |%print_sexpr-flag| nil)
;;; MJCG 10.12.90 for Centaur:
;;; Add these flags to the list of known flags
;;; MJCG 7.4.91: %pp_sexpr-flag and %print_sexpr-flag
;;; declared in f-iox-stand.l
;;; MJCG 10.12.90 for Centaur:
;;; Print function: |%pp_sexpr-flag| true causes pretty-printing, otherwise not
(defun sexpr-print (x) (if |%pp_sexpr-flag| #+franz (pp-form x)
#-franz (pprint x) (princ x)))
;;; MJCG 10.12.90 for Centaur: redefined to switch on |%print_sexpr-flag|
;;; Overwrites definition in f-writol.l
;;; Modified by RJB 16.11.92
(defun ml-print_term (tm)
(cond (|%print_sexpr-flag| (sexpr-print(reshape-tm tm)))
(t (ptoken |"|)
(print-tm (prep-tm tm) t nil)
(ptoken |"|)))) ;ml-print_term
;;; RJB 1.7.92
;;; Function to print a term without quotes
(dml |print_unquoted_term| 1 ml-print_unquoted_term (|term| -> |void|))
;;; Modified by RJB 16.11.92
(defun ml-print_unquoted_term (tm)
(cond (|%print_sexpr-flag| (sexpr-print(reshape-tm tm)))
(t (print-tm (prep-tm tm) t nil))))
;;; MJCG 10.12.90 for Centaur:
;;; Function to convert a term value into an S-expression form that can
;;; be read by a dumb Lisp parser (essentially just add extra brackets)
(defun reshape-tm (tm)
(cond ((is-var tm)
`(var ,(get-var-name tm) ,(get-type tm)))
((is-const tm)
`(const ,(get-const-name tm) ,(get-type tm)))
((is-comb tm)
`(comb
,(reshape-tm(get-rator tm))
,(reshape-tm(get-rand tm))
,(get-type tm)))
((is-abs tm)
`(abs
,(reshape-tm(get-abs-var tm))
,(reshape-tm(get-abs-body tm))
,(get-type tm)))))
;;; MJCG 10.12.90 for Centaur:
;;; Function to reshape a hypothesis or conclusion of a theorem
;;; (hypotheses and conclusions are wrapped with a HOL_ASSERT for
;;; historical LCF reasons)
(defun reshape-thm (x) (reshape-tm(cddr x)))
;;; Changes top-level printing of theorems to suppress quotes
;;; MJCG 10.12.90 for Centaur: modified to switch on |%print_sexpr-flag|
;;; TFM 92.07.08 : [DES] 8Jul92 line below installed.
;;; TFM 92.07.09 : previous change uninstalled, pending better solution.
;;; JRH 92.07.20 : better solution (from DES) put in; old code commented out
;;; (defun ml-print_thm (th)
;;; (cond (|%print_sexpr-flag|
;;; (sexpr-print
;;; (list 'thm
;;; (mapcar (function reshape-thm) (car th))
;;; (reshape-thm (cdr th)))))
;;; (t
;;; (cond ((not(null(car th)))
;;; (mapc #'(lambda (x) (ptoken |.|)) (car th))
;;; (ptoken | |))) ;;; line below replaces this one.
;;; ;;; (pbreak 1 2))) ;;; allow a break if many hyps [DES] 8jul92
;;; (pstring %turnstile)
;;; (print-fm (prep-fm(cdr th)) t))))
(defun ml-print_thm (th)
(cond (|%print_sexpr-flag|
(sexpr-print
(list 'thm
(mapcar (function reshape-thm) (car th))
(reshape-thm (cdr th)))))
(t
(cond ((not(null(car th)))
(pibegin 0)
(mapc #'(lambda (x) (progn (ptoken |.|) (pbreak 0 0))) (car th))
(pend)
(cond ((> (length(car th)) (/ %margin 5)) (pbreak 1 2))
(t (ptoken | |)))))
(pstring %turnstile)
(print-fm (prep-fm(cdr th)) t))))
;;; Printing a theorem and all its assumptions
(defun ml-print_all_thm (th)
(pibegin 0)
(cond ((not(null(car th)))
(print-fm(prep-fm(caar th))t)
(mapc
#'(lambda (x) (ptoken |, |) (pbreak 0 0) (print-fm(prep-fm x)t))
(cdar th))
(ptoken | |)
(pbreak 0 0)))
(pstring %turnstile)
(print-fm (prep-fm(cdr th)) t)
(pend)
)
(dml |print_all_thm| 1 ml-print_all_thm (|thm| -> |void|))
;;; MJCG 10.12.90 for Centaur:
;;; Flag to switch on parsing of ML parse trees
(setq |%print_parse_trees-flag| nil)
;;; MJCG 10.12.90 for Centaur:
;;; Add |%print_parse_trees-flag| to the list of known flags
;;; MJCG 7.4.91: declaration of %print_parse_trees-flag|
;;; moved to f-iox-stand.l
;;; MJCG 10.12.90 for Centaur:
;;; Holds the true parse tree (the one in %pt is sometimes wrong)
(setq %pt1 '(mk-empty))
;;; Print value, type of top-level expression
;;; HOL: modified not to print ": thm" after theorems
;;; MJCG 31/1/89 for HOL88
;;; Added test for |%print_top_types-flag|
;;; MJCG 7/2/89 for HOL88
;;; Added test for |%print_top_val-flag|
;;; MJCG 10.12.90 for Centaur: ML or S-expression form used
;;; depending on |%print_sexpr-flag|
;;; Printing of types suppressed if |%print_sexpr-flag| is nil
;;; (S-expression printing of values is handled by print functions
;;; invoked by prinml)
;;; If |%print_sexpr-flag| then
;;; sexpr-print is defined in f-writol.l
(setq |%print_top_types-flag| t)
(setq |%print_top_val-flag| t)
(defun prvalty (x ty)
(cond
(|%print_top_val-flag|
(prinml x ty nil)
(cond ((not(eq (car ty) 'mk-thmtyp))
(pbreak 1 0)
(cond ((and (not |%print_sexpr-flag|) |%print_top_types-flag|)
(ptoken |: |)
(printmty ty)))))
(pnewline)
(cond (|%print_parse_trees-flag|
(terpri)
(sexpr-print %pt1)
(terpri))))))
;;; MJCG 27/10/88 for HOL88
;;; detect infixes and long combinations
;;; modified to invert interface-map
(defun prep-comb (rator rand ty)
(let ((prator (prep-tm rator))(prand (prep-tm rand)))
(cond
((and (is-const prator)
|%print_infix-flag|
(eq (get (get-print-name(get-const-name prator)) 'olinfix) 'paired)
(eq (term-class prand) 'pair))
(make-prep-term 'infixcomb (cons prator (get-term-list prand)) ty))
((eq (term-class prator) 'listcomb)
(prep-curr (get-term-list prator) prand ty))
((make-prep-term 'listcomb (list prator prand) ty)))
)) ;prep-comb
;;; MJCG 27/10/88 for HOL88
;;; detect infixes and long combinations
;;; see if ((tm1 tm2 ...) y) is the curried infix "tm2 <tm1> y"
;;; otherwise return (tm1 tm2 ... y)
;;; modified to invert interface-map
;;; MJCG 31/01/94 for HOL88.2.02
;;; Modified to support infixed variables
(defun prep-curr (tml y ty)
(let ((tm1 (car tml)) (tm2 (cadr tml)) (tmtail (cddr tml)))
(if (or (and (null tmtail) (is-const tm1) |%print_infix-flag|
(eq (get (get-print-name(get-const-name tm1)) 'olinfix) 'curried))
(and (null tmtail) (is-var tm1) |%print_infix-flag|
(memq (get-var-name tm1) hol-var-binops)))
(make-prep-term 'infixcomb (list tm1 tm2 y) ty)
(make-prep-term 'listcomb (append tml (list y)) ty)
))) ;prep-curr
;;; MJCG 7/2/89 for HOL88
;;; MJCG 30/92/89 for HOL88, Ton Kalker: save |%print_lettypes-flag|
;;; Function to print currently defined types
(defun prdeftypes ()
(prog (saved-flag)
(setq saved-flag |%print_lettypes-flag|)
(setq |%print_lettypes-flag| nil)
(pbegin 1)
(pbreak 0 1)
(mapc
(function
(lambda (p)
(cond ((atom (cdr p))
(pstring (car p))
(ptoken | -- an abstract type|)
(pbreak 0 1))
(t (pstring (car p))
(ptoken | = |)
(printmty (cdr p))
(pbreak 0 1)))))
(reverse %deftypes))
(pend)
(pnewline)
(setq |%print_lettypes-flag| saved-flag)))
(dml |print_defined_types| 0 prdeftypes (|void| -> |void|))
|