This file is indexed.

/usr/share/hol88-2.02.19940316/ml/conv.ml is in hol88-source 2.02.19940316-28.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
%=============================================================================%
%                               HOL 88 Version 2.0                            %
%                                                                             %
%     FILE NAME:        conv.ml                                               %
%                                                                             %
%     DESCRIPTION:      Conversions and rules defined using them              %
%                                                                             %
%     USES FILES:       basic-hol lisp files, bool.th, genfns.ml, hol-syn.ml, %
%                       hol-rule.ml, hol-drule.ml, drul.ml, tacticals.ml      %
%                                                                             %
%                       University of Cambridge                               %
%                       Hardware Verification Group                           %
%                       Computer Laboratory                                   %
%                       New Museums Site                                      %
%                       Pembroke Street                                       %
%                       Cambridge  CB2 3QG                                    %
%                       England                                               %
%                                                                             %
%     COPYRIGHT:        University of Edinburgh                               %
%     COPYRIGHT:        University of Cambridge                               %
%     COPYRIGHT:        INRIA                                                 %
%                                                                             %
%     REVISION HISTORY: (none)                                                %
%=============================================================================%

% --------------------------------------------------------------------- %
% Must be compiled in the presence of the hol parser/pretty printer     %
% This loads genfns.ml and hol-syn.ml too.                              %
% Also load hol-rule.ml, hol-drule.ml, drul.ml, tacticals.ml            %
% --------------------------------------------------------------------- %

if compiling then  (loadf `ml/hol-in-out`;
                    loadf `ml/hol-rule`;
                    loadf `ml/hol-drule`;
                    loadf `ml/drul`;
                    loadf `ml/tacticals`);;


lettype conv = term -> thm;;

% --------------------------------------------------------------------- %
% Instantiate terms and types of a theorem                              %
% --------------------------------------------------------------------- %

let INST_TY_TERM(substl,insttyl) th = INST substl (INST_TYPE insttyl th);;

% --------------------------------------------------------------------- %
% |- !x y z. w   --->  |- w[g1/x][g2/y][g3/z]                           %
% --------------------------------------------------------------------- %

letrec GSPEC th =
    let wl,w = dest_thm th in
    if is_forall w then
        GSPEC (SPEC (genvar (type_of (fst (dest_forall w)))) th)
    else th;;

%
Match a given part of "th" to a term, instantiating "th".
The part should be free in the theorem, except for outer bound variables
%

let PART_MATCH partfn th =
    let pth = GSPEC (GEN_ALL th)  in
    let pat = partfn(concl pth) in
    let matchfn = match pat in
    \tm. INST_TY_TERM (matchfn tm) pth;;

% --------------------------------------------------------------------- %
% MATCH_MP: Matching Modus Ponens for implications.                     %
%                                                                       %
%    |- !x1 ... xn. P ==> Q     |- P'                                   %
% ---------------------------------------                               %
%                |- Q'                                                  %
%                                                                       %
% Matches all types in conclusion except those mentioned in hypotheses. %
%                                                                       %
% Reimplemented with bug fix [TFM 91.06.17].                            %
% OLD CODE:                                                             %
%                                                                       %
% let MATCH_MP impth =                                                  %
%  let match = PART_MATCH (fst o dest_imp) impth ? failwith `MATCH_MP`  %
%     in                                                                %
%     \th. MP (match (concl th)) th;;                                   %
%                                                                       %
% --------------------------------------------------------------------- %

%----------------------------------------------------------------------------%
% Reimplemented again [JRH 92.08.25] to fix variable capture bug and         %
% keep universal quantification in the resulting equation. Old code:         %
%                                                                            %
% let MATCH_MP impth =                                                       %
%     let hy,(vs,imp) = (I # strip_forall) (dest_thm impth) in               %
%     let pat = fst(dest_imp imp)                                            %
%                 ? failwith `MATCH_MP: not an implication` in               %
%     let fvs = subtract (frees (fst(dest_imp imp))) (freesl hy) in          %
%     let gth = GSPEC (GENL fvs (SPECL vs impth)) in                         %
%     let matchfn = match (fst(dest_imp(concl gth))) in                      %
%         \th. (MP (INST_TY_TERM (matchfn (concl th)) gth) th) ?             %
%              failwith `MATCH_MP: does not match`;;                         %
%----------------------------------------------------------------------------%

%----------------------------------------------------------------------------%
% Fixed bug (found by Sten Agerholm) arising from the fact that type         %
% instantiation may cause bound variable renaming. Following documentation   %
% added. [JRH 92.11.18]                                                      %
%----------------------------------------------------------------------------%

%----------------------------------------------------------------------------%
%           Documentation for the workings of the new MATCH_MP               %
%           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^               %
%                                                                            %
% The two argument theorems are of the form                                  %
%                                                                            %
% ith = A |- !x1..xn. s ==> t                                                %
%  th = B |- s'                                                              %
%                                                                            %
% Extract "bod" (|s|) from "ith", and using the match function "mth", match  %
% it to (|s'|); do the type instantiation (only), giving "tth", a            %
% type-instantiated version of "ith". The type instantiation may rename      %
% bound variables, so repeat the match procedure to get the term             %
% instantiations "tmin". Now set up lists of free variables in |A| ("hy1")   %
% and |B| ("hy2"). Take apart the instantiated version of "ith" to get the   %
% quantified variables |x1|..|xn| in list "avs", and the antecedent and      %
% consequent of the implication in "ant" and "cons" respectively.            %
%                                                                            %
% Partition the free variables in the antecedent into those which are        %
% ("rvs") an are not ("fvs") free in the consequent. We will only need to    %
% instantiate those in "rvs" to get a match; however we want to rename any   %
% of the "fvs" if necessary to avoid capture problems (as in the previous    %
% version of MATCH_MP). Accordingly, set up a list of `available' variables  %
% in "afvs", which we can rename if required, either because they are not    %
% free in |A|, or are included in the set |x1|..|xn|.                        %
%                                                                            %
% Now in "cvs" we collect those variables which will be free in the          %
% consequent after instantiation: if the variable isn't in the instantiation %
% list then just the variable itself, otherwise the free variables in        %
% whatever is to be instantiated for it. Now pick variant versions in "vfvs" %
% of the variables in "afvs" to avoid clashes with these or any variables in %
% either assumption list.                                                    %
%                                                                            %
% Now create a complete set of `instantiations' in "atmin" to preform both   %
% the instantiation of these variants and those needed for the original      %
% match. Now partition those into those which do ("spl") and do not ("ill")  %
% appear among the |x1|..|xn|, and consequently can be SPEC'd or must be     %
% INST'd respectively.                                                       %
%                                                                            %
% Create an actual SPEC list in "fspl" to SPEC each variable appropriately,  %
% either to the instantiation in "spl" or otherwise to itself. (This works   %
% even if there are repetitions in the list |x1|..|xn|.) INST and SPEC       %
% accordingly to get a matched theorem, and perform the Modus Ponens,        %
% getting "mth", an instance of |t|. Finally, we want to universally         %
% quantify over (the variants of) any variables originally in |x1|..|xn|;    %
% get the associated variants in "qvs" and GENL over them (possible because  %
% the variants in "vfvs" were chosen not to be free in either |A| or |B|).   %
%----------------------------------------------------------------------------%

let MATCH_MP =
  letrec variants av vs =
    if vs = [] then [] else
    let vh = variant av (hd vs) in vh.(variants (vh.av) (tl vs))
  and frev_assoc x l =
    if l = [] then x else
    let h.t = l in if x = snd(h) then fst(h) else frev_assoc x t in
  \ith. let bod = (fst o dest_imp o snd o strip_forall o concl) ith
                ? failwith `MATCH_MP: not an implication` in
   \th. (let mfn = C match (concl th) in
         let tth = INST_TYPE (snd(mfn bod)) ith in
         let tbod = (fst o dest_imp o snd o strip_forall o concl) tth in
         let tmin = fst(mfn tbod) in
         let hy1 = freesl(hyp tth) and hy2 = freesl(hyp th) in
         let avs,ant,cons = (I # dest_imp) (strip_forall (concl tth)) in
         let rvs,fvs = partition (C free_in ant) (frees cons) in
         let afvs = subtract fvs (subtract hy1 avs) in
         let cvs = freesl (map (C frev_assoc tmin) rvs) in
         let vfvs = (variants (cvs@hy1@hy2) afvs) com afvs in
         let atmin = (filter ($not o $=) vfvs)@tmin in
         let spl,ill = partition (C mem avs o snd) atmin in
         let fspl = map (C frev_assoc spl) avs in
         let mth = MP (SPECL fspl (INST ill tth)) th in
         let qvs = mapfilter (fst o C rev_assoc vfvs) avs in
         GENL qvs mth)
        ? failwith `MATCH_MP: can't instantiate theorem`;;

% --------------------------------------------------------------------- %
% Conversion for rewrite rules of the form |- !x1 ... xn. t == u        %
% Matches x1 ... xn :    t'  ---->  |- t' == u'                         %
% Matches all types in conclusion except those mentioned in hypotheses. %
%                                                                       %
% Rewritten such that the lhs of |- t' = u' is syntactically equal to   %
% the input term, not just alpha-equivalent.             [TFM 90.07.11] %
%                                                                       %
% OLD CODE:                                                             %
%                                                                       %
%   let REWR_CONV =                                                     %
%       set_fail_prefix `REWR_CONV`                                     %
%         (PART_MATCH (fst o dest_eq));;                                %
%                                                                       %
% --------------------------------------------------------------------- %

let REWR_CONV th =
     (let instth = PART_MATCH lhs th in
      \tm. (let eqn = instth tm in
            let l = lhs(concl eqn) in
            if (l = tm) then eqn else TRANS (ALPHA tm l) eqn) ?
            failwith `REWR_CONV: lhs of theorem doesn't match term`) ?
     failwith `REWR_CONV: bad theorem argument (not an equation)`;;

%Conversion that always fails;  identity element for ORELSEC %

let NO_CONV : conv = \tm. failwith `NO_CONV`;;

%
Conversion that always succeeds, using reflexive law:   t --->  |- t==t
Identity element for THENC
%

let ALL_CONV  =  REFL;;

ml_curried_infix `THENC`;;

ml_curried_infix `ORELSEC`;;

%Apply two conversions in succession;  fail if either does%

let (conv1 THENC conv2): conv =
   \t.
    let th1 = conv1 t in
    let th2 = conv2 (rhs (concl th1)) in
    th1 TRANS th2;;

%Apply conv1;  if it fails then apply conv2%

let (conv1 ORELSEC conv2): conv =
    \t. conv1 t ? conv2 t;;

%Perform the first successful conversion of those in the list%

let FIRST_CONV convl tm =
    itlist $ORELSEC convl NO_CONV tm ? failwith `FIRST_CONV`;;

%Perform every conversion in the list%

let EVERY_CONV convl tm =
 itlist $THENC convl ALL_CONV tm ? failwith `EVERY_CONV`;;

%Apply a conversion zero or more times%

letrec REPEATC conv t = ((conv THENC (REPEATC conv)) ORELSEC ALL_CONV) t;;

%Cause the conversion to fail if it does not change its input%

let CHANGED_CONV (conv:term->thm) tm =
    let th = conv tm in
    let l,r = dest_eq (concl th) in
    if aconv l r then failwith `CHANGED_CONV`
    else th;;

let TRY_CONV conv =
    conv ORELSEC ALL_CONV;;

% Apply conv to all top-level subterms of a term.
  Old version with over-subtle treatment of bound variables:

let SUB_CONV conv tm =
    if is_comb tm then
       (let rator,rand = dest_comb tm in
        MK_COMB (conv rator, conv rand))
    if is_abs tm then
       (let bv,body = dest_abs tm in
        let gv = genvar(type_of bv) in
        let bodyth = conv (subst [gv,bv] body) in
        let bv' = variant (thm_frees bodyth) bv in
        MK_ABS (GEN bv' (INST [bv',gv] bodyth)))
    else (ALL_CONV tm);;
%

let SUB_CONV conv tm =
    if is_comb tm then
       (let rator,rand = dest_comb tm in
        MK_COMB (conv rator, conv rand))
    if is_abs tm then
       (let bv,body = dest_abs tm in
        let bodyth = conv body in
        MK_ABS (GEN bv bodyth))
    else (ALL_CONV tm);;

% ===================================================================== %
% Section for defining depth conversions                 [RJB 91.04.17] %
% ===================================================================== %
begin_section depth_conv;;

% ===================================================================== %
% Conversions that use failure to indicate that they have not changed   %
% their input term, and hence save the term from being rebuilt          %
% unnecessarily.                                                        %
%                                                                       %
% Based on ideas of Roger Fleming. Implemented by Richard Boulton.      %
% ===================================================================== %

% --------------------------------------------------------------------- %
% Failure string indicating that a term has not been changed by the     %
% conversion applied to it.                                             %
% --------------------------------------------------------------------- %

let qconv = `QCONV`;;

% --------------------------------------------------------------------- %
% QCONV : conv -> conv                                                  %
%                                                                       %
% Takes a conversion that uses failure to indicate that it has not      %
% changed its argument term, and produces an ordinary conversion.       %
% --------------------------------------------------------------------- %

let QCONV conv tm = (conv tm) ??[qconv](REFL tm);;

% --------------------------------------------------------------------- %
% ALL_QCONV : conv                                                      %
%                                                                       %
% Identity conversion for conversions using failure.                    %
% --------------------------------------------------------------------- %

let ALL_QCONV:conv = \tm. failwith qconv;;

% --------------------------------------------------------------------- %
% THENQC : conv -> conv -> conv                                         %
%                                                                       %
% Takes two conversions that use failure and produces a conversion that %
% applies them in succession. The new conversion also uses failure. It  %
% fails if neither of the two argument conversions cause a change.      %
% --------------------------------------------------------------------- %

let THENQC conv1 conv2 tm =
 (let th1 = conv1 tm
  in  ((th1 TRANS (conv2 (rhs (concl th1)))) ??[qconv] th1))
 ??[qconv] (conv2 tm);;

% --------------------------------------------------------------------- %
% ORELSEQC : conv -> conv -> conv                                       %
%                                                                       %
% Takes two conversions that use failure and produces a conversion that %
% tries the first one, and if this fails for a reason other than that   %
% the term is unchanged, it tries the second one.                       %
%                                                                       %
% Modified to use the ?\ construct, 92.03.03 by RJB.                    %
% --------------------------------------------------------------------- %

let ORELSEQC conv1 conv2 (tm:term) =
 (conv1 tm) ?\s if (s = qconv) then (failwith qconv) else (conv2 tm);;

% --------------------------------------------------------------------- %
% REPEATQC : conv -> conv                                               %
%                                                                       %
% Applies a conversion zero or more times.                              %
% --------------------------------------------------------------------- %

letrec REPEATQC conv tm =
 (ORELSEQC (THENQC conv (REPEATQC conv)) ALL_QCONV) tm;;

% --------------------------------------------------------------------- %
% CHANGED_QCONV : conv -> conv                                          %
%                                                                       %
% Causes the conversion given to fail if it does not change its input.  %
% Alpha convertibility is only tested for if the term is changed in     %
% some way.                                                             %
% --------------------------------------------------------------------- %

let CHANGED_QCONV conv (tm:term) =
 let th = (conv tm) ??[qconv] failwith `CHANGED_QCONV`
 in  let (l,r) = dest_eq (concl th)
 in  if (aconv l r)
     then failwith `CHANGED_QCONV`
     else th;;

% --------------------------------------------------------------------- %
% TRY_QCONV : conv -> conv                                              %
%                                                                       %
% Applies a conversion, and if it fails, raises a `qconv' failure       %
% indicating that the term is unchanged.                                %
% --------------------------------------------------------------------- %

let TRY_QCONV conv = ORELSEQC conv ALL_QCONV;;

% --------------------------------------------------------------------- %
% SUB_QCONV : conv -> conv                                              %
%                                                                       %
% Applies conv to all top-level subterms of a term. Set up to detect    %
% `qconv' failures when dealing with a combination. If neither the      %
% rator nor the rand are modified the `qconv' failure is propagated.    %
% Otherwise, the failure information is used to avoid unnecessary       %
% processing.                                                           %
%		                                                        %
% Optimized: MK_ABS(GEN bv bodyth) --> ABS bv bodyth     [TFM 93.07.22] %
% --------------------------------------------------------------------- %

let SUB_QCONV conv tm =
 if (is_comb tm) then
    (let (rator,rand) = dest_comb tm
     in  (let th = conv rator
          in  ((MK_COMB (th, conv rand)) ??[qconv](AP_THM th rand)))
         ??[qconv](AP_TERM rator (conv rand)))
 else if (is_abs tm) then
    (let (bv,body) = dest_abs tm
     in  let bodyth = conv body
     in  ABS bv bodyth)             % old: MK_ABS (GEN bv bodyth)) %
 else (ALL_QCONV tm);;

% --------------------------------------------------------------------- %
% SUB_ALPHA_QCONV : conv -> conv                                        %
%                                                                       %
% Modified version of SUB_QCONV for use in rewriting.                   %
% If the application of ABS fails, the conversion is attempted again    %
% on an alpha-converted version of the abstraction. This is to catch    %
% those rare cases in which a valid rewrite is rejected because one of  %
% the hypotheses has a free occurrence of the bound variable.           %
% An alternative would be to always genvar the abstraction, but the     %
% problem is sufficiently rare that it is probably more efficient on    %
% average to repeat the application of the conversion even though this  %
% may be very expensive.                                 [RJB 94.02.15] %
% --------------------------------------------------------------------- %

let SUB_ALPHA_QCONV conv tm =
 if (is_comb tm) then
    (let (rator,rand) = dest_comb tm
     in  (let th = conv rator
          in  ((MK_COMB (th, conv rand)) ??[qconv](AP_THM th rand)))
         ??[qconv](AP_TERM rator (conv rand)))
 else if (is_abs tm) then
    (let (bv,body) = dest_abs tm
     in  let bodyth = conv body
     in  (ABS bv bodyth ?
          let v = genvar (type_of bv)
          in  let th1 = ALPHA_CONV v tm
          in  let body' = snd (dest_abs (rhs (concl th1)))
          in  let eq_thm' = ABS v (conv body')
          in  let th2 = ALPHA_CONV bv (rhs (concl eq_thm'))
          in  TRANS (TRANS th1 eq_thm') th2))
 else (ALL_QCONV tm);;

% --------------------------------------------------------------------- %
% Apply a conversion recursively to a term and its parts.               %
% The abstraction around "t" avoids infinite recursion.                 %
%                                                                       %
% Old version:                                                          %
%                                                                       %
% letrec DEPTH_CONV conv t =                                            %
%    (SUB_CONV (DEPTH_CONV conv) THENC (REPEATC conv))                  %
%    t;;                                                                %
%                                                                       %
% Parameterised over SUB_QCONV.                          [RJB 94.02.15] %
% --------------------------------------------------------------------- %

letrec DEPTH_QCONV subconv conv tm =
 THENQC (subconv (DEPTH_QCONV subconv conv)) (REPEATQC conv) tm;;

% --------------------------------------------------------------------- %
% Optimized 13.5.93 by JVT to remove the function composition to        %
% enhance speed.                                                        %
%                                                                       %
% OLD VERSION:                                                          %
%                                                                       %
%    let DEPTH_CONV = QCONV o DEPTH_QCONV;;                             %
%                                                                       %
% SUB_QCONV added to instantiate new parameter.          [RJB 94.02.15] %
% --------------------------------------------------------------------- %

let DEPTH_CONV = \conv. (QCONV (DEPTH_QCONV SUB_QCONV conv));;

% --------------------------------------------------------------------- %
% Like DEPTH_CONV, but re-traverses term after each conversion          %
% Loops if the conversion function never fails                          %
%                                                                       %
% Old version:                                                          %
%                                                                       %
% letrec REDEPTH_CONV conv t =                                          %
%    (SUB_CONV (REDEPTH_CONV conv) THENC                                %
%     ((conv THENC (REDEPTH_CONV conv)) ORELSEC ALL_CONV))              %
%    t;;                                                                %
%                                                                       %
% Parameterised over SUB_QCONV.                          [RJB 94.02.15] %
% --------------------------------------------------------------------- %

letrec REDEPTH_QCONV subconv conv tm =
 THENQC
 (subconv (REDEPTH_QCONV subconv conv))
 (ORELSEQC (THENQC conv (REDEPTH_QCONV subconv conv)) ALL_QCONV)
 tm;;

% --------------------------------------------------------------------- %
% Optimized 13.5.93 by JVT to remove the function composition to        %
% enhance speed.                                                        %
%                                                                       %
% OLD VERSION:                                                          %
%                                                                       %
%    let REDEPTH_CONV = QCONV o REDEPTH_QCONV;;                         %
%                                                                       %
% SUB_QCONV added to instantiate new parameter.          [RJB 94.02.15] %
% --------------------------------------------------------------------- %

let REDEPTH_CONV = \conv. (QCONV (REDEPTH_QCONV SUB_QCONV conv));;

% --------------------------------------------------------------------- %
% Rewrite the term t trying conversions at top level before descending  %
% Not true Normal Order evaluation, but may terminate where             %
% REDEPTH_CONV would loop.  More efficient than REDEPTH_CONV for        %
% rewrites that throw away many of their pattern variables.             %
%                                                                       %
% Old version:                                                          %
%                                                                       %
% letrec TOP_DEPTH_CONV conv t =                                        %
%    (REPEATC conv  THENC                                               %
%     (TRY_CONV                                                         %
%         (CHANGED_CONV (SUB_CONV (TOP_DEPTH_CONV conv)) THENC          %
%          TRY_CONV(conv THENC TOP_DEPTH_CONV conv))))                  %
%    t;;                                                                %
%                                                                       %
% Slower, simpler version (tries conv even if SUB_CONV does nothing)    %
%                                                                       %
% letrec TOP_DEPTH_CONV conv t =                                        %
%    (REPEATC conv  THENC                                               %
%     SUB_CONV (TOP_DEPTH_CONV conv) THENC                              %
%     ((conv THENC TOP_DEPTH_CONV conv)  ORELSEC ALL_CONV))             %
%    t;;                                                                %
%                                                                       %
% Parameterised over SUB_QCONV.                          [RJB 94.02.15] %
% --------------------------------------------------------------------- %

letrec TOP_DEPTH_QCONV subconv conv tm =
 THENQC
 (REPEATQC conv)
 (TRY_QCONV
     (THENQC (CHANGED_QCONV (subconv (TOP_DEPTH_QCONV subconv conv)))
             (TRY_QCONV (THENQC conv (TOP_DEPTH_QCONV subconv conv)))))
 tm;;

% --------------------------------------------------------------------- %
% Optimized 13.5.93 by JVT to remove the function composition to        %
% enhance speed.                                                        %
%                                                                       %
% OLD VERSION:                                                          %
%                                                                       %
%    let TOP_DEPTH_CONV = QCONV o TOP_DEPTH_QCONV;;                     %
%                                                                       %
% SUB_QCONV added to instantiate new parameter.          [RJB 94.02.15] %
% --------------------------------------------------------------------- %

let TOP_DEPTH_CONV = \conv. (QCONV (TOP_DEPTH_QCONV SUB_QCONV conv));;

% --------------------------------------------------------------------- %
% ONCE_DEPTH_CONV conv tm: applies conv ONCE to the first suitable      %
% sub-term(s) encountered in top-down order.                            %
%                                                                       %
% Old Version:                                                          %
%                                                                       %
% letrec ONCE_DEPTH_CONV conv tm =                                      %
%        (conv ORELSEC (SUB_CONV (ONCE_DEPTH_CONV conv))) tm;;          %
%                                                                       %
%                                                                       %
% Reimplemented: TFM 90.07.04 (optimised for speed)                     %
%                                                                       %
% This version uses failure to avoid rebuilding unchanged subterms      %
% (now superseded by more general use of failure for optimisation).     %
%                                                                       %
% let ONCE_DEPTH_CONV =                                                 %
%     letrec ODC conv tm =                                              %
%        conv tm ?                                                      %
%        (let l,r = dest_comb tm in                                     %
%             (let lth = ODC conv l in                                  %
%                (MK_COMB(lth,ODC conv r)) ? AP_THM lth r) ?            %
%             AP_TERM l (ODC conv r)) ?                                 %
%        let v,body = dest_abs tm in                                    %
%        let bodyth = ODC conv body in                                  %
%            MK_ABS (GEN v bodyth) in                                   %
%        \conv tm. ODC conv tm ? REFL tm;;                              %
%                                                                       %
%                                                                       %
% It has been discovered that TFM's optimised version had a different   %
% (and more desirable) behaviour to the original version. The version   %
% below has been modified to behave as TFM's did by the addition of the %
% call to TRY_QCONV. ONCE_DEPTH_CONV cannot now fail, whereas the       %
% original version could.                                [RJB 92.03.03] %
%                                                                       %
% Parameterised over SUB_QCONV.                          [RJB 94.02.15] %
% --------------------------------------------------------------------- %

letrec ONCE_DEPTH_QCONV subconv conv tm =
 TRY_QCONV (ORELSEQC conv (subconv (ONCE_DEPTH_QCONV subconv conv))) tm;;

% --------------------------------------------------------------------- %
% Optimized 13.5.93 by JVT to remove the function composition to        %
% enhance speed.                                                        %
%                                                                       %
% OLD VERSION:                                                          %
%                                                                       %
%    let ONCE_DEPTH_CONV = QCONV o ONCE_DEPTH_QCONV;;                   %
%                                                                       %
% SUB_QCONV added to instantiate new parameter.          [RJB 94.02.15] %
% --------------------------------------------------------------------- %

let ONCE_DEPTH_CONV = \conv. (QCONV (ONCE_DEPTH_QCONV SUB_QCONV conv));;

% --------------------------------------------------------------------- %
% Depth conversions for use in rewriting.          Added [RJB 94.02.15] %
% --------------------------------------------------------------------- %

let REW_DEPTH_CONV = \conv. (QCONV (TOP_DEPTH_QCONV SUB_ALPHA_QCONV conv));;

let ONCE_REW_DEPTH_CONV =
   \conv. (QCONV (ONCE_DEPTH_QCONV SUB_ALPHA_QCONV conv));;

% --------------------------------------------------------------------- %
% Export depth conversions outside of section.                          %
% --------------------------------------------------------------------- %
(DEPTH_CONV,REDEPTH_CONV,TOP_DEPTH_CONV,ONCE_DEPTH_CONV,
 REW_DEPTH_CONV,ONCE_REW_DEPTH_CONV);;
end_section depth_conv;;
let (DEPTH_CONV,REDEPTH_CONV,TOP_DEPTH_CONV,ONCE_DEPTH_CONV,
     REW_DEPTH_CONV,ONCE_REW_DEPTH_CONV) = it;;


% Convert a conversion to a rule %

let CONV_RULE conv th = EQ_MP (conv(concl th)) th;;

% Convert a conversion to a tactic %

let CONV_TAC conv :tactic (asl,w) =
 let th = conv w
 in
 let left,right = dest_eq(concl th)
 in
 if right="T"
 then ([], \[]. EQ_MP (SYM th) TRUTH)
 else ([asl,right], \[th']. EQ_MP (SYM th) th');;

% Rule and tactic for beta-reducing on all beta-redexes %

let BETA_RULE = CONV_RULE(DEPTH_CONV BETA_CONV)
and BETA_TAC  = CONV_TAC (DEPTH_CONV BETA_CONV);;

% ===================================================================== %
% The stuff in boxes below is mostly from Tom Melham (tfm)              %
% ===================================================================== %

% ===================================================================== %
% What follows is a complete set of conversions for moving ! and ? into %
% and out of the basic logical connectives ~, /\, \/, ==>, and =.       %
%                                                                       %
% Naming scheme:                                                        %
%                                                                       %
%   1: for moving quantifiers inwards:  <quant>_<conn>_CONV             %
%                                                                       %
%   2: for moving quantifiers outwards: [dir]_<conn>_<quant>_CONV       %
%                                                                       %
% where                                                                 %
%                                                                       %
%   <quant> := FORALL | EXISTS                                          %
%   <conn>  := NOT | AND | OR | IMP | EQ                                %
%   [dir]   := LEFT | RIGHT                     (optional)              %
%                                                                       %
%                                                                       %
% [TFM 90.11.09]                                                        %
% ===================================================================== %

% --------------------------------------------------------------------- %
% NOT_FORALL_CONV, implements the following axiom scheme:               %
%                                                                       %
%      |- (~!x.tm) = (?x.~tm)                                           %
%                                                                       %
% --------------------------------------------------------------------- %

let NOT_FORALL_CONV tm =
    (let x,t = dest_forall(dest_neg tm) in
     let all = mk_forall(x,t) and exists = mk_exists(x,mk_neg t) in
     let nott = ASSUME (mk_neg t) in
     let th1 = DISCH all (NOT_MP nott (SPEC x (ASSUME all))) in
     let imp1 = DISCH exists (CHOOSE (x, ASSUME exists) (NOT_INTRO th1)) in
     let th2 = CCONTR t (NOT_MP (ASSUME(mk_neg exists)) (EXISTS(exists,x)nott)) in
     let th3 = CCONTR exists (NOT_MP (ASSUME (mk_neg all)) (GEN x th2)) in
     let imp2 = DISCH (mk_neg all) th3 in
         IMP_ANTISYM_RULE imp2 imp1) ?
    failwith `NOT_FORALL_CONV: argument must have the form "~!x.tm"`;;

% --------------------------------------------------------------------- %
% NOT_EXISTS_CONV, implements the following axiom scheme.               %
%                                                                       %
%       |- (~?x.tm) = (!x.~tm)                                          %
%                                                                       %
% --------------------------------------------------------------------- %

let NOT_EXISTS_CONV tm =
    (let x,t = dest_exists (dest_neg tm) in
     let all = mk_forall(x,mk_neg t) in
     let asm1 = ASSUME t in
     let thm1 = NOT_MP (ASSUME tm) (EXISTS (rand tm, x) asm1) in
     let imp1 = DISCH tm (GEN x (NOT_INTRO (DISCH t thm1))) in
     let asm2 = ASSUME  all and asm3 = ASSUME (rand tm) in
     let thm2 = DISCH (rand tm) (CHOOSE (x,asm3) (NOT_MP (SPEC x asm2) asm1)) in
     let imp2 = DISCH all (NOT_INTRO thm2) in
     IMP_ANTISYM_RULE imp1 imp2 ) ?
    failwith `NOT_EXISTS_CONV: argument must have the form "~?x.tm"`;;

% --------------------------------------------------------------------- %
% EXISTS_NOT_CONV, implements the following axiom scheme.               %
%                                                                       %
%       |- (?x.~tm) = (~!x.tm)                                          %
%                                                                       %
% --------------------------------------------------------------------- %

let EXISTS_NOT_CONV tm =
    (let xtm = mk_forall ((I # dest_neg) (dest_exists tm)) in
     SYM(NOT_FORALL_CONV (mk_neg xtm))) ?
    failwith `EXISTS_NOT_CONV: argument must have the form "?x.~tm"`;;

% --------------------------------------------------------------------- %
% FORALL_NOT_CONV, implements the following axiom scheme.               %
%                                                                       %
%       |- (!x.~tm) = (~?x.tm)                                          %
%                                                                       %
% --------------------------------------------------------------------- %

let FORALL_NOT_CONV tm =
    (let xtm = mk_exists ((I # dest_neg) (dest_forall tm)) in
     SYM(NOT_EXISTS_CONV (mk_neg xtm))) ?
    failwith `FORALL_NOT_CONV: argument must have the form "!x.~tm"`;;

% --------------------------------------------------------------------- %
% FORALL_AND_CONV : move universal quantifiers into conjunction.        %
%                                                                       %
% A call to FORALL_AND_CONV "!x. P /\ Q"  returns:                      %
%                                                                       %
%   |- (!x. P /\ Q) = (!x.P) /\ (!x.Q)                                  %
% --------------------------------------------------------------------- %

let FORALL_AND_CONV tm =
    (let x,(P,Q) = (I # dest_conj) (dest_forall tm) in
     let Pth,Qth = CONJ_PAIR (SPEC x (ASSUME tm)) in
     let imp1 = DISCH tm (CONJ (GEN x Pth) (GEN x Qth)) in
     let xtm = rand(concl imp1) in
     let t1,t2 = (SPEC x # SPEC x) (CONJ_PAIR (ASSUME xtm)) in
     let imp2 = DISCH xtm (GEN x (CONJ t1 t2)) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `FORALL_AND_CONV: argument must have the form "!x.P/\\Q"`;;

% --------------------------------------------------------------------- %
% EXISTS_OR_CONV : move existential quantifiers into disjunction.       %
%                                                                       %
% A call to EXISTS_OR_CONV "?x. P \/ Q"  returns:                       %
%                                                                       %
%   |- (?x. P \/ Q) = (?x.P) \/ (?x.Q)                                  %
% --------------------------------------------------------------------- %

let EXISTS_OR_CONV tm =
    (let x,(P,Q) = (I # dest_disj) (dest_exists tm) in
     let ep = mk_exists(x,P) and eq = mk_exists(x,Q) in
     let Pth = EXISTS(ep,x)(ASSUME P) and Qth = EXISTS(eq,x)(ASSUME Q) in
     let thm1 = DISJ_CASES_UNION (ASSUME(mk_disj(P,Q))) Pth Qth in
     let imp1 = DISCH tm (CHOOSE (x,ASSUME tm) thm1) in
     let t1 = DISJ1 (ASSUME P) Q and t2 = DISJ2 P (ASSUME Q) in
     let th1 = EXISTS(tm,x) t1 and th2 = EXISTS(tm,x) t2 in
     let e1 = CHOOSE (x,ASSUME ep) th1 and e2 = CHOOSE (x,ASSUME eq) th2 in
     let thm2 = DISJ_CASES (ASSUME(mk_disj(ep,eq))) e1 e2 in
     let imp2 = DISCH (mk_disj(ep,eq)) thm2 in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `EXISTS_OR_CONV: argument must have the form "?x.P\\/Q"`;;

% --------------------------------------------------------------------- %
% AND_FORALL_CONV : move universal quantifiers out of conjunction.      %
%                                                                       %
% A call to AND_FORALL_CONV "(!x. P) /\ (!x. Q)"  returns:              %
%                                                                       %
%   |- (!x.P) /\ (!x.Q) = (!x. P /\ Q)                                  %
% --------------------------------------------------------------------- %

let AND_FORALL_CONV tm =
    (let (x,P),(y,Q) = (dest_forall # dest_forall) (dest_conj tm) in
     if (not (x=y)) then fail else
     let t1,t2 = (SPEC x # SPEC x) (CONJ_PAIR (ASSUME tm)) in
     let imp1 = DISCH tm (GEN x (CONJ t1 t2)) in
     let rtm = rand(concl imp1) in
     let Pth,Qth = CONJ_PAIR (SPEC x (ASSUME rtm)) in
     let imp2 = DISCH rtm (CONJ (GEN x Pth) (GEN x Qth)) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `AND_FORALL_CONV: expecting "(!x.P) /\\ (!x.Q)"`;;

% --------------------------------------------------------------------- %
% LEFT_AND_FORALL_CONV : move universal quantifier out of conjunction.  %
%                                                                       %
% A call to LEFT_AND_FORALL_CONV "(!x.P) /\  Q"  returns:               %
%                                                                       %
%   |- (!x.P) /\ Q = (!x'. P[x'/x] /\ Q)                                %
%                                                                       %
% Where x' is a primed variant of x not free in the input term          %
% --------------------------------------------------------------------- %

let LEFT_AND_FORALL_CONV tm =
    (let (x,P),Q = (dest_forall # I) (dest_conj tm) in
     let x' = variant (frees tm) x in
     let t1,t2 = (SPEC x' # I) (CONJ_PAIR (ASSUME tm)) in
     let imp1 = DISCH tm (GEN x' (CONJ t1 t2)) in
     let rtm = rand(concl imp1) in
     let Pth,Qth = CONJ_PAIR (SPEC x' (ASSUME rtm)) in
     let imp2 = DISCH rtm (CONJ (GEN x' Pth)  Qth) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `LEFT_AND_FORALL_CONV: expecting "(!x.P) /\\ Q"`;;

% --------------------------------------------------------------------- %
% RIGHT_AND_FORALL_CONV : move universal quantifier out of conjunction. %
%                                                                       %
% A call to RIGHT_AND_FORALL_CONV "P /\ (!x.Q)"  returns:               %
%                                                                       %
%   |-  P /\ (!x.Q) = (!x'. P /\ Q[x'/x])                               %
%                                                                       %
% where x' is a primed variant of x not free in the input term          %
% --------------------------------------------------------------------- %

let RIGHT_AND_FORALL_CONV tm =
    (let P,(x,Q) = (I # dest_forall) (dest_conj tm) in
     let x' = variant (frees tm) x in
     let t1,t2 = (I # SPEC x') (CONJ_PAIR (ASSUME tm)) in
     let imp1 = DISCH tm (GEN x' (CONJ t1 t2)) in
     let rtm = rand(concl imp1) in
     let Pth,Qth = CONJ_PAIR (SPEC x' (ASSUME rtm)) in
     let imp2 = DISCH rtm (CONJ Pth (GEN x' Qth)) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `RIGHT_AND_FORALL_CONV: expecting "P /\\ (!x.Q)"`;;

% --------------------------------------------------------------------- %
% OR_EXISTS_CONV : move existential quantifiers out of disjunction.     %
%                                                                       %
% A call to OR_EXISTS_CONV "(?x. P) \/ (?x. Q)"  returns:               %
%                                                                       %
%   |- (?x.P) \/ (?x.Q) = (?x. P \/ Q)                                  %
% --------------------------------------------------------------------- %

let OR_EXISTS_CONV tm =
    (let ep,eq = dest_disj tm in
     let (x,P),(y,Q) = (dest_exists # dest_exists) (ep,eq) in
     if (not (x=y)) then fail else
     let otm = mk_exists (x,(mk_disj(P,Q))) in
     let t1 = DISJ1 (ASSUME P) Q and t2 = DISJ2 P (ASSUME Q) in
     let th1 = EXISTS(otm,x) t1 and th2 = EXISTS(otm,x) t2 in
     let e1 = CHOOSE (x,ASSUME ep) th1 and e2 = CHOOSE (x,ASSUME eq) th2 in
     let thm1 = DISJ_CASES (ASSUME(mk_disj(ep,eq))) e1 e2 in
     let imp1 = DISCH (mk_disj(ep,eq)) thm1 in
     let Pth = EXISTS(ep,x)(ASSUME P) and Qth = EXISTS(eq,x)(ASSUME Q) in
     let thm2 = DISJ_CASES_UNION (ASSUME(mk_disj(P,Q))) Pth Qth in
     let imp2 = DISCH otm (CHOOSE (x,ASSUME otm) thm2) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `OR_EXISTS_CONV: expecting "(?x.P) \\/ (?x.Q)"`;;

% --------------------------------------------------------------------- %
% LEFT_OR_EXISTS_CONV : move existential quantifier out of disjunction. %
%                                                                       %
% A call to LEFT_OR_EXISTS_CONV "(?x.P) \/  Q"  returns:                %
%                                                                       %
%   |- (?x.P) \/ Q = (?x'. P[x'/x] \/ Q)                                %
%                                                                       %
% Where x' is a primed variant of x not free in the input term          %
% --------------------------------------------------------------------- %

let LEFT_OR_EXISTS_CONV tm =
    (let ep,Q = dest_disj tm in
     let (x,P) = dest_exists ep in
     let x' = variant (frees tm) x in
     let newp = subst[x',x] P in
     let otm = mk_exists (x',(mk_disj(newp,Q))) in
     let t1 = DISJ1 (ASSUME newp) Q and t2 = DISJ2 newp (ASSUME Q) in
     let th1 = EXISTS(otm,x') t1 and th2 = EXISTS(otm,x') t2 in
     let thm1 = DISJ_CASES (ASSUME tm) (CHOOSE(x',ASSUME ep)th1) th2 in
     let imp1 = DISCH tm thm1 in
     let Pth = EXISTS(ep,x')(ASSUME newp) and Qth = ASSUME Q in
     let thm2 = DISJ_CASES_UNION (ASSUME(mk_disj(newp,Q))) Pth Qth in
     let imp2 = DISCH otm (CHOOSE (x',ASSUME otm) thm2) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `LEFT_OR_EXISTS_CONV: expecting "(?x.P) \\/ Q"`;;

% --------------------------------------------------------------------- %
% RIGHT_OR_EXISTS_CONV: move existential quantifier out of disjunction. %
%                                                                       %
% A call to RIGHT_OR_EXISTS_CONV "P \/ (?x.Q)"  returns:                %
%                                                                       %
%   |-  P \/ (?x.Q) = (?x'. P \/ Q[x'/x])                               %
%                                                                       %
% where x' is a primed variant of x not free in the input term          %
% --------------------------------------------------------------------- %

let RIGHT_OR_EXISTS_CONV tm =
    (let P,eq = dest_disj tm in
     let (x,Q) = dest_exists eq in
     let x' = variant (frees tm) x in
     let newq = subst[x',x] Q in
     let otm = mk_exists (x',(mk_disj(P,newq))) in
     let t1 = DISJ2 P (ASSUME newq)  and t2 = DISJ1 (ASSUME P) newq in
     let th1 = EXISTS(otm,x') t1 and th2 = EXISTS(otm,x') t2 in
     let thm1 = DISJ_CASES (ASSUME tm) th2 (CHOOSE(x',ASSUME eq)th1) in
     let imp1 = DISCH tm thm1 in
     let Qth = EXISTS(eq,x')(ASSUME newq) and Pth = ASSUME P in
     let thm2 = DISJ_CASES_UNION (ASSUME(mk_disj(P,newq))) Pth Qth in
     let imp2 = DISCH otm (CHOOSE (x',ASSUME otm) thm2) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `RIGHT_OR_EXISTS_CONV: expecting "P \\/ (?x.Q)"`;;

% --------------------------------------------------------------------- %
% EXISTS_AND_CONV : move existential quantifier into conjunction.       %
%                                                                       %
% A call to EXISTS_AND_CONV "?x. P /\ Q"  returns:                      %
%                                                                       %
%    |- (?x. P /\ Q) = (?x.P) /\ Q        [x not free in Q]             %
%    |- (?x. P /\ Q) = P /\ (?x.Q)        [x not free in P]             %
%    |- (?x. P /\ Q) = (?x.P) /\ (?x.Q)   [x not free in P /\ Q]        %
% --------------------------------------------------------------------- %

let EXISTS_AND_CONV tm =
    (let x,(P,Q) = (I # dest_conj) (dest_exists tm) ?
                   failwith `expecting "?x. P /\\ Q"` in
     let fP = free_in x P and fQ =  free_in x Q in
     if (fP & fQ) then
         failwith `"` ^ (fst(dest_var x)) ^ `" free in both conjuncts` else
     let t1,t2 = CONJ_PAIR(ASSUME (mk_conj(P,Q))) in
     let eP = (fQ => t1 | EXISTS (mk_exists(x,P),x) t1) and
         eQ = (fP => t2 | EXISTS (mk_exists(x,Q),x) t2) in
     let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) (CONJ eP eQ)) in
     let th = EXISTS (tm,x) (CONJ(ASSUME P) (ASSUME Q)) in
     let th1 = (fP or not fQ => CHOOSE(x,ASSUME(mk_exists(x,P)))th | th) in
     let thm1 = (fQ or not fP => CHOOSE(x,ASSUME(mk_exists(x,Q)))th1 | th1) in
     let otm = rand(concl imp1) in
     let t1,t2 = CONJ_PAIR(ASSUME otm) in
     let thm2 = PROVE_HYP t1 (PROVE_HYP t2 thm1) in
         IMP_ANTISYM_RULE imp1 (DISCH otm thm2)) ?\st
    failwith `EXISTS_AND_CONV: ` ^ st;;

% --------------------------------------------------------------------- %
% AND_EXISTS_CONV : move existential quantifier out of conjunction.     %
%                                                                       %
%   |- (?x.P) /\ (?x.Q) = (?x. P /\ Q)                                  %
%                                                                       %
% provided x is free in neither P nor Q.                                %
% --------------------------------------------------------------------- %

let AND_EXISTS_CONV tm =
    (let (x,P),(y,Q) = (dest_exists # dest_exists) (dest_conj tm) ?
                       failwith `expecting "(?x.P) /\\ (?x.Q)"` in
     if (not(x=y)) then failwith `expecting "(?x.P) /\\ (?x.Q)"` else
     if (free_in x P or free_in x Q) then
         failwith `"` ^ (fst(dest_var x)) ^ `" free in conjunct(s)` else
         SYM (EXISTS_AND_CONV(mk_exists(x,mk_conj(P,Q))))) ?\st
    failwith `AND_EXISTS_CONV: ` ^ st;;

% --------------------------------------------------------------------- %
% LEFT_AND_EXISTS_CONV: move existential quantifier out of conjunction  %
%                                                                       %
% A call to LEFT_AND_EXISTS_CONV "(?x.P) /\  Q"  returns:               %
%                                                                       %
%   |- (?x.P) /\ Q = (?x'. P[x'/x] /\ Q)                                %
%                                                                       %
% Where x' is a primed variant of x not free in the input term          %
% --------------------------------------------------------------------- %

let LEFT_AND_EXISTS_CONV tm =
    (let ep,Q = dest_conj tm in
     let (x,P) = dest_exists ep in
     let x' = variant (frees tm) x in
     let newp = subst[x',x]P in
     let otm = mk_exists(x',mk_conj(newp,Q)) in
     let EP,Qth = CONJ_PAIR(ASSUME tm) in
     let thm1 = EXISTS(otm,x')(CONJ(ASSUME newp)(ASSUME Q)) in
     let imp1 = DISCH tm (MP (DISCH Q (CHOOSE(x',EP)thm1)) Qth) in
     let t1,t2 = CONJ_PAIR (ASSUME (mk_conj(newp,Q))) in
     let thm2 = CHOOSE (x',ASSUME otm) (CONJ (EXISTS (ep,x') t1) t2) in
         IMP_ANTISYM_RULE imp1 (DISCH otm thm2)) ?
    failwith `LEFT_AND_EXISTS_CONV: expecting "(?x.P) /\\ Q"`;;

% --------------------------------------------------------------------- %
% RIGHT_AND_EXISTS_CONV: move existential quantifier out of conjunction %
%                                                                       %
% A call to RIGHT_AND_EXISTS_CONV "P /\ (?x.Q)"  returns:               %
%                                                                       %
%   |- P /\ (?x.Q) = (?x'. P /\ (Q[x'/x])                               %
%                                                                       %
% where x' is a primed variant of x not free in the input term          %
% --------------------------------------------------------------------- %

let RIGHT_AND_EXISTS_CONV tm =
    (let P,eq = dest_conj tm in
     let (x,Q) = dest_exists eq in
     let x' = variant (frees tm) x in
     let newq = subst[x',x]Q in
     let otm = mk_exists(x',mk_conj(P,newq)) in
     let Pth,EQ = CONJ_PAIR(ASSUME tm) in
     let thm1 = EXISTS(otm,x')(CONJ(ASSUME P)(ASSUME newq)) in
     let imp1 = DISCH tm (MP (DISCH P (CHOOSE(x',EQ)thm1)) Pth) in
     let t1,t2 = CONJ_PAIR (ASSUME (mk_conj(P,newq))) in
     let thm2 = CHOOSE (x',ASSUME otm) (CONJ t1 (EXISTS (eq,x') t2)) in
         IMP_ANTISYM_RULE imp1 (DISCH otm thm2)) ?
    failwith `RIGHT_AND_EXISTS_CONV: expecting "P /\\ (?x.Q)"`;;


% --------------------------------------------------------------------- %
% FORALL_OR_CONV : move universal quantifier into disjunction.          %
%                                                                       %
% A call to FORALL_OR_CONV "!x. P \/ Q"  returns:                       %
%                                                                       %
%   |- (!x. P \/ Q) = (!x.P) \/ Q        [if x not free in Q]           %
%   |- (!x. P \/ Q) = P \/ (!x.Q)        [if x not free in P]           %
%   |- (!x. P \/ Q) = (!x.P) \/ (!x.Q)   [if x free in neither P nor Q] %
% --------------------------------------------------------------------- %

let FORALL_OR_CONV tm =
    (let x,(P,Q) = (I # dest_disj) (dest_forall tm) ?
                   failwith `expecting "!x. P \\/ Q"` in
     let fP = free_in x P and fQ =  free_in x Q in
     if (fP & fQ) then
         failwith `"` ^ (fst(dest_var x)) ^ `" free in both disjuncts` else
     let thm1 = SPEC x (ASSUME tm) in
     let imp1 =
         if fP then
            let thm2 = CONTR P (NOT_MP (ASSUME (mk_neg Q)) (ASSUME Q)) in
            let thm3 = DISJ1 (GEN x (DISJ_CASES thm1 (ASSUME P) thm2)) Q in
            let thm4 = DISJ2 (mk_forall(x,P)) (ASSUME Q) in
                DISCH tm (DISJ_CASES (SPEC Q EXCLUDED_MIDDLE) thm4 thm3) else
         if fQ then
            let thm2 = CONTR Q (NOT_MP (ASSUME (mk_neg P)) (ASSUME P)) in
            let thm3 = DISJ2 P (GEN x (DISJ_CASES thm1 thm2 (ASSUME Q))) in
            let thm4 = DISJ1 (ASSUME P) (mk_forall(x,Q)) in
                DISCH tm (DISJ_CASES (SPEC P EXCLUDED_MIDDLE) thm4 thm3) else
            let t1,t2 = (GEN x(ASSUME P), GEN x(ASSUME Q)) in
                DISCH tm (DISJ_CASES_UNION thm1 t1 t2) in
        let otm = rand(concl imp1) in
        let op,oq = dest_disj otm in
        let thm5 = (fP or not fQ => SPEC x | I) (ASSUME op) in
        let thm6 = (fQ or not fP => SPEC x | I) (ASSUME oq) in
        let imp2 = GEN x (DISJ_CASES_UNION (ASSUME otm) thm5 thm6) in
            IMP_ANTISYM_RULE imp1 (DISCH otm imp2))  ?\st
    failwith `FORALL_OR_CONV: ` ^ st;;

% --------------------------------------------------------------------- %
% OR_FORALL_CONV : move existential quantifier out of conjunction.      %
%                                                                       %
%   |- (!x.P) \/ (!x.Q) = (!x. P \/ Q)                                  %
%                                                                       %
% provided x is free in neither P nor Q.                                %
% --------------------------------------------------------------------- %

let OR_FORALL_CONV tm =
    (let (x,P),(y,Q) = (dest_forall # dest_forall) (dest_disj tm) ?
                       failwith `expecting "(!x.P) \\/ (!x.Q)"` in
     if (not(x=y)) then failwith `expecting "(!x.P) \\/ (!x.Q)"` else
     if (free_in x P or free_in x Q) then
         failwith `"` ^ (fst(dest_var x)) ^ `" free in disjuncts(s)` else
         SYM (FORALL_OR_CONV(mk_forall(x,mk_disj(P,Q))))) ?\st
    failwith `OR_FORALL_CONV: ` ^ st;;

% --------------------------------------------------------------------- %
% LEFT_OR_FORALL_CONV : move universal quantifier out of conjunction.   %
%                                                                       %
% A call to LEFT_OR_FORALL_CONV "(!x.P) \/  Q"  returns:                %
%                                                                       %
%   |- (!x.P) \/ Q = (!x'. P[x'/x] \/ Q)                                %
%                                                                       %
% Where x' is a primed variant of x not free in the input term          %
% --------------------------------------------------------------------- %

let LEFT_OR_FORALL_CONV tm =
    (let (x,P),Q = (dest_forall # I) (dest_disj tm) in
     let x' = variant (frees tm) x in
     let newp = subst[x',x]P in
     let Pth = DISJ1 (SPEC x' (ASSUME (mk_forall(x,P)))) Q in
     let Qth = DISJ2 newp (ASSUME Q) in
     let imp1 = DISCH tm (GEN x' (DISJ_CASES (ASSUME tm) Pth Qth)) in
     let otm = rand(concl imp1) in
     let thm1 = SPEC x' (ASSUME otm) in
     let thm2 = CONTR newp (NOT_MP(ASSUME(mk_neg Q))(ASSUME Q)) in
     let thm3 = DISJ1 (GEN x' (DISJ_CASES thm1 (ASSUME newp) thm2)) Q in
     let thm4 = DISJ2 (mk_forall(x,P)) (ASSUME Q) in
     let imp2 = DISCH otm(DISJ_CASES(SPEC Q EXCLUDED_MIDDLE)thm4 thm3) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `LEFT_OR_FORALL_CONV: expecting "(!x.P) \\/ Q"`;;

% --------------------------------------------------------------------- %
% RIGHT_OR_FORALL_CONV : move universal quantifier out of conjunction.  %
%                                                                       %
% A call to RIGHT_OR_FORALL_CONV "P \/ (!x.Q)"  returns:                %
%                                                                       %
%   |- P \/ (!x.Q) = (!x'. P \/ (Q[x'/x])                               %
%                                                                       %
% where x' is a primed variant of x not free in the input term          %
% --------------------------------------------------------------------- %

let RIGHT_OR_FORALL_CONV tm =
    (let P,(x,Q) = (I # dest_forall) (dest_disj tm) in
     let x' = variant (frees tm) x in
     let newq = subst[x',x]Q in
     let Qth = DISJ2 P (SPEC x' (ASSUME (mk_forall(x,Q)))) in
     let Pth = DISJ1 (ASSUME P) newq in
     let imp1 = DISCH tm (GEN x' (DISJ_CASES (ASSUME tm) Pth Qth)) in
     let otm = rand(concl imp1) in
     let thm1 = SPEC x' (ASSUME otm) in
     let thm2 = CONTR newq (NOT_MP(ASSUME(mk_neg P))(ASSUME P)) in
     let thm3 = DISJ2 P (GEN x' (DISJ_CASES thm1 thm2 (ASSUME newq))) in
     let thm4 = DISJ1 (ASSUME P) (mk_forall(x,Q)) in
     let imp2 = DISCH otm(DISJ_CASES(SPEC P EXCLUDED_MIDDLE)thm4 thm3) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `RIGHT_OR_FORALL_CONV: expecting "P \\/ (!x.Q)"`;;

% --------------------------------------------------------------------- %
% FORALL_IMP_CONV, implements the following axiom schemes.              %
%                                                                       %
%       |- (!x. P==>Q[x]) = (P ==> (!x.Q[x]))     [x not free in P]     %
%                                                                       %
%       |- (!x. P[x]==>Q) = ((?x.P[x]) ==> Q)     [x not free in Q]     %
%                                                                       %
%       |- (!x. P==>Q) = ((?x.P) ==> (!x.Q))      [x not free in P==>Q] %
% --------------------------------------------------------------------- %

let FORALL_IMP_CONV tm =
    (let x,(P,Q) = (I # dest_imp) (dest_forall tm) ?
                   failwith `expecting "!x. P ==> Q"` in
     let fP = free_in x P and fQ =  free_in x Q in
     if (fP & fQ) then
         failwith `"`^(fst(dest_var x))^`" free on both sides of "==>"` else
     if fP then
        let asm = mk_exists(x,P) in
        let th1 = CHOOSE(x,ASSUME asm)(UNDISCH(SPEC x (ASSUME tm))) in
        let imp1 = DISCH tm (DISCH asm th1) in
        let cncl = rand(concl imp1) in
        let th2 = MP (ASSUME cncl) (EXISTS (asm,x) (ASSUME P)) in
        let imp2 = DISCH cncl (GEN x (DISCH P th2)) in
            IMP_ANTISYM_RULE imp1 imp2 else
     if fQ then
        let imp1 = DISCH P(GEN x(UNDISCH(SPEC x(ASSUME tm)))) in
        let cncl = concl imp1 in
        let imp2 = GEN x (DISCH P(SPEC x(UNDISCH (ASSUME cncl)))) in
            IMP_ANTISYM_RULE (DISCH tm imp1) (DISCH cncl imp2) else
        let asm = mk_exists(x,P) in
        let th1 = GEN x (CHOOSE(x,ASSUME asm)(UNDISCH(SPEC x (ASSUME tm)))) in
        let imp1 = DISCH tm (DISCH asm th1) in
        let cncl = rand(concl imp1) in
        let th2 = SPEC x (MP (ASSUME cncl) (EXISTS (asm,x) (ASSUME P))) in
        let imp2 = DISCH cncl (GEN x (DISCH P th2)) in
            IMP_ANTISYM_RULE imp1 imp2) ?\st
    failwith `FORALL_IMP_CONV: ` ^ st;;

% --------------------------------------------------------------------- %
% LEFT_IMP_EXISTS_CONV, implements the following theorem-scheme:        %
%                                                                       %
%    |- (?x. t1[x]) ==> t2  =  !x'. t1[x'] ==> t2                       %
%                                                                       %
% where x' is a variant of x chosen not to be free in (?x.t1[x])==>t2   %
%                                                                       %
% Author: Tom Melham                                                    %
% Revised: [TFM 90.07.01]                                               %
%---------------------------------------------------------------------- %

let LEFT_IMP_EXISTS_CONV tm =
    (let t1,t2 = dest_imp tm in
     let x,t = dest_exists t1 in
     let x' = variant (frees tm) x in
     let t' = subst [x',x] t in
     let th1 = GEN x' (DISCH t'(MP(ASSUME tm)(EXISTS(t1,x')(ASSUME t')))) in
     let rtm = concl th1 in
     let th2 = CHOOSE (x',ASSUME t1) (UNDISCH(SPEC x'(ASSUME rtm))) in
         IMP_ANTISYM_RULE (DISCH tm th1) (DISCH rtm (DISCH t1 th2))) ?
    failwith `LEFT_IMP_EXISTS_CONV: expecting "(?x.P) ==> Q"`;;

% --------------------------------------------------------------------- %
% RIGHT_IMP_FORALL_CONV, implements the following theorem-scheme:       %
%                                                                       %
%    |- (t1 ==> !x. t2)  =  !x'. t1 ==> t2[x'/x]                        %
%                                                                       %
% where x' is a variant of x chosen not to be free in the input term.   %
%---------------------------------------------------------------------- %

let RIGHT_IMP_FORALL_CONV tm =
    (let t1,t2 = dest_imp tm in
     let x,t = dest_forall t2 in
     let x' = variant (frees tm) x in
     let t' = subst [x',x] t in
     let imp1 = DISCH tm (GEN x' (DISCH t1(SPEC x'(UNDISCH(ASSUME tm))))) in
     let ctm = rand(concl imp1) in
     let alph = GEN_ALPHA_CONV x (mk_forall(x',t')) in
     let thm1 = EQ_MP alph (GEN x'(UNDISCH (SPEC x' (ASSUME ctm)))) in
     let imp2 = DISCH ctm (DISCH t1 thm1) in
         IMP_ANTISYM_RULE imp1 imp2) ?
    failwith `RIGHT_IMP_FORALL_CONV: expecting "P ==> (!x.Q)"`;;


% --------------------------------------------------------------------- %
% EXISTS_IMP_CONV, implements the following axiom schemes.              %
%                                                                       %
%       |- (?x. P==>Q[x]) = (P ==> (?x.Q[x]))     [x not free in P]     %
%                                                                       %
%       |- (?x. P[x]==>Q) = ((!x.P[x]) ==> Q)     [x not free in Q]     %
%                                                                       %
%       |- (?x. P==>Q) = ((!x.P) ==> (?x.Q))      [x not free in P==>Q] %
% --------------------------------------------------------------------- %

let EXISTS_IMP_CONV tm =
    (let x,(P,Q) = (I # dest_imp) (dest_exists tm) ?
                   failwith `expecting "?x. P ==> Q"` in
     let fP = free_in x P and fQ =  free_in x Q in
     if (fP & fQ) then
         failwith `"`^(fst(dest_var x))^`" free on both sides of "==>"` else
     if fP then
        let allp = mk_forall(x,P) in
        let th1 = SPEC x (ASSUME allp) in
        let thm1 = MP (ASSUME(mk_imp(P,Q))) th1 in
        let imp1 = DISCH tm (CHOOSE(x,ASSUME tm)(DISCH allp thm1)) in
        let otm = rand(concl imp1) in
        let thm2 = EXISTS(tm,x)(DISCH P (UNDISCH(ASSUME otm))) in
        let nex =  mk_exists(x,mk_neg P) in
        let asm1 = EXISTS (nex, x) (ASSUME (mk_neg P)) in
        let th2 = CCONTR P (NOT_MP (ASSUME (mk_neg nex)) asm1) in
        let th3 = CCONTR nex (NOT_MP (ASSUME (mk_neg allp)) (GEN x th2)) in
        let thm4 = DISCH P (CONTR Q (UNDISCH (ASSUME (mk_neg P)))) in
        let thm5 = CHOOSE(x,th3)(EXISTS(tm,x)thm4) in
        let thm6 = DISJ_CASES (SPEC allp EXCLUDED_MIDDLE) thm2 thm5 in
            IMP_ANTISYM_RULE imp1 (DISCH otm thm6) else
     if fQ then
        let thm1 = EXISTS (mk_exists(x,Q),x) (UNDISCH(ASSUME(mk_imp(P,Q)))) in
        let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) (DISCH P thm1)) in
        let thm2 = UNDISCH (ASSUME (rand(concl imp1))) in
        let thm3 = CHOOSE (x,thm2) (EXISTS (tm,x) (DISCH P (ASSUME Q))) in
        let thm4 = EXISTS(tm,x)(DISCH P(CONTR Q(UNDISCH(ASSUME(mk_neg P)))))in
        let thm5 = DISJ_CASES (SPEC P EXCLUDED_MIDDLE) thm3 thm4 in
            IMP_ANTISYM_RULE imp1 (DISCH(rand(concl imp1)) thm5) else
        let eQ = mk_exists(x,Q) and aP = mk_forall(x,P) in
        let thm1 = EXISTS(eQ,x)(UNDISCH(ASSUME(mk_imp(P,Q)))) in
        let thm2 = DISCH aP (PROVE_HYP (SPEC x (ASSUME aP)) thm1) in
        let imp1 = DISCH tm (CHOOSE(x,ASSUME tm) thm2) in
        let thm2 = CHOOSE(x,UNDISCH (ASSUME (rand(concl imp1)))) (ASSUME Q) in
        let thm3 = DISCH P (PROVE_HYP (GEN x (ASSUME P)) thm2) in
        let imp2 = DISCH (rand(concl imp1)) (EXISTS(tm,x) thm3) in
            IMP_ANTISYM_RULE imp1 imp2) ?\st
    failwith `EXISTS_IMP_CONV: ` ^ st;;

% --------------------------------------------------------------------- %
% LEFT_IMP_FORALL_CONV, implements the following theorem-scheme:        %
%                                                                       %
%    |- (!x. t1[x]) ==> t2  =  ?x'. t1[x'] ==> t2                       %
%                                                                       %
% where x' is a variant of x chosen not to be free in the input term    %
%---------------------------------------------------------------------- %

let LEFT_IMP_FORALL_CONV tm =
    (let allt1,t2 = dest_imp tm in
     let (x,t1) = dest_forall allt1 in
     let x' = variant (frees tm) x in
     let t1' = subst [x',x] t1 in
     let th1 = SPEC x' (ASSUME allt1) in
     let thm1 = MP (ASSUME(mk_imp(t1',t2))) th1 in
     let otm = mk_exists(x',mk_imp(t1',t2)) in
     let imp1 = DISCH otm (CHOOSE(x',ASSUME otm)(DISCH allt1 thm1)) in
     let thm2 = EXISTS(otm,x') (DISCH t1' (UNDISCH(ASSUME tm))) in
     let nex =  mk_exists(x',mk_neg t1') in
     let asm1 = EXISTS (nex, x') (ASSUME (mk_neg t1')) in
     let th2 = CCONTR t1' (NOT_MP (ASSUME (mk_neg nex)) asm1) in
     let th3 = CCONTR nex (NOT_MP (ASSUME (mk_neg allt1)) (GEN x' th2)) in
     let thm4 = DISCH t1' (CONTR t2 (UNDISCH (ASSUME (mk_neg t1')))) in
     let thm5 = CHOOSE(x',th3)(EXISTS(mk_exists(x',concl thm4),x')thm4) in
     let thm6 = DISJ_CASES (SPEC allt1 EXCLUDED_MIDDLE) thm2 thm5 in
         IMP_ANTISYM_RULE (DISCH tm thm6) imp1) ?
    failwith `LEFT_IMP_FORALL_CONV: expecting "(!x.P) ==> Q"`;;

% --------------------------------------------------------------------- %
% RIGHT_IMP_EXISTS_CONV, implements the following theorem-scheme:       %
%                                                                       %
%    |- (t1 ==> ?x. t2)  =  ?x'. t1 ==> t2[x'/x]                        %
%                                                                       %
% where x' is a variant of x chosen not to be free in the input term.   %
%---------------------------------------------------------------------- %

let RIGHT_IMP_EXISTS_CONV tm =
    (let t1,(x,t2) = (I # dest_exists) (dest_imp tm) in
     let x' = variant (frees tm) x in
     let t2' = subst [x',x] t2 in
     let otm = mk_exists(x',mk_imp(t1,t2')) in
     let thm1 = EXISTS(mk_exists(x,t2),x')(UNDISCH(ASSUME(mk_imp(t1,t2')))) in
     let imp1 = DISCH otm (CHOOSE(x',ASSUME otm) (DISCH t1 thm1)) in
     let thm2 = UNDISCH (ASSUME tm) in
     let thm3 = CHOOSE (x',thm2) (EXISTS (otm,x') (DISCH t1 (ASSUME t2'))) in
     let thm4 = DISCH t1 (CONTR t2'(UNDISCH(ASSUME(mk_neg t1)))) in
     let thm5 = EXISTS(otm,x') thm4 in
     let thm6 = DISJ_CASES (SPEC t1 EXCLUDED_MIDDLE) thm3 thm5 in
         IMP_ANTISYM_RULE (DISCH tm thm6) imp1) ?
    failwith `RIGHT_IMP_EXISTS_CONV: expecting "Q ==> (?x.P)"`;;

% --------------------------------------------------------------------- %
% X_SKOLEM_CONV : introduce a skolem function.                          %
%                                                                       %
%   |- (!x1...xn. ?y. tm[x1,...,xn,y])                                  %
%        =                                                              %
%      (?f. !x1...xn. tm[x1,..,xn,f x1 ... xn]                          %
%                                                                       %
% The first argument is the function f.                                 %
%                                                                       %
% Changed to fail unless there is at least one variable x1..xn.         %
%                                                     [JRH 93.02.05]    %
% --------------------------------------------------------------------- %

let X_SKOLEM_CONV v =
    if (not(is_var v)) then
       failwith `X_SKOLEM_CONV: first argument not a variable` else
    \tm. (let xs,(y,P) = (assert($not o null) # dest_exists) (strip_forall tm) ?
              failwith `expecting "!x1...xn. ?y.tm"` in
          let fx = list_mk_comb(v,xs) ?
              failwith `function variable has the wrong type` in
          if (free_in v tm) then
              failwith `"`^(fst(dest_var v))^`" free in the input term` else
          let pat = mk_exists(v,list_mk_forall(xs,subst[fx,y]P)) in
          let fn = list_mk_abs(xs,mk_select(y,P)) in
          let bth = SYM(LIST_BETA_CONV (list_mk_comb(fn,xs))) in
          let thm1 = SUBST [bth,y] P (SELECT_RULE (SPECL xs (ASSUME tm))) in
          let imp1 = DISCH tm (EXISTS (pat,fn) (GENL xs thm1)) in
          let thm2 = SPECL xs (ASSUME (snd(dest_exists pat))) in
          let thm3 = GENL xs (EXISTS (mk_exists(y,P),fx) thm2) in
          let imp2 = DISCH pat (CHOOSE (v,ASSUME pat) thm3) in
              IMP_ANTISYM_RULE imp1 imp2) ?\st
          failwith `X_SKOLEM_CONV: ` ^st;;

% --------------------------------------------------------------------- %
% SKOLEM_CONV : introduce a skolem function.                            %
%                                                                       %
%   |- (!x1...xn. ?y. tm[x1,...,xn,y])                                  %
%        =                                                              %
%      (?y'. !x1...xn. tm[x1,..,xn,y' x1 ... xn]                        %
%                                                                       %
% Where y' is a primed variant of y not free in the input term.         %
% --------------------------------------------------------------------- %

let SKOLEM_CONV =
    let mkfty tm ty = mk_type(`fun`,[type_of tm;ty]) in
    \tm. (let xs,(y,P) = (I # dest_exists) (strip_forall tm) in
          let fv = mk_var(fst(dest_var y), itlist mkfty xs (type_of y)) in
              X_SKOLEM_CONV (variant (frees tm) fv) tm) ?
         failwith `expecting "!x1...xn. ?y.tm"`;;

% --------------------------------------------------------------------- %
% SYM_CONV : a conversion for symmetry of equality.                     %
%                                                                       %
% e.g. SYM_CONV "x=y"   ---->   (x=y) = (y=x).                          %
%                                                                       %
% Replaced by version below: TFM 88.03.31                               %
% --------------------------------------------------------------------- %

let SYM_CONV tm =
    (let lhs,rhs = dest_eq tm in
     SPECL [lhs;rhs] (INST_TYPE [type_of lhs,":*"] EQ_SYM_EQ)) ?
    failwith `SYM_CONV`;;

% First a function for converting a conversion to a rule %

%
    A |- t1 = t2
   --------------   (t2' got from t2 using a conversion)
    A |- t1 = t2'
%

let RIGHT_CONV_RULE conv th = th TRANS (conv(rhs(concl th)));;

% --------------------------------------------------------------------- %
% FUN_EQ_CONV "f = g"  returns:  |- (f = g) = !x. (f x = g x).          %
%                                                                       %
% Notes: f and g must be functions. The conversion choses an "x" not    %
% free in f or g. This conversion just states that functions are equal  %
% IFF the results of applying them to an arbitrary value are equal.     %
%                                                                       %
% New version: TFM 88.03.31                                             %
% --------------------------------------------------------------------- %

let FUN_EQ_CONV tm =
    let vars = frees tm in
    let op,[ty1;ty2] = dest_type(type_of (lhs tm)) in
    if op = `fun`
       then let varnm =
                if (is_vartype ty1) then `x` else
                   hd(explode(fst(dest_type ty1))) in
            let x = variant vars (mk_primed_var(varnm,ty1)) in
            let imp1 = DISCH_ALL (GEN x (AP_THM (ASSUME tm) x)) in
            let asm = ASSUME (concl (GEN x (AP_THM (ASSUME tm) x))) in
            IMP_ANTISYM_RULE imp1 (DISCH_ALL (EXT asm))
       else failwith `FUN_EQ_CONV`;;

% --------------------------------------------------------------------- %
% X_FUN_EQ_CONV "x" "f = g"                                             %
%                                                                       %
% yields |- (f = g) = !x. f x = g x                                     %
%                                                                       %
% fails if x free in f or g, or x not of the right type.                %
% --------------------------------------------------------------------- %

let X_FUN_EQ_CONV x tm =
    (if not(is_var x) then failwith ` first arg is not a variable` else
     if (mem x (frees tm)) then
        failwith fst(dest_var x) ^ ` is a free variable` else
     let l = (lhs tm ? failwith `not an equation`) in
     let check = assert (\x. x = `fun`) in
     let _,[ty1;ty2] = ((check # I) (dest_type(type_of l)) ?
                        failwith `lhs and rhs not functions`) in
     if not (ty1 = type_of x) then
        failwith fst(dest_var x) ^ ` has the wrong type` else
     let imp1 = DISCH_ALL (GEN x (AP_THM (ASSUME tm) x)) in
     let asm = ASSUME (concl (GEN x (AP_THM (ASSUME tm) x))) in
               IMP_ANTISYM_RULE imp1 (DISCH_ALL (EXT asm))) ?\st
    failwith `X_FUN_EQ_CONV: ` ^ st;;



% --------------------------------------------------------------------- %
% CONTRAPOS_CONV: convert an implication to its contrapositive.         %
%                                                                       %
% CONTRAPOS_CONV "a ==> b" --> |- (a ==> b) = (~b ==> ~a)               %
%                                                                       %
% Added: TFM 88.03.31                                                   %
% Revised: TFM 90.07.13                                                 %
% Changed: WW 24 Jan 94 Due to changes in dest_imp and MP		%
% --------------------------------------------------------------------- %

let CONTRAPOS_CONV tm =
    (let a,c = dest_imp tm in
     let negc = mk_neg c and contra = mk_imp(mk_neg c,mk_neg a) in
     let imp1 = DISCH negc (NOT_INTRO
    	    	(IMP_TRANS(ASSUME tm)(NOT_ELIM(ASSUME negc)))) and
         imp2 = DISCH a (CCONTR c (UNDISCH (UNDISCH (ASSUME contra)))) in
         IMP_ANTISYM_RULE (DISCH tm imp1) (DISCH contra imp2)) ?
    failwith `CONTRAPOS_CONV: input term not an implication`;;

% --------------------------------------------------------------------- %
% ANTE_CONJ_CONV: convert an implication with conjuncts in its          %
%                 antecedant to a series of implications.               %
%                                                                       %
% ANTE_CONJ_CONV "a1 /\ a2 ==> c"                                       %
%       ----> |- a1 /\ a2 ==> c = (a1 ==> (a2 ==> c))                   %
%                                                                       %
% Added: TFM 88.03.31                                                   %
% --------------------------------------------------------------------- %

let ANTE_CONJ_CONV tm =
    let (a1,a2),c = (dest_conj # I) (dest_imp tm) in
    let imp1 = MP (ASSUME tm) (CONJ (ASSUME a1) (ASSUME a2)) and
        imp2 = LIST_MP [CONJUNCT1 (ASSUME "^a1 /\ ^a2");
                        CONJUNCT2 (ASSUME "^a1 /\ ^a2")]
                       (ASSUME "^a1 ==> (^a2 ==> ^c)") in
    IMP_ANTISYM_RULE (DISCH_ALL (DISCH a1 (DISCH a2 imp1)))
                     (DISCH_ALL (DISCH "^a1 /\ ^a2" imp2))?
    failwith `ANTE_CONJ_CONV`;;

% --------------------------------------------------------------------- %
% SWAP_EXISTS_CONV: swap the order of existentially quantified vars.    %
%                                                                       %
% SWAP_EXISTS_CONV "?x y.t[x,y]" ---> |- ?x y.t[x,y] = ?y x.t[x,y]      %
%                                                                       %
% AUTHOR: Paul Loewenstein 3 May 1988                                   %
% --------------------------------------------------------------------- %

let SWAP_EXISTS_CONV xyt =
    (let x,yt = dest_exists (xyt) in
     let y, t = dest_exists (yt) in
     let xt = mk_exists (x, t) in
     let yxt = mk_exists (y, xt) in
       IMP_ANTISYM_RULE
         (DISCH xyt (CHOOSE (x,ASSUME xyt) (CHOOSE (y, (ASSUME yt))
          (EXISTS (yxt,y) (EXISTS (xt,x) (ASSUME t))))))
         (DISCH yxt (CHOOSE (y,ASSUME yxt) (CHOOSE (x, (ASSUME xt))
         (EXISTS (xyt,x) (EXISTS (yt,y) (ASSUME t))))))) ?
      failwith `SWAP_EXISTS_CONV`;;

% --------------------------------------------------------------------- %
% RAND_CONV conv "t1 t2" applies conv to t2                             %
%                                                                       %
% Added TFM 88.03.31                                                    %
% Revised TFM 91.03.08                                                  %
% Revised RJB 91.04.17                                                  %
% --------------------------------------------------------------------- %

let RAND_CONV conv tm =
    let rator,rand = (dest_comb tm ? failwith `RAND_CONV`) in
    let randth = conv rand in
        (AP_TERM rator randth ? failwith `RAND_CONV`);;

% --------------------------------------------------------------------- %
% RATOR_CONV conv "t1 t2" applies conv to t1                            %
%                                                                       %
% Added TFM 88.03.31                                                    %
% Revised TFM 91.03.08                                                  %
% Revised RJB 91.04.17                                                  %
% --------------------------------------------------------------------- %

let RATOR_CONV conv tm =
    let rator,rand = (dest_comb tm ? failwith `RATOR_CONV`) in
    let ratorth = conv rator in
        (AP_THM ratorth rand ? failwith `RATOR_CONV`);;

% --------------------------------------------------------------------- %
% ABS_CONV conv "\x. t[x]" applies conv to t[x]                         %
%                                                                       %
% Added TFM 88.03.31                                                    %
% Revised RJB 91.04.17                                                  %
% --------------------------------------------------------------------- %

let ABS_CONV conv tm =
    let bv,body = (dest_abs tm ? failwith `ABS_CONV`) in
    let bodyth = conv body in
        (ABS bv bodyth ? failwith `ABS_CONV`);;

% --------------------------------------------------------------------- %
% SELECT_CONV: a conversion for introducing "?" when P [@x.P[x]].       %
%                                                                       %
% SELECT_CONV "P [@x.P [x]]" ---> |- P [@x.P [x]] = ?x. P[x]            %
%                                                                       %
% Added: TFM 88.03.31                                                   %
%                                                                       %
% let SELECT_CONV tm =                                                  %
%    (let epsl = find_terms is_select tm in                             %
%     let findfn t =                                                    %
%         subst [t, fst (dest_select t)] (snd (dest_select t)) = tm in  %
%     let sel = find findfn epsl in                                     %
%     let ex  = mk_exists(dest_select sel) in                           %
%     let imp1 = DISCH_ALL (SELECT_RULE (ASSUME ex)) and                %
%         imp2 = DISCH_ALL (EXISTS (ex,sel) (ASSUME tm)) in             %
%     IMP_ANTISYM_RULE imp2 imp1) ? failwith `SELECT_CONV`;;            %
%                                                                       %
% Optimised     [JG 92.04.24]                                           %
% Bugfix        [TFM 92.05.07]                                          %
% Generalised   [JG 93.10.19]                                           %
% --------------------------------------------------------------------- %

let SELECT_CONV =
    let SELECT_THM =
        let f = "f:*->bool" in
        let tyv = mk_vartype `*` in
        let th1 = AP_THM EXISTS_DEF f in
        let th2 = (CONV_RULE (RAND_CONV BETA_CONV)) th1 in
			GEN f (SYM th2) in
	\tm. 
		let right t =
			is_select t &
			let (v,b) = dest_select t in aconv tm (subst[t,v] b) in
		let fn = rand (find_term right tm) in
		let th1 = ISPEC fn SELECT_THM in
		let th2 = SYM (BETA_CONV(lhs(concl th1))) in
		let th3 = ALPHA tm (lhs(concl th2)) in
			  th3 TRANS th2 TRANS th1 ? failwith `SELECT_CONV` ;;

% --------------------------------------------------------------------- %
% bool_EQ_CONV: conversion for boolean equality.                        %
%                                                                       %
% bool_EQ_CONV "b1 = b2" returns:                                       %
%                                                                       %
%    |- (b1 = b2) = T      if b1 and b2 are identical boolean terms     %
%    |- (b1 = b2)  = b2    if b1 = "T"                                  %
%    |- (b1 = b2)  = b1    if b2 = "T"                                  %
%                                                                       %
% Added TFM 88.03.31                                                    %
% Revised TFM 90.07.24                                                  %
% --------------------------------------------------------------------- %

let bool_EQ_CONV =
    let check = let boolty = ":bool" in assert \tm. type_of tm = boolty in
    let Tb.bT._ = map (GEN "b:bool") (CONJUNCTS(SPEC "b:bool" EQ_CLAUSES)) in
    let T = "T" and F = "F" in
    \tm. (let l,r = (I # check) (dest_eq tm) in
          if (l=r) then EQT_INTRO (REFL l) else
          if (l=T) then SPEC r Tb else
          if (r=T) then SPEC l bT else fail) ?
         failwith `bool_EQ_CONV`;;

% --------------------------------------------------------------------- %
% EXISTS_UNIQUE_CONV: expands with the definition of unique existence.  %
%                                                                       %
%                                                                       %
% EXISTS_UNIQUE_CONV "?!x.P[x]" yields the theorem:                     %
%                                                                       %
%     |- ?!x.P[x] = ?x.P[x] /\ !x y. P[x] /\ P[y] ==> (x=y)             %
%                                                                       %
% ADDED: TFM 90.05.06                                                   %
%                                                                       %
% REVISED: now uses a variant of x for y in 2nd conjunct [TFM 90.06.11] %
% --------------------------------------------------------------------- %

let EXISTS_UNIQUE_CONV =
    let check = assert \c. (fst(dest_const c) = `?!`) in
    let MK_BIN f (e1,e2) = MK_COMB((AP_TERM f e1),e2) and
        MK_ALL x y tm = let rule = CONV_RULE o RAND_CONV o GEN_ALPHA_CONV in
                        rule y (FORALL_EQ x tm) and
        AND = "/\" and IMP = "==>" in
    let conv (nx,ny) t =
        let [ox;oy],A,C = (I # dest_imp) (strip_forall t) in
        let A' = MK_BIN AND ((BETA_CONV # BETA_CONV) (dest_conj A)) in
                 MK_ALL ox nx (MK_ALL oy ny (MK_BIN IMP (A',REFL C))) and
        v = genvar ":bool" in
    \tm. (let _,(x,body) = (check # dest_abs) (dest_comb tm) in
          let def = INST_TYPE [type_of x,":*"] EXISTS_UNIQUE_DEF in
          let exp = RIGHT_BETA(AP_THM def (mk_abs(x,body))) and
                y = variant (vars body) x in
          let eqn = conv (x,y) (rand(rand(concl exp))) in
              SUBST [eqn,v] (mk_eq(tm,mk_conj(mk_exists(x,body),v))) exp) ?
          failwith `EXISTS_UNIQUE_CONV: arg must have the form "?!x. P[x]"`;;

% --------------------------------------------------------------------- %
% COND_CONV: conversion for simplifying conditionals:                   %
%                                                                       %
%   --------------------------- COND_CONV "T => u | v"                  %
%     |- (T => u | v) = u                                               %
%                                                                       %
%                                                                       %
%   --------------------------- COND_CONV "F => u | v"                  %
%     |- (F => u | v) = v                                               %
%                                                                       %
%                                                                       %
%   --------------------------- COND_CONV "b => u | u"                  %
%     |- (b => u | u) = u                                               %
%                                                                       %
%   --------------------------- COND_CONV "b => u | v"  (u =alpha v)    %
%     |- (b => u | v) = u                                               %
%                                                                       %
% COND_CONV "P=>u|v" fails if P is neither "T" nor "F" and u =/= v.     %
% --------------------------------------------------------------------- %

let COND_CONV =
    let T = "T" and F = "F" and vt = genvar ":*" and vf =  genvar ":*" in
    let gen = GENL [vt;vf] in
    let CT,CF = (gen # gen) (CONJ_PAIR (SPECL [vt;vf] COND_CLAUSES)) in
    \tm. let P,u,v = dest_cond tm ? failwith `COND_CONV: not a conditional` in
         let ty = type_of u in
         if (P=T) then SPEC v (SPEC u (INST_TYPE [ty,":*"] CT)) else
         if (P=F) then SPEC v (SPEC u (INST_TYPE [ty,":*"] CF)) else
         if (u=v) then SPEC u (SPEC P (INST_TYPE [ty,":*"] COND_ID)) else
         if (aconv u v) then
            let cnd = AP_TERM (rator tm) (ALPHA v u) in
            let thm = SPEC u (SPEC P (INST_TYPE [ty,":*"] COND_ID)) in
                TRANS cnd thm else
    failwith `COND_CONV: can't simplify conditional` ;;


% --------------------------------------------------------------------- %
% PAIRED_BETA_CONV: Generalized beta conversions for tupled lambda      %
%                   abstractions applied to tuples (i.e. redexes)       %
%                                                                       %
% Given the term:                                                       %
%                                                                       %
%   "(\(x1, ... ,xn).t) (t1, ... ,tn)"                                  %
%                                                                       %
% PAIRED_BETA_CONV proves that:                                         %
%                                                                       %
%   |- (\(x1, ... ,xn).t) (t1, ... ,tn) = t[t1, ... ,tn/x1, ... ,xn]    %
%                                                                       %
% where t[t1,...,tn/x1,...,xn] is the result of substituting ti for xi  %
% in parallel in t, with suitable renaming of variables to prevent      %
% free variables in t1,...,tn becoming bound in the result.             %
%                                                                       %
% The conversion works for arbitrarily nested tuples.  For example:     %
%                                                                       %
%   PAIRED_BETA_CONV "(\((a,b),(c,d)).t) ((1,2),(3,4))"                 %
%                                                                       %
% gives:                                                                %
%                                                                       %
%  |- (\((a,b),(c,d)).t) ((1,2),(3,4)) = t[1,2,3,4/a,b,c,d]             %
%                                                                       %
% Bugfix: INST used instead of SPEC to avoid priming.    [TFM 91.04.17] %
% --------------------------------------------------------------------- %

let PAIRED_BETA_CONV =
    let vs = map genvar [":* -> (** -> ***)";":*";":**"] in
    let DEF = SPECL vs UNCURRY_DEF in
    let check = assert \t.(fst(dest_const t)) = `UNCURRY` in
    let RBCONV = RATOR_CONV BETA_CONV THENC BETA_CONV in
    letrec conv tm =
       let (_,f),x,y = (((check # I)o dest_comb) # dest_pair)(dest_comb tm) in
       let [t1;ty'] = snd(dest_type (type_of f)) in
       let [t2;t3] = snd(dest_type ty') in
       let inst = INST_TYPE [t1,":*";t2,":**";t3,":***"] DEF in
       let fv,[xv;yv] = strip_comb(rand(concl inst)) in
       let def = INST [y,yv;x,xv;f,fv] inst in
       if (is_abs f) then
          if (is_abs (snd(dest_abs f))) then
             TRANS def (RBCONV (rhs(concl def))) else
             let thm = AP_THM (BETA_CONV (mk_comb(f,x))) y in
                 TRANS def (CONV_RULE (RAND_CONV conv) thm) else
          let rec = conv (rator(rand(concl def))) in
          if (is_abs (rhs(concl rec))) then
             TRANS def (RIGHT_BETA (AP_THM rec y)) else
             let thm = conv(mk_comb(rhs(concl rec),y)) in
                 TRANS def (TRANS (AP_THM rec y) thm) in
    \tm. conv tm ? failwith `PAIRED_BETA_CONV`;;

%-------------------------------------------------------%
% PAIRED_ETA_CONV "\(x1,.(..).,xn). P (x1,.(..).,xn)" = %
%       |- \(x1,.(..).,xn). P (x1,.(..).,xn) = P        %
% [JRH 91.07.17]                                        %
%-------------------------------------------------------%

let PAIRED_ETA_CONV =
  let pthm = GEN_ALL (SYM (SPEC_ALL PAIR)) in
  letrec pairify tm =
    (let step = ISPEC tm pthm in
     let res = rhs (concl step) in
     let ((pop,l),r) = (dest_comb #I) (dest_comb res) in
     TRANS step (MK_COMB(AP_TERM pop (pairify l),pairify r)))
    ? REFL tm in
  \tm. (let (vs,bod) = dest_pabs tm in
        let (f,_) = (I # assert (curry $= vs)) (dest_comb bod) in
        let xv = mk_var(`x`,type_of vs) in
        let peq = pairify xv in
        let par = rhs (concl peq) in
        let bth = PAIRED_BETA_CONV (mk_comb(tm,par)) in
        EXT (GEN xv (SUBS [SYM peq] bth))) ? failwith `PAIRED_ETA_CONV`;;

%--------------------------------------------------------------------%
% GEN_BETA_CONV - reduces single or paired abstractions, introducing %
% arbitrarily nested "FST" and "SND" if the rand is not sufficiently %
% paired. Example:                                                   %
%                                                                    %
%   #GEN_BETA_CONV "(\(x,y). x + y) numpair";;                       %
%   |- (\(x,y). x + y)numpair = (FST numpair) + (SND numpair)        %
% [JRH 91.07.17]                                                     %
%--------------------------------------------------------------------%

let GEN_BETA_CONV =
  let ucheck = assert (curry$= `UNCURRY` o fst o dest_const)
  and pair = CONV_RULE (ONCE_DEPTH_CONV SYM_CONV) PAIR
  and uncth = SPEC_ALL UNCURRY_DEF in
  letrec gbc tm =
    let (abst,arg) = dest_comb tm in
    if is_abs abst then BETA_CONV tm else
    let (unc,ran) = (ucheck # I) (dest_comb abst) in
    let eqv = (is_pair arg) => REFL arg | ISPEC arg pair in
    let (l,r) = dest_pair (rhs (concl eqv)) in
    let res = AP_TERM abst eqv in
    let rt0 = TRANS res (PART_MATCH lhs uncth (rhs (concl res))) in
    let (tm1a,tm1b) = dest_comb (rhs (concl rt0)) in
    let rt1 = AP_THM (gbc tm1a) tm1b in
    let tm2 = rhs (concl rt1) in let rt2 = gbc tm2 in
    rt0 TRANS rt1 TRANS rt2 in
  \tm. gbc tm ? failwith `GEN_BETA_CONV`;;


begin_section let_CONV;;

% --------------------------------------------------------------------- %
% Internal function: ITER_BETA_CONV (iterated, tupled beta-conversion). %
%                                                                       %
% The conversion ITER_BETA_CONV reduces terms of the form:              %
%                                                                       %
%     (\v1 v2...vn.tm) x1 x2 ... xn xn+1 ... xn+i                       %
%                                                                       %
% where the v's can be varstructs. The behaviour is similar to          %
% LIST_BETA_CONV, but this function also does paired abstractions.      %
% --------------------------------------------------------------------- %

letrec ITER_BETA_CONV tm =
   (let rat,rnd = dest_comb tm in
    let thm = AP_THM (ITER_BETA_CONV rat) rnd in
    let redex = rand(concl thm) in
    let red = TRY_CONV(BETA_CONV ORELSEC PAIRED_BETA_CONV) redex in
        TRANS thm red) ? REFL tm;;

% --------------------------------------------------------------------- %
% Internal function: ARGS_CONV (apply a list of conversions to the      %
% arguments of a curried function application).                         %
%                                                                       %
% ARGS_CONV [conv1;...;convn] "f a1 ... an" applies convi to ai.        %
% --------------------------------------------------------------------- %

let ARGS_CONV =
    letrec appl fs as =
       if (null fs) then (null as => [] | failwith `appl`) else
          ((hd fs)(hd as)) . appl (tl fs) (tl as) in
    \cs tm. let f,ths = (I # appl cs) (strip_comb tm) in
                rev_itlist (C (curry MK_COMB)) ths (REFL f);;

% --------------------------------------------------------------------- %
% Internal function RED_WHERE.                                          %
%                                                                       %
% Given the arguments "f" and "tm[f]", this function produces a         %
% conversion that will apply ITER_BETA_CONV to its argument at all      %
% subterms that correspond to occurrences of f (bottom-up).             %
% --------------------------------------------------------------------- %

letrec RED_WHERE fn body =
   if ((is_var body) or (is_const body)) then REFL else
   ((let _,bd = dest_abs body in ABS_CONV (RED_WHERE fn bd)) ?
    let f,args = strip_comb body in
    if (f=fn)
       then ARGS_CONV (map(RED_WHERE fn)args) THENC ITER_BETA_CONV
       else let f,a = dest_comb body in
            (RAND_CONV(RED_WHERE fn a)) THENC (RATOR_CONV (RED_WHERE fn f)));;


% --------------------------------------------------------------------- %
% Internal function: REDUCE                                             %
%                                                                       %
% This function does the appropriate beta-reductions in the result of   %
% expanding a let-term.  For terms of the form:                         %
%                                                                       %
%      "let f x1 ... xn = t in tm[f]"                                   %
%                                                                       %
% we have that:                                                         %
%                                                                       %
%      th |- <let term> = tm[\x1 ... xn. t/f]                           %
%                                                                       %
% And the arguments x and f will be:                                    %
%                                                                       %
%       x = \x1 ... xn. t                                               %
%       f = \f. tm[f]                                                   %
%                                                                       %
% REDUCE searches in tm[f] for places in which f occurs, and then does  %
% an iterated beta-reduction (possibly of varstruct-abstractions) in    %
% the right-hand side of the input theorem th, at the places that       %
% correspond to occurrences of f in tm[f].                              %
% --------------------------------------------------------------------- %

let REDUCE =
    let is_uncurry tm = (fst(dest_const(rator tm)) = `UNCURRY`) ? false in
    \f x th. if (not((is_abs x) or (is_uncurry x))) then th else
             let (fn,body) = dest_abs f in
             CONV_RULE (RAND_CONV (RED_WHERE fn body)) th;;

% --------------------------------------------------------------------- %
% let_CONV: conversion for reducing "let" terms.                        %
%                                                                       %
% Given a term:                                                         %
%                                                                       %
%   "let v1 = x1 and ... and vn = xn in tm[v1,...,vn]"                  %
%                                                                       %
% let_CONV proves that:                                                 %
%                                                                       %
%   |- let v1 = x1 and ... and vn = xn in tm[v1,...,vn]                 %
%       =                                                               %
%      tm[x1,...,xn/v1,...,vn]                                          %
%                                                                       %
% where t[t1,...,tn/x1,...,xn] is the result of "substituting" the      %
% value xi for vi  in parallel in tm (see below).                       %
%                                                                       %
% Note that the vi's can take any one of the following forms:           %
%                                                                       %
%    Variables:    "x" etc.                                             %
%    Tuples:       "(x,y)" "(a,b,c)" "((a,b),(c,d))" etc.               %
%    Applications: "f (x,y) z" "f x" etc.                               %
%                                                                       %
% Variables are just substituted for. With tuples, the substitution is  %
% done component-wise, and function applications are effectively        %
% rewritten in the body of the let-term.                                %
% --------------------------------------------------------------------- %

let let_CONV =
    let v1 = ":*" and v2 = ":**" in
    let def = definition `bool` `LET_DEF` in
    let ista tm = ((fst(dest_const(rator tm)) = `UNCURRY`) ? false) in
    letrec conv tm =
       let f,x = (dest_let tm) in
       let _,[ty1;ty2] = dest_type(type_of f) in
       let defn = INST_TYPE [ty1,v1; ty2,v2] def in
       let thm = RIGHT_BETA(AP_THM(RIGHT_BETA(AP_THM defn f))x) in
       if (is_abs f) then REDUCE f x (RIGHT_BETA thm) else
       if (ista f) then CONV_RULE (RAND_CONV PAIRED_BETA_CONV) thm else
           let thm1 = AP_THM(AP_TERM (rator(rator tm)) (conv f))x in
               CONV_RULE (RAND_CONV conv) thm1 in
    \tm. conv tm ? failwith `let_CONV: cannot reduce the let`;;

let_CONV;;

end_section let_CONV;;

let let_CONV  = it;;

% ===================================================================== %
% Rules defined using conversions.                                      %
% ===================================================================== %


% --------------------------------------------------------------------- %
% EXISTENCE: derives existence from unique existence:                   %
%                                                                       %
%    |- ?!x. P[x]                                                       %
% --------------------                                                  %
%    |- ?x. P[x]                                                        %
%                                                                       %
% --------------------------------------------------------------------- %

let EXISTENCE =
    let EXISTS_UNIQUE_DEF = definition `bool` `EXISTS_UNIQUE_DEF` in
    let P = "P:*->bool" in
    let th1 = SPEC P (CONV_RULE (X_FUN_EQ_CONV P) EXISTS_UNIQUE_DEF) in
    let th2 = CONJUNCT1(UNDISCH(fst(EQ_IMP_RULE(RIGHT_BETA th1)))) in
    let imp = GEN P (DISCH "$?! ^P" th2) in
    let dest = let check = assert \c. (fst(dest_const c) = `?!`) in
               (dest_abs o snd) o (check # I) o dest_comb in
    \th. (let (x,P) = dest (concl th) in
          let ty = type_of x in
              MP (SPEC(mk_abs(x,P)) (INST_TYPE [ty,":*"] imp)) th) ?
         failwith `EXISTENCE: input thm have the form |- ?!x. tm`;;


%------------------------------------------------------------------------%
% AC_CONV - Prove equality using associative + commutative laws          %
%                                                                        %
% The conversion is given an associative and commutative law (it deduces %
% the relevant operator and type from these) in the form of the inbuilt  %
% ones, and an equation to prove. It will try to prove this. Example:    %
%                                                                        %
%  AC_CONV(ADD_ASSOC,ADD_SYM) "(1 + 3) + (2 + 4) = 4 + (3 + (2 + 1))"    %
% [JRH 91.07.17]                                                         %
%------------------------------------------------------------------------%

let AC_CONV(associative,commutative) tm =
  (let op = (rator o rator o lhs o snd o strip_forall o concl) commutative in
   let ty = (hd o snd o dest_type o type_of) op in
   let x = mk_var(`x`,ty) and y = mk_var(`y`,ty) and z = mk_var(`z`,ty) in
   let xy = mk_comb(mk_comb(op,x),y) and yz = mk_comb(mk_comb(op,y),z)
   and yx = mk_comb(mk_comb(op,y),x) in
   let comm = PART_MATCH I commutative (mk_eq(xy,yx))
   and ass = PART_MATCH I (SYM (SPEC_ALL associative))
              (mk_eq(mk_comb(mk_comb(op,xy),z),mk_comb(mk_comb(op,x),yz))) in
   let asc = TRANS (SUBS [comm] (SYM ass)) (INST[(x,y); (y,x)] ass) in
   let init = TOP_DEPTH_CONV (REWR_CONV ass) tm in
   let gl = rhs (concl init) in

   letrec bubble head expr =
     let ((xop,l),r) = (dest_comb # I) (dest_comb expr) in
     if xop = op then
       if l = head then REFL expr else
       if r = head then INST [(l,x); (r,y)] comm
       else let subb = bubble head r in
            let eqv =  AP_TERM (mk_comb(xop,l)) subb
            and ((yop,l'),r') = (dest_comb # I)
                     (dest_comb (snd (dest_eq (concl subb)))) in
            TRANS eqv (INST[(l,x); (l',y); (r',z)] asc)
     else fail in

   letrec asce (l,r) =
     if l = r then REFL l
     else let ((zop,l'),r') = (dest_comb # I) (dest_comb l) in
          if zop = op then
            let beq = bubble l' r in
            let rt = snd (dest_eq (concl beq)) in
              TRANS (AP_TERM (mk_comb(op,l'))
                      (asce ((snd (dest_comb l)),(snd (dest_comb rt)))))
                    (SYM beq)
          else fail in

   EQT_INTRO (EQ_MP (SYM init) (asce (dest_eq gl))))
  ? failwith `AC_CONV`;;

%------------------------------------------------------------------------%
% GSYM - General symmetry rule                                           %
%                                                                        %
% Reverses the first equation(s) encountered in a top-down search.       %
%                                                                        %
% [JRH 92.03.28]                                                         %
%------------------------------------------------------------------------%

let GSYM = CONV_RULE(ONCE_DEPTH_CONV SYM_CONV);;