/usr/share/hol88-2.02.19940316/ml/hol-syn.ml is in hol88-source 2.02.19940316-28.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 | %=============================================================================%
% HOL 88 Version 2.0 %
% %
% FILE NAME: hol-syn.ml %
% %
% DESCRIPTION: This file defines the basic syntax functions of HOL. %
% We use the same names as for PPLAMBDA. The utilities %
% on ol-util.ml are included here. %
% %
% USES FILES: basic-hol lisp files, bool.th, genfns.ml %
% %
% University of Cambridge %
% Hardware Verification Group %
% Computer Laboratory %
% New Museums Site %
% Pembroke Street %
% Cambridge CB2 3QG %
% England %
% %
% COPYRIGHT: University of Edinburgh %
% COPYRIGHT: University of Cambridge %
% COPYRIGHT: INRIA %
% %
% REVISION HISTORY: (none) %
%=============================================================================%
% --------------------------------------------------------------------- %
% this file uses things from genfns.ml %
% --------------------------------------------------------------------- %
if compiling then (loadf `ml/genfns`);;
%----------------------------------------------------------------------------%
% Dynamically generated proof steps %
%----------------------------------------------------------------------------%
type step = AssumeStep of term
| ReflStep of term
| SubstStep of (thm#term)list # term # thm
| BetaConvStep of term
| AbsStep of term # thm
| InstTypeStep of (type#type)list # thm
| DischStep of term # thm
| MpStep of thm # thm
| MkCombStep of thm # thm
| MkAbsStep of thm
| AlphaStep of term # term
| AddAssumStep of term # thm
| SymStep of thm
| TransStep of thm # thm
| ImpTransStep of thm # thm
| ApTermStep of term # thm
| ApThmStep of thm # term
| EqMpStep of thm # thm
| EqImpRuleStep of thm % returns a pair of theorems %
| SpecStep of term # thm
| EqtIntroStep of thm
| GenStep of term # thm
| EtaConvStep of term
| ExtStep of thm
| ExistsStep of (term # term) # thm
| ChooseStep of (term # thm) # thm
| ImpAntisymRuleStep of thm # thm
| MkExistsStep of thm
| SubsStep of thm list # thm
| SubsOccsStep of (int list # thm) list # thm
| SubstConvStep of (thm # term) list # term # term
| ConjStep of thm # thm
| Conjunct1Step of thm
| Conjunct2Step of thm
| Disj1Step of thm # term
| Disj2Step of term # thm
| DisjCasesStep of thm # thm # thm
| NotIntroStep of thm
| NotElimStep of thm
| ContrStep of term # thm
| CcontrStep of term # thm
| InstStep of (term # term) list # thm
| StoreDefinitionStep of string # term
| DefinitionStep of string # string
| DefExistsRuleStep of term
| NewAxiomStep of string # term
| AxiomStep of string # string
| TheoremStep of string # string
| NewConstantStep of string # type
| NewTypeStep of int # string
| NumConvStep of term;;
% We hide the flag and the list in local variables. Four functions are
provided for the users to control the recording of proof %
begin_section `record_proof`;;
letref steplist = [] : step list;;
letref record_proof_flag = false;;
letref suspended = false;;
let is_recording_proof (():void) = record_proof_flag;;
let record_proof b =
(if b then (steplist := [];());
record_proof_flag := b; ()) ;;
let suspend_recording () =
if record_proof_flag
then (record_proof_flag := false;
suspended := true; ());;
let resume_recording () =
if (suspended & (not record_proof_flag))
then (record_proof_flag := true;
suspended := false; ());;
let RecordStep step =
if record_proof_flag
then (steplist := (step.steplist); ());;
let get_steps (():void) = steplist;;
(record_proof,is_recording_proof,RecordStep,get_steps,
suspend_recording,resume_recording);;
end_section `record_proof`;;
let (record_proof,is_recording_proof,RecordStep,get_steps,
suspend_recording,resume_recording) = it;;
let new_constant(s,ty) =
fst(new_constant(s,ty), RecordStep(NewConstantStep(s,ty)));;
% arb_term and ARB_THM are just arbitrary ML values of type term and thm %
let arb_term = "arb:*"
and ARB_THM = axiom(`bool`, `ARB_THM`);;
let falsity = "F:bool" ? arb_term;; % hack so will load in PPLAMBDA %
let bool_ty = ":bool" ? ":*";; % hack so will load in PPLAMBDA %
% ===================================================================== %
% Derived constructors for HOL syntax. %
% ===================================================================== %
let mk_forall (x,t) =
let ty = type_of x in
let allty = mk_type(`fun`,[mk_type(`fun`,[ty;bool_ty]);bool_ty]) in
mk_comb(mk_const(`!`,allty),mk_abs(x,t)) ? failwith `mk_forall`;;
let mk_exists (x,t) =
let ty = type_of x in
let exty = mk_type(`fun`,[mk_type(`fun`,[ty;bool_ty]);bool_ty]) in
mk_comb(mk_const(`?`,exty),mk_abs(x,t)) ? failwith `mk_exists`;;
let mk_select (x,t) =
let ty = type_of x in
let selty = mk_type(`fun`,[mk_type(`fun`,[ty;bool_ty]);ty]) in
mk_comb(mk_const(`@`, selty), mk_abs(x,t)) ? failwith `mk_select`;;
% NOTES: %
% mk_bool_comb `NAME` <tok> (t1,t2) --> "NAME t1 t2" %
% the K arb_term is a hack so it will load in pp-lambda. %
% %
% mk_iff deleted [TFM 91.01.20] %
let mk_conj,mk_disj,mk_imp =
let mk_bool_comb tok ftok =
let OP = mk_const(tok,
mk_type(`fun`,[bool_ty;mk_type(`fun`,[bool_ty;bool_ty])])) in
(\(t1,t2). mk_comb((mk_comb(OP,t1),t2)) ? failwith ftok) in
((mk_bool_comb `/\\` `mk_conj`,
mk_bool_comb `\\/` `mk_disj`,
mk_bool_comb `==>` `mk_imp`) ?
(K arb_term, K arb_term, K arb_term));;
let mk_eq (t1,t2) =
let ty1 = type_of t1 and ty2 = type_of t2 in
if (ty1 = ty2) then
let eqty = mk_type(`fun`,[ty1;mk_type(`fun`,[ty2;bool_ty])]) in
mk_comb(mk_comb(mk_const(`=`,eqty),t1),t2) else failwith `mk_eq`;;
let mk_pair (t1,t2) =
let ty1 = type_of t1 and ty2 = type_of t2 in
let pty = mk_type(`prod`,[ty1;ty2]) in
let cty = mk_type(`fun`,[ty1;mk_type(`fun`,[ty2;pty])]) in
mk_comb(mk_comb(mk_const(`,`,cty),t1),t2);;
% The K arb_term is a hack so that this file will load in pp-lambda %
let mk_neg =
(let neg = mk_const(`~`,mk_type(`fun`,[bool_ty;bool_ty])) in
(\t. mk_comb (neg,t) ? failwith `mk_neg`)) ? K arb_term;;
% ===================================================================== %
% Derived destructors for ML syntax. %
% ===================================================================== %
let dest_forall =
let check = assert (\c. fst(dest_const c) = `!`) in
\tm. (let (_,b) = (check # I) (dest_comb tm) in dest_abs b) ?
failwith `dest_forall`;;
let dest_exists =
let check = assert (\c. fst(dest_const c) = `?`) in
\tm. (let (_,b) = (check # I) (dest_comb tm) in dest_abs b) ?
failwith `dest_exists`;;
let dest_select =
let check = assert (\c. fst(dest_const c) = `@`) in
\tm. (let (_,b) = (check # I) (dest_comb tm) in dest_abs b) ?
failwith `dest_select`;;
let dest_conj =
let check = assert (\c. fst(dest_const c) = `/\\`) in
\tm. (let ((_,c1),c2) = (((check # I) o dest_comb) # I) (dest_comb tm) in
(c1,c2)) ?
failwith `dest_conj`;;
let dest_disj =
let check = assert (\c. fst(dest_const c) = `\\/`) in
\tm. (let ((_,c1),c2) = (((check # I) o dest_comb) # I) (dest_comb tm) in
(c1,c2)) ?
failwith `dest_disj`;;
let dest_eq =
let check = assert (\c. fst(dest_const c) = `=`) in
\tm. (let ((_,c1),c2) = (((check # I) o dest_comb) # I) (dest_comb tm) in
(c1,c2)) ?
failwith `dest_eq`;;
let dest_pair =
let check = assert (\c. fst(dest_const c) = `,`) in
\tm. (let ((_,c1),c2) = (((check # I) o dest_comb) # I) (dest_comb tm) in
(c1,c2)) ?
failwith `dest_pair`;;
% --------------------------------------------------------------------- %
% dest_imp "P ==> Q" = (P,Q). %
% %
% This also destructs negation - for compatibility with PPLAMBDA code %
% CHANGED BY WW 24 Jan 1994 %
% The PPLAMBDA compatible dest_imp is renamed to dest_neg_imp. %
% --------------------------------------------------------------------- %
let dest_imp tm =
(let ((c,p),q) = (dest_comb # I) (dest_comb tm) in
if (fst (dest_const c)) = `==>` then (p,q) else fail) ?
failwith `dest_imp`;;
let dest_neg t =
(let t1,t2 = dest_comb t
in
if fst(dest_const t1)=`~` then t2 else fail)
? failwith `dest_neg`;;
let dest_neg_imp tm =
((let ((c,p),q) = (dest_comb # I) (dest_comb tm) in
if (fst (dest_const c)) = `==>` then (p,q) else fail) ?
let (c,b) = dest_comb tm in
if (fst (dest_const c)) = `~` then (b,falsity) else fail) ?
failwith `dest_neg_imp`;;
% dest_form "HOL_ASSERT t" --> "t" %
let dest_form fm =
(let tok,t = dest_pred fm
in
if `HOL_ASSERT` = tok then t else fail)
? failwith `dest_form`;;
% mk_form "t" --> "HOL_ASSERT t" %
let mk_form t = mk_pred(`HOL_ASSERT`,t) ? failwith `mk_form`;;
% mk_pp_thm(["fm1";...;"fmn"],"fm") --> "fm1,...,fmn |- fm"
It is written in Lisp and is loaded by:
lisp `(load '|/mnt/lcp/lcf/franz/F-macro|)` ;;
lisp `(load '|/mnt/lcp/lcf/franz/llmac|)`;;
lisp `(load '|/mnt/lcp/lcf/franz/F-dml|)` ;;
lisp `(load 'mk_pp_thm)` ;;
(N.B. this is probably out of date - e.g. need llmac from ~/hol)
%
% mk_thm(["t1";...;"tn"],"t") --> "t1,...,tn |- t"
"t1,...,tn |- t" is represented by the PPLAMBDA theorem:
"HOL_ASSERT t1, ... , HOL_ASSERT tn |- HOL_ASSERT t"
OLD VERSION:
let mk_thm = mk_pp_thm o (map mk_form # mk_form);;
CHANGED 21 April 1993 by JVT to get rid of "o" and "#" which cause
additional calls to "ap" in lisp.
%
let mk_thm P = mk_pp_thm (map mk_form (fst P),mk_form (snd P));;
% dest_thm "t1,...,tn |- t" --> (["t1";...;"tn"],t)
OLD VERSION:
let dest_thm = (map dest_form # dest_form) o dest_thm;;
CHANGED 21 April 1993 by JVT to get rid of "o" and "#" which cause
additional calls to "ap" in lisp.
%
let dest_thm th = let P = dest_thm th in
(map dest_form (fst P),dest_form (snd P));;
let hyp = \th. fst (dest_thm th)
and concl = \th. snd (dest_thm th);;
let hyp_union thl =
itlist union (map hyp thl) [];;
% ===================================================================== %
% Derived discriminator functions. %
% ===================================================================== %
let is_forall = can dest_forall and
is_exists = can dest_exists and
is_select = can dest_select and
is_conj = can dest_conj and
is_disj = can dest_disj and
is_imp = can dest_imp and
% is_iff = can dest_iff and DELETED [TFM 91.01.20] %
is_eq = can dest_eq and
is_pair = can dest_pair and
is_neg = can dest_neg and
is_neg_imp= can dest_neg_imp;;
% ===================================================================== %
% Alpha-conversion, substitution, etc. %
% %
% Since HOL only has terms we can simplify the naming of various syntax %
% functions. For example, HOL just has aconv instead of aconv_term and %
% aconv_form. %
% %
% NB: These definitions REDEFINE previously dml'ed paired functions as %
% curried ones %
% ===================================================================== %
let aconv t u = aconv (t,u) and
subst l t = subst (l,t) and
subst_occs nl l t = subst_occs (nl,l,t) and
free_in l t = free_in (l,t) and
variant vl v = variant (vl,v);;
% ===================================================================== %
% Occurrences of types in terms and instantiation. %
% %
% NB: These definitions REDEFINE paired functions as curried ones %
% ===================================================================== %
let type_in_type ty1 ty2 = type_in_type (ty1,ty2) and
type_in ty tm = type_in (ty, tm) and
inst_type l ty = inst_type (l,ty) and
inst tml l tm = inst (tml,l,tm);;
% ===================================================================== %
% Matching %
% %
% NB: this REDEFINES the dml'ed paired "match" function to be curried. %
% ===================================================================== %
let match pat ob = match (pat,ob);;
% ===================================================================== %
% Free variables. %
% %
% dml'd functions term_frees, term_vars and term_tyvars renamed %
% to be frees, vars and tyvars. So this not needed [TFM 90.06.04] %
% %
% let frees = term_frees %
% and vars = term_vars %
% and tyvars = term_tyvars;; %
% ===================================================================== %
% ===================================================================== %
% Syntax functions for term lists %
% ===================================================================== %
let freesl = \l. itlist (union o frees) l [] and
varsl = \l. itlist (union o vars) l [] and
tyvarsl = \l. itlist (union o tyvars) l [];;
% ===================================================================== %
% Free variables of a theorem %
% ===================================================================== %
let thm_frees th = let hy,c = dest_thm th in freesl (c.hy);;
% ===================================================================== %
% Discharge all assumptions w from wl %
% ===================================================================== %
let disch(w,wl) = filter (\w'.not (aconv w w')) wl ;;
% ===================================================================== %
% The following definitions make code for PPLAMBDA compatible with HOL %
% %
% let is_equiv = is_eq %
% and mk_equiv = mk_eq %
% and dest_equiv = dest_eq;; [DELETED: TFM 90.09.09] %
% ===================================================================== %
% ===================================================================== %
% DELETED: TFM 90.08.16 %
% let is_inequiv = is_eq %
% and mk_inequiv = mk_eq %
% and dest_inequiv = dest_eq;; %
% ===================================================================== %
let is_pred t = (is_const(fst(dest_comb t))) ? false;;
let mk_pred(tk,t) =
mk_comb(mk_const(tk, ":^(type_of t)->bool"),t) ? failwith `mk_pred `;;
let dest_pred t =
(let t1,t2 = dest_comb t
in
(fst(dest_const t1),t2)
) ? failwith `dest_pred`;;
% ===================================================================== %
% Iterated derived constructors: %
% %
% * list_mk_abs [x1;...;xn],t ---> "\x1 ... xn.t" %
% * list_mk_comb op, [arg1; ...;argn] ---> "op arg1 ... argn" %
% * list_mk_conj ["C1";...;"Cn"] ---> "C1 /\ ... /\ Cn", n>0 %
% * list_mk_disj ["D1"; ...; "Dn"] ---> "D1 \/ ... \/ Dn", n>0 %
% * list_mk_imp [t1;...;tn], t ---> "t1==>(...(tn==>t)...) %
% * list_mk_forall [x1;...;xn],t ---> "!x1 ... xn.t" %
% * list_mk_exists [x1;...;xn],t ---> "?x1 ... xn.t" %
% * list_mk_pair ["t1";...;"tn"] ---> "(t1,...,tn)", n>0 %
% ===================================================================== %
let list_mk_abs (vars,t) =
(itlist (curry mk_abs) vars t) ? failwith `list_mk_abs`;;
let list_mk_comb (op,args) =
(rev_itlist (\x f. mk_comb(f,x)) args op) ? failwith `list_mk_comb`;;
let list_mk_conj conjs =
(end_itlist (curry mk_conj) conjs) ? failwith `list_mk_conj`;;
let list_mk_disj disjs =
(end_itlist (curry mk_disj) disjs) ? failwith `list_mk_disj`;;
let list_mk_imp (antel,conc) =
(itlist (curry mk_imp) antel conc) ? failwith `list_mk_imp`;;
let list_mk_forall (vars,body) =
(itlist (curry mk_forall) vars body) ? failwith `list_mk_forall`;;
let list_mk_exists (vars,body) =
(itlist (curry mk_exists) vars body) ? failwith `list_mk_exists`;;
% list_mk_pair added [RJB 90.10.22]. %
let list_mk_pair cmpts =
(end_itlist (curry mk_pair) cmpts) ? failwith `list_mk_pair`;;
% ===================================================================== %
% Iterated derived destructors: %
% %
% * strip_abs "\x1 ... xn. t" ---> [x1; ...; xn], t %
% * strip_comb "t u1 ... un" ---> t, [u1; ...; un] %
% * conjuncts "t1 /\ ... /\ tn" ---> [t1; ...; tn] %
% * disjuncts "t1 \/ ... \/ tn" ---> [t1; ...; tn] %
% * strip_imp "t1 ==> ... ==> tn ==> t" ---> [t1; ...; tn], t %
% * strip_forall "!x1 ... xn. t" ---> [x1; ...; xn], t %
% * strip_exists "?x1 ... xn. t" ---> [x1; ...; xn], t %
% * strip_pair "(t1,...,tn)" ---> [t1; ...; tn] %
% %
% NOTE : because conjuncts splits both the left and right sides of a %
% conjunction, this operation is not the inverse of list_mk_conj. It %
% may be useful to introduce list_dest_conj, for splitting only the %
% right tails of a conjunction. Likewise for disjunction. %
% ===================================================================== %
letrec strip_abs tm =
if is_abs tm
then (let bv,t = dest_abs tm in
let bvs, core = strip_abs t in
bv.bvs, core)
else [],tm;;
let strip_comb tm =
letrec dest t rands =
if is_comb t then
(let rator,rand = dest_comb t in dest rator (rand.rands))
else t, rands
in dest tm [];;
letrec conjuncts w =
(let a,b = dest_conj w in conjuncts a @ conjuncts b) ? [w];;
letrec disjuncts w =
(let a,b = dest_disj w in disjuncts a @ disjuncts b) ? [w];;
letrec strip_imp fm =
if is_imp fm then
(let wa,wc = dest_imp fm in
let was,wb = strip_imp wc in
wa.was, wb)
else [],fm;;
letrec strip_forall fm =
(let bv,body = dest_forall fm in
let bvs, core = strip_forall body in
bv.bvs, core)
? [],fm;;
letrec strip_exists fm =
(let bv,body = dest_exists fm in
let bvs, core = strip_exists body in
bv.bvs, core)
? [],fm;;
% strip_pair added [RJB 90.10.22]. %
letrec strip_pair tm =
(let x,y = dest_pair tm in x.(strip_pair y)) ? [tm];;
% ===================================================================== %
% Syntax functions for conditionals %
% ===================================================================== %
let mk_cond (p,t,u) =
(let rty = type_of t in
let bty = type_of p in
let ty1 = mk_type(`fun`,[rty;rty]) in
let cty = mk_type(`fun`,[bty;mk_type(`fun`,[rty;ty1])]) in
let cnd = mk_const(`COND`,cty) in
mk_comb(mk_comb(mk_comb(cnd,p),t),u)) ?
failwith `mk_cond`;;
let is_cond tm =
(let (c,[p;x;y]) = strip_comb tm in fst(dest_const c) = `COND`) ? false;;
let dest_cond tm =
(let (c,[p;x;y]) = strip_comb tm in
if fst(dest_const c) = `COND` then p,x,y
else fail)
? failwith `dest_cond`;;
% ===================================================================== %
% Syntax functions for let-terms: %
% %
% dest_let "LET f x" = ("f","x") %
% mk_let ("f","x") = "LET f x" %
% is_let tm = equivalent to "can dest_let tm" %
% ===================================================================== %
let dest_let =
let check tm = fst(dest_const tm) = `LET` in
\tm. (let (_,[f;x]) = (assert check # I) (strip_comb tm) in
(f,x)) ? failwith `dest_let`;;
let mk_let (f,x) =
(let fty = type_of f in
let c = mk_const(`LET`,mk_type(`fun`,[fty;fty])) in
mk_comb(mk_comb(c,f),x)) ? failwith `mk_let`;;
let is_let tm = can dest_let tm;;
% ===================================================================== %
% Syntax functions for lists added [RJB 90.10.24]. %
% ===================================================================== %
% mk_cons ("t","[t1;...;tn]") ----> "[t;t1;...;tn]" %
let mk_cons (h,t) =
(let hty = type_of h and tty = type_of t in
let consty = mk_type(`fun`,[hty;mk_type(`fun`,[tty;tty])]) in
mk_comb(mk_comb(mk_const(`CONS`,consty),h),t))
? failwith `mk_cons`;;
% dest_cons "[t;t1;...;tn]" ----> ("t","[t1;...;tn]") %
let dest_cons tm =
(let (c,h),t = ((dest_comb # I) o dest_comb) tm in
if fst(dest_const c) = `CONS` then (h,t) else fail)
? failwith `dest_cons`;;
let is_cons = can dest_cons;;
% mk_list (["t1";...;"tn"],":ty") ----> "[t1;...;tn]:(ty)list" %
let mk_list (els,ty) =
(let nil = mk_const(`NIL`,mk_type(`list`,[ty])) in
itlist (curry mk_cons) els nil)
? failwith `mk_list`;;
% dest_list "[t1;...;tn]:(ty)list" ----> (["t1";...;"tn"],":ty") %
letrec dest_list tm =
(let h,t = dest_cons tm in
let l,ty = dest_list t in (h.l),ty)
? (let `NIL`,`list`,[ty] = ((I # dest_type) o dest_const) tm in [],ty)
? failwith `dest_list`;;
let is_list = can dest_list;;
% If list_mk_cons were to be implemented it should behave as follows: %
% %
% list_mk_cons (["h1";...;"hm"],"[t1;...;tn]") ----> "[h1;...;hm;t1;...;tn]" %
% %
% though I don't think it would be used much [RJB 90.10.24]. %
%=============================================================================%
% Constructor, destructor and discriminator functions for paired abstractions %
% [JRH 91.07.17] %
%=============================================================================%
%--------------------------------------%
% mk_pabs - Makes a paired abstraction %
%--------------------------------------%
let mk_pabs =
let mk_uncurry(xt,yt,zt) =
mk_const(`UNCURRY`,mk_type(`fun`,
[mk_type(`fun`,[xt; mk_type(`fun`,[yt;zt])]);
mk_type(`fun`,[mk_type(`prod`,[xt;yt]); zt])])) in
letrec mpa(varst,bod) =
if is_var varst then mk_abs(varst, bod)
else let (vs1,vs2) = dest_pair varst in
let cab = mpa(vs1,mpa(vs2,bod)) in
mk_comb(mk_uncurry(type_of vs1, type_of vs2, type_of bod),cab) in
\(varst,bod). mpa(assert is_pair varst,bod) ? failwith `mk_pabs`;;
%-------------------------------------------------------------%
% dest_pabs - Destroys (possibly multiply) paired abstraction %
%-------------------------------------------------------------%
let dest_pabs =
let ucheck = assert (curry$= `UNCURRY` o fst o dest_const) in
letrec dpa tm =
dest_abs tm ?
let (_,unc) = (ucheck # I) (dest_comb tm) in
let (lv,(rv,bod)) = (I # dpa) (dpa unc) in (mk_pair(lv,rv),bod) in
\tm. (assert is_pair # I) (dpa tm) ? failwith `dest_pabs`;;
%--------------------------------------------------------%
% is_pabs - Tests whether a term is a paired abstraction %
%--------------------------------------------------------%
let is_pabs = can dest_pabs;;
% ===================================================================== %
% Lhs and rhs of an equation. %
% ===================================================================== %
let lhs tm = fst(dest_eq tm) ? failwith `lhs` and
rhs tm = snd(dest_eq tm) ? failwith `rhs`;;
% ===================================================================== %
% Search a term for a sub-term satisfying the predicate p %
% ===================================================================== %
letrec find_term p tm =
if (p tm) then tm else
if (is_abs tm) then find_term p (snd (dest_abs tm)) else
if (is_comb tm) then
(let rator,rand = dest_comb tm in
find_term p rator ? find_term p rand) else
failwith `find_term`;;
% ===================================================================== %
% Operator and operand %
% ===================================================================== %
let rator tm = fst(dest_comb tm) ? failwith `rator` and
rand tm = snd(dest_comb tm) ? failwith `rand`;;
% ===================================================================== %
% Bound variable and body Added RJB 90.10.22 %
% ===================================================================== %
let bndvar tm = fst(dest_abs tm) ? failwith `bndvar` and
body tm = snd(dest_abs tm) ? failwith `body`;;
% ===================================================================== %
% Find all subterms in a term that satisfy a given predicate p. %
% Added TFM 88.03.31 %
% ===================================================================== %
let find_terms p tm =
letrec accum tl p tm =
let tl' = if p tm then tm.tl else tl in
if is_abs tm then
accum tl' p (snd (dest_abs tm)) else
if is_comb tm then
accum (accum tl' p (rator tm)) p (rand tm) else
tl' in
accum [] p tm;;
% ===================================================================== %
% mk_primed_var(name,ty): Makes a variable with a name that is a primed %
% variant of name and type ty. Adds primes to the string name until it %
% is not the name of a constant in the current theory --- I.e. until %
% mk_var (name,ty) succeeds. %
% %
% Added TFM 88.03.31 %
% Modified by MJCG for HOL88 (30/11/88) as mk_var no longer fails %
% ===================================================================== %
letrec mk_primed_var(name,ty) =
if ascii_code(hd(explode name)) = 96 then fail
if not(is_constant name)
then mk_var(name,ty)
else mk_primed_var(name ^ `'`, ty);;
% ===================================================================== %
% Some functions for theories (see also hol_thyfns.ml) %
% ===================================================================== %
% Introduce an axiom %
let new_axiom(tk,tm) =
let gen_all t = list_mk_forall (frees t, t) in
fst(new_open_axiom(tk, mk_form(gen_all tm)),
RecordStep(NewAxiomStep(tk,tm)))
? failwith `new_axiom`;;
% Introduce an axiom without generalizing free variables (used for
making definitions) %
let new_open_axiom(tk,tm) =
new_open_axiom(tk, mk_form tm) ? failwith `new_open_axiom`;;
% --------------------------------------------------------------------- %
% Introduce a predicate - i.e. a function of type ty->bool %
% %
% NB: this overwrites the PPLAMBDA version of new_predicate. %
% %
% This line saves the PPLAMBDA version, but is commented out since this %
% function is not used anywhere %
% let new_pp_predicate = new_predicate;; %
% %
% Deleted: [TFM 90.09.09] %
% --------------------------------------------------------------------- %
let new_predicate(tok,ty) = new_constant(tok, ":^ty -> bool");;
let mk_definition t =
mk_comb(mk_const(`HOL_DEFINITION`,":bool->bool"),t);;
let dest_definition t =
(let C,t1 = dest_comb t
in
if fst(dest_const C)=`HOL_DEFINITION` then t1 else fail
) ? failwith `dest_definition`;;
let is_definition = can dest_definition;;
let store_definition(name,t) =
fst(mk_thm([],dest_definition(concl(new_open_axiom(name,mk_definition t)))),
RecordStep(StoreDefinitionStep(name,t)));;
let theorem thy factname =
fst(paired_theorem (thy,factname), RecordStep(TheoremStep(thy,factname)))
and new_type arity tok =
fst(paired_new_type (arity,tok), RecordStep(NewTypeStep(arity,tok)))
and delete_thm thy factname =
paired_delete_thm (thy,factname);;
let pp_axiom thy factname = axiom (thy,factname);;
let axiom thy ax =
let th = pp_axiom thy ax in
if is_definition(concl th)
then failwith `axiom`
else fst(th, RecordStep(AxiomStep(thy,ax)));;
% --------------------------------------------------------------------- %
%< Deleted by WW 6 Dec 93. A function having the same name is defined
in hol-thyfn.ml which will mask out this definition.
Restored by WW 2 Jan 94 because this fiunction is needed to build
basic-hol which does not include the file hol-thyfn.ml >%
let definition thy ax =
fst(mk_thm([],dest_definition(concl(pp_axiom thy ax))),
RecordStep(DefinitionStep(thy,ax)))
? failwith `definition`;;
% --------------------------------------------------------------------- %
% Introduce an infix %
% %
% let new_infix = new_curried_infix;; %
% %
% Now dml-ed to be new_infix in the first place! [TFM 91.03.17] %
% Adding RecordStep for proof recording [WW 05-07-93] %
% --------------------------------------------------------------------- %
let new_infix(s,ty) =
fst(new_infix(s,ty), RecordStep(NewConstantStep(s,ty)));;
% ML code for declaring and keeping track of binders %
% Modification J.Joyce Apr 87 - move lisp expression for declaring the %
% ml function "parse_as_binder" to a separate lisp source because of %
% problems with nesting "|". %
% %
% Modified to define parse_as_binder earlier in the build sequence. %
% This fixes the binder inheritance bug. TFM 92.10.01 for HOL88 2.01 %
% %
% lisp (concat (concat `(load "` lisp_dir_pathname) `parse_as_binder")`);; %
% ---------------------------------------------------------------------- %
% tuple operations used only for storing binders: deleted [TFM 91.02.24] %
% ["t1"; ... ;"tn"] --> "(t1, ... ,tn)" %
% Function mk_tuple deleted: [TFM 91.02.24] %
% let mk_tuple = end_itlist (curry mk_pair);; %
% let mk_tuple l = itlist (curry mk_pair) l arb_term;; %
% ["t1"; ... ;"tn"] --> "(t1, ... ,tn)" %
% letrec dest_tuple t = %
% (let x,y = dest_pair t in x . (dest_tuple y)) ? [t];; %
% %
% letrec dest_tuple t = %
% if t = arb_term then [] else ($. o (I # dest_tuple) o dest_pair) t;; %
% ---------------------------------------------------------------------- %
% Store ["t1";...;"tn"] as the "theorem" |- BINDERS(t1,...,tn)
(binders are stored as theorems rather than axioms as the
list of binders needs to be deleted when extending a theory and
axioms can't be deleted).
%
let store_binders l =
let t = itlist (curry mk_pair) l arb_term % was mk_tuple l %
in
save_thm
(`LIST_OF_BINDERS`,
mk_thm
([], mk_comb(mk_const(`BINDERS`,mk_type(`fun`,[type_of t;":bool"])), t)));;
% list of binders in the current theory %
letref list_of_binders = []:term list;;
% Introduce a binder %
let new_binder(tok,ty) =
let tok1,tyl1 = (dest_type ty ? failwith `bad binder type`)
in
let tok2,tyl2 = (dest_type(hd tyl1) ? failwith `bad binder type`)
in
if not((tok1=`fun`) or (tok2=`fun`))
then failwith `bad binder type`
else
(parse_as_binder tok;
new_constant(tok,ty);
list_of_binders := mk_const(tok,ty).list_of_binders;
());;
% Added on 25/11/1988 for HOL88:
new_specification `flag` `name` `C` |- ?x. ... x ...
declares C as a new constant and then does
new_axiom(`name`, "... C ...") `flag` must be one of `constant`,
`infix` or `binder` and determines the syntactic stutus of C.
To avoid Roger Jones type problems,
it is required that there be no type variables in types of subterms of
"... C ..." that do not occur in the type of C. This rules out, for example,
new_specification(tok, `Wonk`, |- ?b:bool. b = !x y:*. x=y)
The specification above was amended on 8/2/89 to the following:
new_specification
name
[`flag1`,`C1`; ... ; `flagn,Cn`]
|- ?x1 ... xn. ... x1 ... xn ...
declares C1, ... ,Cn as a new constants and then does
new_axiom(`name`, "... C1 ... Cn ..."); `flagi` must be one of `constant`,
`infix` or `binder` and determines the syntactic stutus of Ci.
To avoid Roger Jones type problems, it is required that there be no
type variables in types of subterms of "... C1 ... Cn ..." that do not
occur in the types of any Ci (1 <= i <= n). This rules out, for example,
new_specification
(`Wonk_DEF`, [`constant`,`Wonk`,`], |- ?b:bool. b = !x y:*. x=y)
which would define a constant "Wonk" of type ":bool" by
the inconsistent axiom:
|- Wonk = !x y:*. x=y
%
% Auxiliary function to strip off n quantifiers %
letrec n_strip_quant dest_fn n t =
if n=0
then ([],t)
else
let x,t' = dest_fn t
in
let l,t'' = n_strip_quant dest_fn (n-1) t'
in
(x.l,t'');;
% Auxiliary function to test whether a type is the possible type
of an infix.
%
let is_infix_type ty =
let op,l = dest_type ty
in
if op = `fun`
then (if fst(dest_type(hd(tl l)))=`fun` then true else false)
else false;;
% Auxiliary function to test whether a type is the possible type
of an binder.
%
let is_binder_type ty =
let op,l = dest_type ty
in
if op = `fun`
then (if fst(dest_type(hd l))=`fun` then true else false)
else false;;
% Auxiliary function to check the arguments to new_specification;
fails (with useful message) or returns
(["x1";...;"xn"], "... x1 ... xn ...")
%
let check_specification defname flag_name_list th =
if not(draft_mode())
then failwith `not in draft mode`
if not(null(hyp th))
then failwith `no assumptions to theorem allowed in specifications`
if not(null(frees(concl th)))
then failwith(itlist
(\t s. fst(dest_var t)^` `^s)
(frees(concl th))
`is (are) unbound variable(s) in specification`)
else
map
(\(flag,name).
if is_constant name
then failwith (`attempt to specify an existing constant: ` ^ name)
if not(allowed_constant name)
then failwith (name ^ ` is not an allowable constant name`)
if not (mem flag [`constant`;`infix`;`binder`])
then failwith(concat flag ` must be \`constant\`, \`infix\` or \`binder\``)
)
flag_name_list;
let vars,body =
(n_strip_quant dest_exists (length flag_name_list) (concl th)
? failwith `too few existentially quantified variables`)
in
map
(\var.
if not(null(subtract (tyvars body) (tyvars var)))
then failwith(itlist
(\vty s. dest_vartype vty^` `^s)
(subtract (tyvars body) (tyvars var))
(`should occur in the type of `^(fst(dest_var var)))))
vars;
map2
(\((flag,name),var).
if (flag = `infix`) & not(is_infix_type(type_of var))
then failwith(fst(dest_var var)^` doesn't have infix type`)
if (flag = `binder`) & not(is_binder_type(type_of var))
then failwith(fst(dest_var var)^` doesn't have binder type`))
(flag_name_list,vars);
(vars,body);;
let new_specification defname flag_name_list th =
let vars,body =
check_specification defname flag_name_list th
in
map2
(\((flag,name),var).
if flag = `constant`
then new_constant(name,type_of var)
if flag = `infix`
then new_infix(name,type_of var)
else new_binder(name,type_of var))
(flag_name_list,vars);
store_definition
(defname,
subst
(map2
(\((flag,name),var). (mk_const(name,type_of var),var))
(flag_name_list,vars))
body);;
%
new_definition(tok,"C ... = t") declares C as a new constant
and then does new_axiom(tok,"C ... = t"). "C ..." must be a <lhs>
as described below, all free variables in t must be bound in "C ..."
and C must not occur in t. Free variables in the definition may be
universally quantified
%
% check that tm is a <varstruct> where:
<varstruct> ::= <var> | (<varstruct>,...,<varstruct>)
and that there are no repeated variables. Return list of variables.
%
letrec check_varstruct tm =
if is_var tm
then [tm]
else
(let t1,t2 = (dest_pair tm ? failwith `bad varstruct`)
in
let l1 = check_varstruct t1
and l2 = check_varstruct t2
in
if intersect l1 l2 = []
then l1@l2
else failwith `repeated variable in varstruct`);;
% check that tm is a <lhs> where:
<lhs> ::= <var> | <lhs> <varstruct>
and that no variables are repeated. Return list of variables.
%
letrec check_lhs tm =
if is_var tm
then [tm]
if is_const tm
then failwith(`attempt to redefine the constant ` ^
(fst(dest_const tm)))
if not(is_comb tm)
then failwith`lhs not of form "x = ..." or "f x = ... "`
else
(let t1,t2 = dest_comb tm
in
let l1 = check_lhs t1
and l2 = check_varstruct t2
in
if intersect l1 l2 = [] then l1@l2 else failwith `var used twice`);;
% if "C ... = (...:ty)" then (get_type "C ..." ty) gives the
type of C.
%
letrec get_type left rightty =
(if is_var left
then rightty
else get_type (rator left) ":^(type_of(rand left))->^rightty"
) ? failwith `bad lhs`;;
% The derived rule
DEF_EXISTS_RULE : term -> thm
proves that a function defined by a definitional equation exists.
The implementation below uses mk_thm, but this will be changed eventually.
%
let DEF_EXISTS_RULE tm =
let vars,(left,right) = (((I # dest_eq) o strip_forall) tm
? failwith`definition not an equation`)
in
let leftvars = check_lhs left
and ty = get_type left (type_of right)
and rightvars = frees right
in
if not(set_equal(intersect leftvars rightvars)rightvars)
then failwith`unbound var in rhs`
if mem(hd leftvars)rightvars
then failwith `recursive definitions not allowed`
else
(let name = fst(dest_var(hd leftvars))
and v = hd leftvars
in
(if not(null(subtract (tyvars right) (tyvars v)))
then failwith(dest_vartype(hd(subtract (tyvars right) (tyvars v)))^
` an unbound type variable in definition`)
if not(allowed_constant name)
then failwith (concat name ` is not allowed as a constant name`)
else
fst(mk_thm([],
mk_exists
(v,
list_mk_forall
((union vars (tl leftvars)), mk_eq(left,right)))),
RecordStep(DefExistsRuleStep tm))));;
let new_gen_definition flag (tok,tm) =
let def_thm = DEF_EXISTS_RULE tm
in
let name = (fst o dest_var o fst o dest_exists o concl) def_thm
in
new_specification tok [flag,name] def_thm;;
let new_definition = new_gen_definition `constant`;;
% Old version:
let new_definition(tok,tm) =
let vars,(left,right) = (((I # dest_eq) o strip_forall) tm
? failwith`bad definition`)
in
let leftvars = check_lhs left
and ty = get_type left (type_of right)
and rightvars = frees right
in
if not(set_equal(intersect leftvars rightvars)rightvars)
then failwith`unbound var in rhs`
if mem(hd leftvars)rightvars
then failwith `recursive definitions not allowed`
else
(let name = fst(dest_var(hd leftvars))
and v = hd leftvars
in
((new_constant(name, ty);
store_definition
(tok,
list_mk_forall(vars,mk_eq(subst[mk_const(name,ty),v]left, right))))
) ? failwith `disallowed constant or not in draft`);;
%
%
new_infix_definition(tok,"C ... = t") declares C
as a new curried infix and then does new_axiom(tok,"C ... = t").
Note that C must appear in prefix form in the declaration.
%
let new_infix_definition = new_gen_definition `infix`;;
% Old version:
let new_infix_definition(tok,tm) =
let vars,(left,right) = (((I # dest_eq) o strip_forall) tm
? failwith`bad definition`)
in
let ty = get_type left (type_of right)
and leftvars = check_lhs left
and rightvars = frees right
in
if not(set_equal(intersect leftvars rightvars)rightvars)
then failwith`unbound var in rhs`
if mem(hd leftvars)rightvars
then failwith `recursive definitions not allowed`
else
(let name = fst(dest_var(hd leftvars))
and v = hd leftvars
in
((new_infix(name, ty);
store_definition
(tok,
list_mk_forall(vars,mk_eq(subst[mk_const(name,ty),v]left, right))))
) ? failwith `disallowed infix`);;
%
% --------------------------------------------------------------------- %
% let infixes = curried_infixes;; %
% %
% Now dml-ed to be infixes in the first place! [TFM 91.03.17] %
% --------------------------------------------------------------------- %
% --------------------------------------------------------------------- %
% new_theory [revised: TFM 90.06.05] %
% NOTE this overwrites the function new_theory defined using dml. %
% --------------------------------------------------------------------- %
let new_theory tok =
(can store_binders list_of_binders;
new_theory tok;
list_of_binders := [];
());;
% --------------------------------------------------------------------- %
% close_theory %
% %
% close_pp_theory made local: [TFM 90.06.05] %
% NOTE this overwrites the function close_theory defined using dml. %
% --------------------------------------------------------------------- %
let close_theory =
let close_pp_theory = close_theory in
\x:void.(store_binders list_of_binders;
close_theory();
list_of_binders := [];
()) ? failwith`close_theory`;;
% --------------------------------------------------------------------- %
% binders: fetch list of binders from a theory %
% %
% Now fails on non-ancestor theories. [JRH 91.06.19] %
% --------------------------------------------------------------------- %
let binders =
letrec dest_tuple t =
if t = arb_term then [] else ($. o (I # dest_tuple) o dest_pair) t in
\thy. if thy=`-` or mem thy (ancestry()) then
let thl = ([theorem thy `LIST_OF_BINDERS`] ? []) in
if null thl then [] else
(let t1,t2 = dest_comb(concl(hd thl)) in
if fst(dest_const t1)=`BINDERS` then dest_tuple t2 else fail)
? failwith `binders: invalid binder list in theory `^thy
else failwith `binders: `^thy^` is not an ancestor`;;
% --------------------------------------------------------------------- %
% activate_binders: tell the parser about binders %
% --------------------------------------------------------------------- %
let activate_binders thy =
map (parse_as_binder o fst o dest_const) (binders thy);;
% --------------------------------------------------------------------- %
% ancestors --- Get the (proper) ancestors of a theory. %
% Added by WW 05-07-93. %
% The original slow implementation was in hol-thyfn.ml. %
% The local function %
% all_parents = -: string list -> string list -> string list %
% all_parents plist thyl returns a list of theory names which are the %
% ancestors of the theories in thyl and not in plist. %
% --------------------------------------------------------------------- %
let ancestors =
letrec all_parents plist =
fun [] . plist
| (thy . thyl) .
if (mem thy plist) then all_parents plist thyl
else (
let pl = parents thy in
let vl = subtract pl ( (intersect pl plist)) in
(all_parents (thy . plist) (vl @ thyl))) in
(\thy'.
let thy = (thy' = `-`) => (current_theory()) | thy' in
let ths = all_parents [] [thy] in
snd(remove (\th. th = thy) ths));;
% --------------------------------------------------------------------- %
% CHANGED BY WW 8 Feb 1993 %
% Attempt to speed up the loading of theory %
% 1) make the following functions local in this section: %
% activate_all_binders %
% 2) add new function all_parents. It is similar to the function %
% ancestors but return the argument and all ancestors, %
% and it runs much faster than the old ancestors(). %
% 3) add the list thy_chked to remember the theories whose binders have %
% been activated. %
% --------------------------------------------------------------------- %
begin_section `load_thy`;;
% --------------------------------------------------------------------- %
% activate_all_binders: activate the binders on a theory and all its %
% ancestor theories. %
% OLD VERSION: %
%letrec activate_all_binders thy = %
% if thy = `HOL` %
% then [] %
% else %
% (let bl = activate_binders thy %
% and pl = parents thy %
% in %
% itlist (\tok tokl. activate_all_binders tok @ tokl) pl bl);; %
% Changed by WW 8 Feb 93 %
% This function is reimplemented. It runs much faster. %
% It does not repeatedly go into a ancestor theory and every theory %
% whose binders have been activated is remembered in the list thy_chked %
% --------------------------------------------------------------------- %
letref thy_chked = []:string list;;
let activate_all_binders thy =
let pl = thy . (ancestors thy) in
let nl = subtract pl thy_chked in
(thy_chked := union pl thy_chked;
(itlist (\l1 l2. (activate_binders l1) @ l2) nl []));;
% --------------------------------------------------------------------- %
% load_theory %
% %
% load_pp_theory made local: [TFM 90.06.05] %
% NOTE this overwrites the function load_theory defined using dml. %
% Changed by WW 5 Feb 93 %
% call the local active_all_binders to prevent %
% repeatedly activate binders. %
% --------------------------------------------------------------------- %
let load_theory =
\thy. (load_theory thy; activate_all_binders thy; ());;
% --------------------------------------------------------------------- %
% extend_theory %
% %
% extend_pp_theory made local: [TFM 90.06.05] %
% NOTE this overwrites the function extend_theory defined using dml. %
% Changed by WW 5 Feb 93 %
% call the local active_all_binders to prevent %
% repeatedly activate binders. %
% --------------------------------------------------------------------- %
let extend_theory =
\thy. (extend_theory thy;
activate_all_binders thy;
list_of_binders := binders thy;
((delete_thm thy `LIST_OF_BINDERS`; ()) ? ());
());;
% --------------------------------------------------------------------- %
% new_parent [TFM 92.02.22] %
% Added so that binders in parent and its ancestors are activated. %
% NOTE this overwrites the function new_parent defined using dml. %
% Changed by WW 5 Feb 93 %
% call the local activate_all_binders to prevent repeatedly activate %
% binders. %
% --------------------------------------------------------------------- %
let new_parent thy =
(new_parent thy; activate_all_binders thy; ());;
(load_theory, extend_theory, new_parent);;
end_section `load_thy`;;
let (load_theory, extend_theory, new_parent) = it;;
let new_binder_definition = new_gen_definition `binder`;;
% Old version:
let new_binder_definition(tok,tm) =
let vars,(left,right) = (((I # dest_eq) o strip_forall) tm
? failwith`bad definition`)
in
let ty = get_type left (type_of right)
and leftvars = check_lhs left
and rightvars = frees right
in
if not(set_equal(intersect leftvars rightvars)rightvars)
then failwith`unbound var in rhs`
if mem(hd leftvars)rightvars
then failwith `recursive definitions not allowed`
else
(let name = fst(dest_var(hd leftvars))
and v = hd leftvars
in
((new_binder(name, ty);
store_definition
(tok,
list_mk_forall(vars,mk_eq(subst[mk_const(name,ty),v]left, right))))
) ? failwith `disallowed binder`);;
%
% ===================================================================== %
% new_type_definition: define a new logical type. %
% %
% USAGE: new_type_definition(name, pred, thm) (DRAFT MODE ONLY) %
% %
% ARGUMENTS: name --- a string giving the name of the new type or %
% type operator that is to be defined. %
% %
% pred --- a term denoting a predicate which is to %
% define a subset of an existing type (ty say) %
% that is to represent the new type. The type %
% of pred must be "ty -> bool" and pred must %
% must contain no free variables. %
% %
% thm --- a theorem asserting the existence of some %
% object of type ty that satisfies pred. The %
% theorem must be of the form "|- ?x. pred x" for %
% some variable x. The theorem must have no %
% assumptions. %
% %
% SIDE EFFECTS: 1) Introduces a new type (type operator) with the %
% given name. The arity of the new type operator %
% is the same as the number of type variables in the %
% predicate pred. Fails if name is already the name of %
% an existing type. %
% %
% 2) Asserts an axiom stating that there is an isomorphism%
% from the new type to the subset of ty defined by the %
% predicate pred. The name of this axiom will be %
% form `name_TY_DEF`. If an axiom (or definition) %
% with this name already exists, then the call fails. %
% %
% The form of the axiom asserted will be as follows: %
% %
% new_type_definition(`ty`, "P", |- ?x. P x) %
% %
% yields the axiom: %
% %
% ty_TY_DEF = |- ?rep. TYPE_DEFINITION P rep %
% %
% I.e. there is a function rep from the new type to %
% the representing type ty that is one to one and onto %
% the subset defined by P. %
% %
% RETURNS: the axiom as a theorem. %
% %
% IMPLEMENTATION NOTE: the dml'ed ML function is_axiom here tests if an %
% axiom, OR definition is already in the current theory. %
% ===================================================================== %
let new_type_definition (name,pred,thm) =
if not(draft_mode()) then failwith `not in draft mode` else
if is_axiom (current_theory(),(name ^ `_TY_DEF`)) then
failwith `"` ^ name ^ `_TY_DEF" already an axiom or definition` else
if not(null(frees pred)) then
failwith `subset predicate must be a closed term` else
if not((I # tl)(dest_type(type_of pred))=(`fun`,[":bool"]) ? false) then
failwith `subset predicate has the wrong type` else
if not(null(hyp thm)) then
failwith `existence theorem must have no assumptions` else
if not((pred = rator(snd(dest_exists(concl thm))))?false) then
failwith `existence theorem must match subset predicate` else
if (is_type name) then
failwith name ^ ` is already the name of a type or type operator` else
let _,[ty;_] = dest_type(type_of pred) and
evar = fst(dest_exists(concl thm)) in
let tyvarsl = tyvars pred in
new_type (length tyvarsl) name;
let newty = mk_type (name,tyvarsl) in
let repty = mk_type (`fun`,[newty;ty]) in
let rep = mk_primed_var(`rep`, repty) in
let bool = mk_type (`bool`,[]) in
let TYDEF_ty = mk_type (`fun`,[mk_type(`fun`,[ty;bool]);
mk_type(`fun`,[repty;bool])]) in
let TYDEF = mk_const(`TYPE_DEFINITION`,TYDEF_ty) in
let ax = mk_exists(rep,mk_comb(mk_comb(TYDEF,pred),rep)) in
store_definition (name ^ `_TY_DEF`,ax);;
% ===================================================================== %
% Functions for interpreting tokens as ML %
% %
% space and ascii_ize made local [TFM 90.06.01] %
% ===================================================================== %
let ML_eval =
let space = ascii_code ` ` in
let ascii_ize tok =
itlist (\n l. map ascii_code (explode n)@[space]@l) (words tok) [] in
(inject_input o ascii_ize);;
% ===================================================================== %
% Definition of pre terms in ML %
% ===================================================================== %
rectype preterm =
preterm_var of string % Variables %
| preterm_const of string % Constants %
| preterm_comb of preterm # preterm % Combinations %
| preterm_abs of preterm # preterm % Abstractions %
| preterm_typed of preterm # type % Explicit typing %
| preterm_antiquot of term;; % Antiquotation %
% ===================================================================== %
% Constraining the type of the Lisp defined typechecker %
% ===================================================================== %
let preterm_to_term = preterm_to_term : preterm -> term;;
|