/usr/share/hol88-2.02.19940316/ml/tydefs.ml is in hol88-source 2.02.19940316-28.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 | %=============================================================================%
% HOL 88 Version 2.0 %
% %
% FILE NAME: tydefs.ml %
% %
% DESCRIPTION: Recursive type definition package %
% AUTHOR: T. F. Melham (87.08.23) %
% %
% University of Cambridge %
% Hardware Verification Group %
% Computer Laboratory %
% New Museums Site %
% Pembroke Street %
% Cambridge CB2 3QG %
% England %
% %
% COPYRIGHT: T. F. Melham 1987 1990 %
% %
% REVISION HISTORY: 90.09.03 %
%=============================================================================%
% --------------------------------------------------------------------- %
% begin a section. %
% --------------------------------------------------------------------- %
begin_section define_type;;
% ===================================================================== %
% Parser for input grammar %
% ===================================================================== %
% --------------------------------------------------------------------- %
% ignore c = true iff c is a white space character (tab, carrage return %
% line feed, space, form feed). %
% --------------------------------------------------------------------- %
let ignore c =
let n = ascii_code c in n=9 or n=10 or n=12 or n=13 or n=32;;
% --------------------------------------------------------------------- %
% is_sing c = true iff c is one of `#`, `+`, `|`, `(`, `)`, `,` or `=`. %
% --------------------------------------------------------------------- %
let is_sing c = c=`#` or c=`+` or c=`|` or c=`(` or c=`)` or c=`=` or c=`,`;;
% --------------------------------------------------------------------- %
% getid: strip an alphanumeric token off the front of a character list. %
% --------------------------------------------------------------------- %
letrec getid tok (c.cs) = (is_alphanum c => getid (tok ^ c) cs | (tok,c.cs));;
% --------------------------------------------------------------------- %
% getid: strip a token consisting of alphanumeric characters or `*`'s %
% off the front of a character list. %
% --------------------------------------------------------------------- %
letrec gettyvid tok (c.cs) =
(is_alphanum c or c=`*` => gettyvid (tok ^ c) cs | (tok,c.cs));;
% --------------------------------------------------------------------- %
% gnt: get next token, where tok ::= id | tyvar | other | end %
% --------------------------------------------------------------------- %
letrec gnt (c1.c2.cs) =
(ignore c1) => gnt (c2.cs)
| (is_sing c1) => inr(inr(inl c1)),(c2.cs)
| (c1 = `*`) => ((inr o inl) # I ) (gettyvid c1 (c2.cs))
| (c1=`-` & c2=`>`) => (inr(inr(inl `->`))),cs
| (is_letter c1) => (inl # I) (getid c1 (c2.cs))
| (c1 = ascii 1 & c2 = ascii 1 & null cs) => inr(inr(inr())),[]
| failwith `illegal character: "` ^ c1 ^ `"`;;
% --------------------------------------------------------------------- %
% Recognizers for tokens %
% --------------------------------------------------------------------- %
let isid = isl and
istyvar = can (outl o outr) and
is tok st = st = outl(outr(outr tok)) ? false and
end = can (outr o outr o outr);;
% --------------------------------------------------------------------- %
% Recognizer for type operators %
% --------------------------------------------------------------------- %
let istyop op = (not(arity(outl op) = 0)) ? false;;
% --------------------------------------------------------------------- %
% Test for presence of closing parenthesis. %
% --------------------------------------------------------------------- %
let ckrb tok = if (is tok `)`) then tok else failwith `missing ")"`;;
% --------------------------------------------------------------------- %
% Make a type, but issue an informative error message on error. %
% --------------------------------------------------------------------- %
let mk_ty(name,tys) =
if (is_type name)
then if (arity name = length tys)
then mk_type(name,tys)
else let n = string_of_int (arity name) in
failwith `"` ^ name ^ `" has arity ` ^ n
else failwith `"` ^ name ^ `" is not a type constant or operator`;;
% --------------------------------------------------------------------- %
% parse_types: parse a sequence consisting of type expressions or %
% instances of a special (supplied) identifier, terminated by <end> or %
% by "|". %
% --------------------------------------------------------------------- %
let parse_types =
letrec getops ty rest =
let tok,rem = gnt rest in
if istyop tok then getops (mk_type(outl tok,[ty])) rem else ty,rest in
% ------------------------------------------------------------------ %
% <type seq> ::= <fun type>* "|" <fun type>* <end> %
% %
% <type> ::= <fun type> | <supplied name> %
% ------------------------------------------------------------------ %
letrec parse_seq name cs =
let tok,rest = gnt cs in
if (end tok) then [],cs else
if (is tok `|`) then [],rest else
if (tok = inl name)
then ((curry $. (inr ())) # I) (parse_seq name rest)
else let ty,rest = parse_fun name cs in
((curry $. (inl ty)) # I) (parse_seq name rest)
% ------------------------------------------------------------------ %
% <fun type> ::= <fun type> -> <sum type> | <sum type> %
% ------------------------------------------------------------------ %
and parse_fun name cs =
let ty,rest = parse_sum name cs in
let tok,rem = gnt rest in
if (is tok `->`)
then let ty2,Rem = parse_fun name rem in
mk_type(`fun`,[ty;ty2]),Rem
else ty,rest
% ------------------------------------------------------------------ %
% <sum type> ::= <sum type> + <prod type> | <prod type> %
% ------------------------------------------------------------------ %
and parse_sum name cs =
let ty,rest = parse_prod name cs in
let tok,rem = gnt rest in
if (is tok `+`)
then let ty2,Rem = parse_sum name rem in
mk_type(`sum`,[ty;ty2]),Rem
else ty,rest
% ------------------------------------------------------------------ %
% <prod type> ::= <prod type> # <comp type> | <comp type> %
% ------------------------------------------------------------------ %
and parse_prod name cs =
let ty,rest = parse_comp1 name cs in
let tok,rem = gnt rest in
if (is tok `#`)
then let ty2,Rem = parse_prod name rem in
mk_type(`prod`,[ty;ty2]),Rem
else ty,rest
% ------------------------------------------------------------------ %
% <comp1 type> ::= <comp1 type> op | <basic type> %
% ------------------------------------------------------------------ %
and parse_comp1 name cs =
let ty,rest = parse_basic name cs in getops ty rest
% ------------------------------------------------------------------ %
% <basic type> ::= (<args>) op %
% | (<fun type>) %
% | <id> %
% | <tyvar> %
% ------------------------------------------------------------------ %
and parse_basic name cs =
let tok,rest = gnt cs in
if (is tok `(`) then
let ty,(next,rem) = (I # gnt) (parse_fun name rest) in
if (is next `,`) then
let args,opl = parse_args name rem in
let op,Rem = (gnt o snd) ((ckrb # I) (gnt opl)) in
if (isid op & not(op = inl name))
then mk_ty(outl op,ty.args),Rem
else failwith `missing tyop after "(<ty>,...,<ty>)"` else
if (is next `)`) then ty,rem else failwith `missing ")"` else
if (isid tok & not(tok = inl name)) then mk_ty(outl tok,[]),rest else
if (istyvar tok) then (mk_vartype(outl(outr tok))),rest else
failwith `ill-formed type expression(s)`
% ------------------------------------------------------------------ %
% <args> ::= <fun type> , <args> | <fun type> %
% ------------------------------------------------------------------ %
and parse_args name cs =
let ty,rest = parse_fun name cs in
let tok,rem = gnt rest in
if (is tok `,`)
then ((\l.ty.l) # I) (parse_args name rem) else [ty],rest
in parse_seq;;
% --------------------------------------------------------------------- %
% Parse one clause in the input grammar %
% %
% Bugfix: "or (tok = inl name)" deleted in third line. [TFM 91.02.23] %
% --------------------------------------------------------------------- %
let parse_clause after name used cs =
let tok,rest = gnt cs in
if (not(isid tok)) then % or (tok = inl name)) then [TFM 91.02.23] %
failwith `missing constructor name after ` ^ after else
let con = outl tok in
if (mem con used) then
failwith `duplicate constructor: "` ^ con ^ `"`else
if (is_constant con) then
failwith `"` ^ con ^ `" is already a constant` else
con,(parse_types name rest);;
% --------------------------------------------------------------------- %
% Parse the clauses in the input grammar %
% --------------------------------------------------------------------- %
letrec parse_clauses name used cs =
let tok,rest = gnt cs in
if (end tok) then [] else
let con,(args,rem) = parse_clause `"|"` name used cs in
(con,args). parse_clauses name (con.used) rem;;
% --------------------------------------------------------------------- %
% Parse the user's input grammar %
% --------------------------------------------------------------------- %
let parse_input =
let endc = ascii 1 in
let check c = (c=endc => failwith `illegal character: "` ^ c ^ `"` | c) in
\st. let cs = (map check (explode st)) @ [endc;endc] in
let ty,rest = gnt cs in
if (end ty) then failwith `empty input string` else
if (not(isid ty)) then failwith `ill-formed name for new type` else
let name = outl ty in
if (is_type name) then failwith `"`^name^` " is already a type` else
let eq,rem = gnt rest in
if (not(is eq `=`)) then failwith `missing "=" after "`^name^`"` else
let con,(args,clcs) = parse_clause `"="` name [] rem in
let cls = parse_clauses name [con] clcs in
(name,((con,args).cls));;
% ===================================================================== %
% Code for constructing the type definiton subset predicate %
% ===================================================================== %
% --------------------------------------------------------------------- %
% pargs : split the list of argument types for a constructor (returned %
% by parse_input) into a list of types (for non-recursve arguments) and %
% a numerical constant giving a count of the number of recursive args. %
% %
% For example: %
% %
% pargs [inl ":ty1";inl ":ty2";inr (); inl ":ty3"] %
% %
% yields 1) [":ty1";":ty2";":ty3"] (types of non recursive args) %
% 2) "SUC 0" (the no. of recursive arguments) %
% %
% --------------------------------------------------------------------- %
let pargs =
let SUC = curry mk_comb "SUC" and consf h t = h.t in
letrec argsf n as =
if (null as) then ([],n) else
(let ty = outl (hd as) in (consf ty # I) (argsf n (tl as))) ?
argsf (SUC n) (tl as) in
argsf "0";;
% --------------------------------------------------------------------- %
% mk_tuple_ty : make a tuple type of a list of types. %
% %
% Special case: if the list is empty, then the output is ":one". %
% --------------------------------------------------------------------- %
let mk_tuple_ty =
let mk_prod ty1 ty2 = mk_type(`prod`,[ty1;ty2]) in
let onety = ":one" in \l. end_itlist mk_prod l ? onety;;
% --------------------------------------------------------------------- %
% mk_tuple : make a tuple of a list of terms. %
% %
% Special case: if the list is empty, then the output is "one:one". %
% --------------------------------------------------------------------- %
let mk_tuple = let onec = "one" in \l. end_itlist (curry mk_pair) l ? onec;;
% --------------------------------------------------------------------- %
% mk_sum_ty : make a tum type of a list of types. %
% --------------------------------------------------------------------- %
let mk_sum_ty =
let mk_sum ty1 ty2 = mk_type(`sum`,[ty1;ty2]) in end_itlist mk_sum;;
% --------------------------------------------------------------------- %
% inject : make a list of injections of a list of values, given a sum %
% type into which they are to be injected. %
% %
% For example, if ty = (ty1,(ty2,ty3))sum and vs = [v1;v2;v3] then: %
% %
% inject ty vs = [INL v1; INL(INR v2); INR(INR v3)] %
% --------------------------------------------------------------------- %
letrec inject ty (v.vs) =
if (null vs) then [v] else
let _,[lty;rty] = dest_type ty in
let inlty = mk_type(`fun`,[lty;ty]) in
let res = mk_comb(mk_const(`INL`,inlty),v) in
let inrty = mk_type(`fun`,[rty;ty]) in
let Inr = curry mk_comb (mk_const(`INR`,inrty)) in
res.(map Inr (inject rty vs));;
% --------------------------------------------------------------------- %
% mkvars : generate sensible variable names for the arguments to the %
% non-recursive constructors of a newly-defined type. A call to mkvars %
% takes the form: %
% %
% mkvars [t1;...;tn] %
% %
% where t1,...,tn are the types required for the variables. %
% --------------------------------------------------------------------- %
let mkvars =
let fch ty = (hd o explode o fst o dest_type) ty ? `x` in
let suff f c l =
if (f c = ``) then
if (exists (\x. fch x = c) l) then
`0`, \ch. (ch=c) => `0` | f ch else ``,f else
let n = string_of_int(int_of_string(f c) + 1) in
n,\ch. (ch=c) => n | f ch in
letrec mkvs fn rvs l =
if (null l) then [] else
let c = fch (hd l) in
let s,fn' = suff fn c (tl l) in
let v = variant rvs (mk_primed_var(c^s,hd l)) in
v . mkvs fn' (v.rvs) (tl l) in
\l. mkvs (\x.``) [] l;;
% --------------------------------------------------------------------- %
% mk_subset_pred : make a subset predicate from the parse of the user's %
% input. For a full description of the form of this predicate, see: %
% %
% Melham, T.F. %
% "Automating Recursive Type Definitions in Higher Order Logic", %
% in: Current Trends in Hardware Verification and Automated %
% Theorem Proving, edited by G. Birtwistle and P.A. Subrahmanyam, %
% (Springer-Verlag 1989) pp. 341-386. %
% --------------------------------------------------------------------- %
let mk_subset_pred =
let boolty = ":bool" in
let zero = let Z = "0" in \n. n = Z in
let LEN =
let numty = ":num" and eq = "$=:num->num->bool" in
\tl. let lenty = mk_type(`fun`,[type_of tl;numty]) in
let lentl = mk_comb(eq,mk_comb(mk_const(`LENGTH`,lenty),tl)) in
\n. mk_comb(lentl,n) in
\tysl. let tys,rectys = split (map pargs tysl) in
if (not(exists zero rectys)) then
failwith `no non-recursive constructor` else
let repty = mk_sum_ty (map mk_tuple_ty tys) in
let tlty = mk_type(`list`,[mk_type(`ltree`,[repty])]) in
let v = mk_var(`v`,repty) and tlv = mk_var(`tl`,tlty) in
let lens = map (LEN tlv) rectys in
let cases =
if (null(tl tys)) then
(let vars = mkvars (hd tys) in
[list_mk_exists(vars, mk_eq(v,mk_tuple vars))]) else
(let vsl = map mkvars tys in
let tuples = (map mk_tuple vsl) in
let injs = inject repty tuples in
let eqs = map (curry mk_eq v) injs in
map list_mk_exists (combine(vsl,eqs))) in
let body = list_mk_disj (map mk_conj (combine(cases,lens))) in
mk_abs(v,mk_abs(tlv,body));;
% ===================================================================== %
% existence proof for the subset predicate %
% ===================================================================== %
% --------------------------------------------------------------------- %
% splitf : split a list at a value satisfying a given predicate. %
% --------------------------------------------------------------------- %
letrec splitf p (x.xs) =
if (p x) then [],x,xs else (curry $. x # I) (splitf p xs);;
% --------------------------------------------------------------------- %
% prove_existence_thm : prove the existence theorem required for making %
% the type definition. %
% %
% Given a subset predicate, pred, of the form: %
% %
% \v tl. (?x1 ... xn. v = INL(x1,...,xn) /\ LENGTH tl = l1) /\ %
% (?x1 ... xm. v = INL(INR(x1...xm)) /\ LENGTH tl = l2) %
% : %
% etc %
% %
% this function look for a case where "LENGTH tl = 0" and then proves %
% that |- ?r. TRP pred r %
% %
% --------------------------------------------------------------------- %
let prove_existence_thm =
let LEN0 = CONJUNCT1 (definition `list` `LENGTH`) in
let EXTH = theorem `tydefs` `exists_TRP` in
let zero = let Z = "0" in \tm. tm = Z in
let efn (nv,ov) th =
let vs,l,r = (I # dest_eq) (strip_exists (concl th)) in
let pat = list_mk_exists(ov.vs,mk_eq(l,subst[ov,nv]r)) in
EXISTS (pat,nv) th in
\pred. let rty = hd(snd(dest_type(type_of pred))) in
let [v;tl],cs = (I # disjuncts)(strip_abs pred) in
let b,cl,a = splitf (zero o rand o rand) cs in
let body = rand(rator cl) in
let vs,val = (I # rand) (strip_exists body) in
let nvs = map (\v. variant vs v,v) vs in
let nval = subst nvs val in
let veth = itlist efn nvs (REFL nval) in
let lem = EXISTS (mk_exists(v,body),nval) veth in
let ltrty = mk_type(`ltree`,[rty]) in
let cth = CONJ (ASSUME body) (INST_TYPE [ltrty,":*"] LEN0) in
let Nil = mk_const(`NIL`,mk_type(`list`,[ltrty])) in
let app = mk_comb(mk_comb (pred,v),Nil) in
let beta = EXISTS_EQ v (SYM(LIST_BETA_CONV app)) in
let thm1 = if (null a) then cth else DISJ1 cth (list_mk_disj a) in
let thm2 = INST [Nil,tl](itlist DISJ2 b thm1) in
let eth = CHOOSE (v,lem) (EXISTS (lhs(concl beta),v) thm2) in
let exth = SPEC pred (INST_TYPE [rty,":*"] EXTH) in
NOT_MP exth (EQ_MP beta eth);;
% ===================================================================== %
% variant_tyvar: Find the type variable with the least number of stars %
% that doesn't occur in the given list (for instantiating TY_DEF_THM). %
% ===================================================================== %
letrec variant_tyvar l1 l2 =
let ty = mk_vartype(implode l2) in
if (exists (\t.t=ty) l1) then variant_tyvar l1 (`*`.l2) else ty;;
% ===================================================================== %
% Procedures for cleaning up the type axiom after instantiation. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% OR_IMP_CONV: eliminate disjuncts in the antecedent of an implication. %
% %
% Given a term "(D1 \/ ... \/ Dn) ==> C", OR_IMP_CONV returns: %
% %
% |- ((D1 \/ ... \/ Dn) ==> C) = (D1 ==> C /\ ... /\ Dn ==> C) %
% --------------------------------------------------------------------- %
let OR_IMP_CONV =
letrec proveimp f DS =
(let (D1,D2) = dest_disj DS in
let res = DISCH D1 (f (DISJ1 (ASSUME D1) D2)) in
CONJ res (proveimp (f o (DISJ2 D1)) D2)) ?
DISCH DS (f (ASSUME DS)) in
let disjfn th1 th2 =
let D = mk_disj(rand(rator(concl th1)),rand(rator(concl th2))) in
DISCH D (DISJ_CASES (ASSUME D) (UNDISCH th1) (UNDISCH th2)) in
\tm. let DS,C = (dest_imp tm) in
let imp1 = DISCH tm (proveimp (MP (ASSUME tm)) DS) in
let rtm = snd(dest_imp(concl imp1)) in
let imp2 = DISCH rtm (end_itlist disjfn (CONJUNCTS(ASSUME rtm))) in
IMP_ANTISYM_RULE imp1 imp2;;
% --------------------------------------------------------------------- %
% FORALL_IN_CONV: move two universal quantifiers into a conjunction. %
% %
% Given a term "!x y. C1 /\ ... /\ Cn", the conversion proves: %
% %
% |- (!x y. C1 /\ ... /\ Cn) = (!x y. C1) /\ ... /\ (!x y. Cn) %
% %
% Note: this conversion can easily be adapted to deal with more than %
% two universally quantified variables by using SPECL and GENL. %
% --------------------------------------------------------------------- %
let FORALL_IN_CONV =
letrec mconj f th =
(let th1,th2 = (f # mconj f) (CONJ_PAIR th) in CONJ th1 th2) ? f th in
\tm. let [x;y],cs = (I # conjuncts) (strip_forall tm) in
let spec = (SPEC y) o (SPEC x) and gen = (GEN x) o (GEN y) in
let imp1 = DISCH tm (mconj gen (spec (ASSUME tm))) in
let acs = snd(dest_imp(concl imp1)) in
let imp2 = DISCH acs (gen (mconj spec (ASSUME acs))) in
IMP_ANTISYM_RULE imp1 imp2;;
% --------------------------------------------------------------------- %
% CONJS_CONV : apply a given conversion to a sequence of conjuncts %
% %
% CONJS_CONV conv "t1 /\ t2 /\ ... /\ tn" applies conv to each of the %
% n conjuncts t1,t2,...,tn and then rebuilds the conjunction from the %
% results. %
% %
% --------------------------------------------------------------------- %
letrec CONJS_CONV conv tm =
(let c,cs = (conv # CONJS_CONV conv) (dest_conj tm) in
MK_COMB((AP_TERM "$/\" c),cs)) ? conv tm;;
% --------------------------------------------------------------------- %
% EQN_ELIM_CONV : eliminate antecedent defining equations for the node %
% verticies (see below). %
% %
% The terms in question have the form: %
% %
% "!v tl. ((?x1...xn. v=tm) /\ P) ==> Q" %
% %
% This conversion transforms this term as follows: %
% %
% |- (!v tl. ((?x1...xn. v=tm) /\ P) ==> Q) %
% = %
% !tl. P ==> !x1...xn. Q[tm/v] %
% %
% --------------------------------------------------------------------- %
let EQN_ELIM_CONV =
let efn (nv,ov) th =
let vs,(l,r) = (I # dest_eq) (strip_exists(concl th)) in
let pat = list_mk_exists(nv.vs,mk_eq(l,subst[nv,ov]r)) in
EXISTS (pat,ov) th in
let chfn fn v th =
let asm = ASSUME (mk_exists(v,find fn (hyp th))) in
CHOOSE (v,asm) th in
\tm. let [v;tl],ANTE,Q = (I # dest_imp) (strip_forall tm) in
let (vs,def),P = (strip_exists # I) (dest_conj ANTE) in
let thm1 = SPEC tl (SPEC (rand def) (ASSUME tm)) in
let goal = fst(dest_conj(fst(dest_imp(concl thm1)))) in
let nvs = fst(strip_exists goal) in
let thm2 = itlist efn (combine(nvs,vs)) (REFL (rand def)) in
let thm3 = DISCH P (GENL vs (MP thm1 (CONJ thm2 (ASSUME P)))) in
let imp1 = DISCH tm (GEN tl thm3) in
let res = snd(dest_imp(concl imp1)) in
let a1,a2 = CONJ_PAIR(ASSUME ANTE) in
let asm = MP (SPEC tl (ASSUME res)) a2 in
let thm4 = SUBST [SYM (ASSUME def),v] Q (SPECL vs asm) in
let fn tm = lhs(snd(strip_exists tm)) = v ? false in
let thm5 = PROVE_HYP a1 (itlist (chfn fn) vs thm4) in
let imp2 = DISCH res (GEN v (GEN tl (DISCH ANTE thm5))) in
IMP_ANTISYM_RULE imp1 imp2;;
% --------------------------------------------------------------------- %
% LENGTH_MAP_CONV : eliminate the "LENGTH (MAP REP tl) = n" terms in %
% favour of "LENGTH tl = n". %
% %
% The terms in question have the form: %
% %
% "!tl. (LENGTH (MAP REP tl) = n) ==> Q" %
% %
% The conversion is supplied with the theorem: %
% %
% |- $= LENGTH (MAP REP tl) = $= LENGTH tl %
% %
% and transforms the input term as follows: %
% %
% |- !tl. (LENGTH (MAP REP tl) = n) ==> Q %
% = %
% !tl. (LENGTH tl = n) ==> Q %
% %
% --------------------------------------------------------------------- %
let LENGTH_MAP_CONV =
let IMP = "==>" in
\eq tm. let tl,n,Q = (I # ((rand # I) o dest_imp)) (dest_forall tm) in
FORALL_EQ tl (AP_THM (AP_TERM IMP (AP_THM eq n)) Q);;
% --------------------------------------------------------------------- %
% LENGTH_ELIM_CONV : Eliminate "LENGTH" expressions. %
% %
% If n is a number in successor notation (e.g. "0", "SUC 0", etc) then: %
% %
% LENGTH_ELIM_CONV ":ty" "!l:(ty)list. (LENGTH l = n) ==> tm[l]" %
% %
% returns: %
% %
% |- (!l. (LENGTH l = n) ==> tm[l]) = !x0...xi. tm[[x0;...;xi]/l] %
% %
% where i = n-1, and the `x`'s have sensibly-chosen names. %
% --------------------------------------------------------------------- %
let LENGTH_ELIM_CONV =
let ZERO = "0" and N = "n:num" in
let lcons = theorem `list` `LENGTH_EQ_CONS` and
lnil = theorem `list` `LENGTH_EQ_NIL` in
let genvs =
let ONE = "SUC 0" in
let mkvar ty st i = mk_primed_var(st ^ string_of_int i,ty) in
letrec gvs bvs ty st n i =
if (n=ZERO) then [] else
let v = variant bvs (mkvar ty st i) in
v. gvs (v.bvs) ty st (rand n) (i+1) in
\bvs ty st n.
if (n=ONE) then
let v = mk_primed_var(st,ty) in [variant bvs v] else
gvs bvs ty st n 1 in
let pred_ty = let bty = ":bool" in \ty. mk_type(`fun`,[ty;bty]) in
letrec bconv tm =
(let (l,v,bd),ar = (((I # dest_forall) o dest_abs) # I)(dest_comb tm) in
let th = FORALL_EQ v (bconv bd) in RIGHT_BETA (AP_THM (ABS l th) ar))
? BETA_CONV tm in
letrec conv (cth,nth) Pv P n vs =
if (n=ZERO) then INST [P,Pv] nth else
let pre = rand n in
let th1 = INST [P,Pv] (INST [pre,N] cth) in
let l,body = dest_forall(rand(concl th1)) in
let l',x,bdy = (I # dest_forall) (dest_abs(rator(rand body))) in
let P' = mk_abs(l',mk_forall(hd vs,subst[hd vs,x]bdy)) in
TRANS th1 (conv (cth,nth) Pv P' pre (tl vs)) in
\tm. let l,lenl,body = (I # dest_comb) (dest_forall tm) in
let n = rand(rand lenl) in
let _,[ty] = dest_type(type_of l) in
let (st._) = explode(fst(dest_type ty)) in
let bvs = fst(strip_forall body) in
let vs = genvs bvs ty st n in
let lam = mk_abs(l,body) in
let bth = AP_TERM lenl (SYM(BETA_CONV (mk_comb(lam,l)))) in
let Pv = genvar (pred_ty(type_of l)) in
let cth = SPEC N (SPEC Pv (INST_TYPE [ty,":*"] lcons)) in
let nth = SPEC Pv (INST_TYPE [ty,":*"] lnil) in
let thm1 = conv (cth,nth) Pv lam n vs in
let thm2 = TRANS (FORALL_EQ l bth) thm1 in
CONV_RULE (RAND_CONV bconv) thm2;;
% --------------------------------------------------------------------- %
% MAP_CONV : expand "MAP f [...]" with the definition of "MAP" %
% --------------------------------------------------------------------- %
let MAP_CONV =
let mnil,mcons = CONJ_PAIR (definition `list` `MAP`) in
letrec conv (nth,cth) tm =
(let _,[h;t] = strip_comb tm in
let thm = SPEC t (SPEC h cth) in
let cfn = rator(rand(concl thm)) in
TRANS thm (AP_TERM cfn (conv (nth,cth) t))) ? nth in
\tm. let _,[f;l] = strip_comb tm in conv (ISPEC f mnil, ISPEC f mcons) l;;
% --------------------------------------------------------------------- %
% ELIM_MAP_CONV : use MAP_CONV where appropriate. %
% --------------------------------------------------------------------- %
let ELIM_MAP_CONV tm =
let vs,(EQ,[l;r]) = (I # strip_comb) (strip_forall tm) in
let fn,A,Na,arg = (I # ((I # dest_comb) o dest_comb)) (dest_comb l) in
let thm1 = AP_TERM fn (AP_TERM A (AP_TERM Na (MAP_CONV arg))) in
let f,[a1;a2;a3] = strip_comb r in
let thm2 = AP_THM (AP_THM (AP_TERM f (MAP_CONV a1)) a2) a3 in
let thm = MK_COMB (AP_TERM EQ thm1, thm2) in
itlist FORALL_EQ vs thm;;
% --------------------------------------------------------------------- %
% TRANSFORM : transform the type axiom towards its final form: %
% %
% |- !f. ?!fn. !v tl. <term> %
% --------------------------------- %
% |- ?!fn. <transformed term> %
% %
% The transformations are: %
% %
% (1) two beta conversions: %
% %
% "(\v tl. tm) t1 t2" ---> "tm[t1/v,t2/tl]" %
% %
% (2) eliminate the antecedent disjunction: %
% %
% "D1 \/ .. \/ Dn ==> Q" ---> "D1 ==> Q /\ .. /\ Dn ==> Q" %
% %
% (3) move universally quantified vars into resulting conjunction: %
% %
% "!v tl. i1 /\ .. /\ in ---> "!v tl. i1 /\ .. /\ !v tl. in" %
% %
% (4) apply the transfomation given by EQN_ELIM_CONV to each conjunct. %
% %
% (5) transform LENGTH(MAP REP tl) into LENGTH tl (as described above) %
% %
% (6) eliminate "LENGTH tl = n ==> P" using LENGTH_ELIM_CONV. %
% %
% (7) expand "MAP f [...]" using the definition of MAP. %
% %
% %
% NB: the function drops the "f", and returns it. %
% --------------------------------------------------------------------- %
let TRANSFORM =
let EQ = "$=:num->num->bool" in
let lmap = theorem `list` `LENGTH_MAP` in
let cconv lm = EVERY_CONV [EQN_ELIM_CONV; % (4) %
LENGTH_MAP_CONV lm; % (5) %
LENGTH_ELIM_CONV; % (6) %
ELIM_MAP_CONV] in % (7) %
\REP th.
let f,EU,body = (I # dest_comb) (dest_forall (concl th)) in
let fn,[v;tl],imp = (I # strip_forall) (dest_abs body) in
let (IMP,hy),cncl = (dest_comb # I) (dest_comb imp) in
let beta = (RATOR_CONV BETA_CONV THENC BETA_CONV) hy in % (1) %
let thm1 = AP_THM (AP_TERM IMP beta) cncl in
let red = rand (concl thm1) in
let thm2 = TRANS thm1 (OR_IMP_CONV red) in % (2) %
let thm3 = FORALL_EQ v (FORALL_EQ tl thm2) in
let gen = rand (concl thm3) in
let thm4 = TRANS thm3 (FORALL_IN_CONV gen) in % (3) %
let cs = rand (concl thm4) in
let lmth = AP_TERM EQ (ISPECL [tl;REP] lmap) in
let thm5 = TRANS thm4 (CONJS_CONV (cconv lmth) cs) in
let thm6 = AP_TERM EU (ABS fn thm5) in
(f,EQ_MP thm6 (SPEC f th));;
% ===================================================================== %
% Define the constructors of the recursive type. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% part : split a list into two parts: a list of the first n elements, %
% and a list of the remaining elements. %
% --------------------------------------------------------------------- %
letrec part n l = (n=0 => [],l | (curry $. (hd l) # I) (part (n-1) (tl l)));;
% --------------------------------------------------------------------- %
% define_const : define one of the constructors for the concrete %
% recursive type specified by the user. The arguments are: %
% %
% c : the constructor name %
% tys : its types, as returned by parse_input %
% tm : the equation for that constructor, in its current state. %
% --------------------------------------------------------------------- %
let define_const =
let cfn ty n = (isl ty => n+1 | n) in
letrec combin evs rvs tys =
if (null tys) then [] else
if (isl (hd tys)) then
hd evs . combin (tl evs) rvs (tl tys) else
hd rvs . combin evs (tl rvs) (tl tys) in
let mkfnty v ty = mk_type(`fun`,[type_of v;ty]) in
let geneq uovs odvs tm =
let imp1 = GENL odvs (SPECL uovs (ASSUME tm)) in
let body = concl imp1 in
let imp2 = DISCH body (GENL uovs (SPECL odvs (ASSUME body))) in
IMP_ANTISYM_RULE (DISCH tm imp1) imp2 in
\(c,tys,tm).
let vs,(EQ,[l;r]) = (I # strip_comb) (strip_forall tm) in
let f = fst(strip_comb r) in
let count = itlist (\ty n. isl ty => n | n+1) tys 0 in
let rvs,evs = (rev # I) (part count vs) in
let vars = combin evs rvs tys in
let cty = itlist mkfnty vars (type_of (rand l)) in
let Ccomb = list_mk_comb(mk_var(c,cty),vars) in
let def = new_definition(c^`_DEF`,mk_eq(Ccomb,rand l)) in
let dvs = fst(strip_forall(concl def)) in
let thm1 = AP_TERM EQ (AP_TERM (rator l) (SPECL dvs def)) in
let thm2 = itlist FORALL_EQ dvs (SYM (AP_THM thm1 r)) in
(TRANS (geneq vs vars tm) thm2) ;;
% --------------------------------------------------------------------- %
% DEFINE_CONSTRUCTORS : defines the constructors for the concrete %
% recursive type specified by the user. This function just maps %
% define_const over the conjuncts of the current theorem. %
% --------------------------------------------------------------------- %
let DEFINE_CONSTRUCTORS =
let mkconj = let AND = "/\" in \t1 t2. MK_COMB(AP_TERM AND t1,t2) in
\cs atys th.
let EU,(fn,body) = (I # dest_abs) (dest_comb (concl th)) in
let dcs = map define_const (combine(cs,combine(atys,conjuncts body))) in
let thm = end_itlist mkconj dcs in
EQ_MP (AP_TERM EU (ABS fn thm)) th;;
% ===================================================================== %
% Construct the function which applies a separate function variable to %
% the values present on the right-hand side of each defining equation %
% in the recursive function definition. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% mk_tests : make the discriminator tests for each clause of the type %
% definition theorem. A call to: %
% %
% mk_tests [x1,x2...,xn] ":ty1 + ty2 + ... + tyn" %
% %
% returns a variable v, and a list of tests: %
% %
% [ISL v; ISL (OUTR v); ... ; ISL (OUTR ... (OUTR v)..)] %
% %
% where v is a genvar of type ":ty1 + ty2 + ... + tyn" %
% %
% --------------------------------------------------------------------- %
let mk_tests =
let boolty = ":bool" in
letrec make (c.cs) v ty =
if (null cs) then [] else
let _,[_;outty] = dest_type ty in
let Isl = mk_const(`ISL`,mk_type(`fun`,[ty;boolty])) in
let Outr = mk_const(`OUTR`,mk_type(`fun`,[ty;outty])) in
let test = mk_comb(Isl,v) and out = mk_comb(Outr,v) in
test . make cs out outty in
\cs ty. let v = genvar ty in v, make cs v ty;;
% --------------------------------------------------------------------- %
% mk_proj : make the projections for each clause of the type definition %
% theorem. A call to: %
% %
% mk_proj v [x1,x2...,xn] ":ty1 + ty2 + ... + tyn" %
% %
% returns a list of projections: %
% %
% [OUTL v; OUTL(OUTR v); ... ; OUTR (OUTR ... (OUTR v)..)] %
% %
% where v is a supplied genvar of type ":ty1 + ty2 + ... + tyn" %
% %
% --------------------------------------------------------------------- %
letrec mk_proj v (c.cs) ty =
if (null cs) then [v] else
let _,[ty1;ty2] = dest_type ty in
let Outr = mk_const(`OUTR`,mk_type(`fun`,[ty;ty2])) in
let Outl = mk_const(`OUTL`,mk_type(`fun`,[ty;ty1])) in
let ltm = mk_comb(Outl,v) and rtm = mk_comb(Outr,v) in
ltm . mk_proj rtm cs ty2;;
% --------------------------------------------------------------------- %
% extract_list : generate expressions that extract the components of an %
% object-language list. A call to: %
% %
% extract_list "(ty)list" "v:ty list" "[x1:ty;...,xn]" %
% %
% returns a list of terms: %
% %
% ["HD v"; "HD(TL v)"; ... ; "HD(TL ... (TL v)..)"] %
% %
% Note: the list can be empty. %
% --------------------------------------------------------------------- %
let extract_list ty =
let _,[ety] = dest_type ty in
let Hd = mk_const(`HD`,mk_type(`fun`,[ty;ety])) in
let Tl = mk_const(`TL`,mk_type(`fun`,[ty;ty])) in
letrec extr Hd Tl v tm =
(let _,[h;t] = strip_comb tm in
let hval = mk_comb(Hd,v) in
let tval = mk_comb(Tl,v) in
hval . extr Hd Tl tval t) ? [] in
extr Hd Tl;;
% --------------------------------------------------------------------- %
% strip_inj : strip an arbitrary number of injections off a term. A %
% typical call to strip_inj looks like: %
% %
% strip_inj "INR(INR(INR....(INL <val>)..) %
% %
% and returns <val>. %
% --------------------------------------------------------------------- %
letrec strip_inj tm =
(let op,arg = ((fst o dest_const) # I) (dest_comb tm) in
if (op = `INR` or op = `INL`) then strip_inj arg else tm) ? tm;;
% --------------------------------------------------------------------- %
% extract_tuple : generate expressions that extract the components of %
% an object-language tuple. A call to: %
% %
% extract_tuple "ty" "v:ty" "(x1,...,xn)ty" %
% %
% returns a list of terms: %
% %
% ["FST v"; "FST(SND v)"; ... ; "FST(SND ... (SND v)..)"] %
% %
% Note: the list will not be empty. %
% --------------------------------------------------------------------- %
letrec extract_tuple ty v tm =
(let _,[c1;c2] = strip_comb tm in
let _,[ty1;ty2] = dest_type ty in
let Fst = mk_const(`FST`,mk_type(`fun`,[ty;ty1])) in
let Snd = mk_const(`SND`,mk_type(`fun`,[ty;ty2])) in
let fval = mk_comb(Fst,v) in
let sval = mk_comb(Snd,v) in
fval . extract_tuple ty2 sval c2) ? [v];;
% --------------------------------------------------------------------- %
% gen_names : generate reasonable names for the function variables on %
% the right-hand sides of the equations in the type axiom. There are %
% two kinds of names: %
% %
% `e<suffix>` and `f<suffix>` %
% %
% A name has the e-form if the corresponding "function" is just a %
% constant (this information is obtained from the "cs" list). Otherwise %
% the name has the f-form. Suffixes are numerical, and are generated %
% in the order: 0,1,2...etc. When ef is true, however, there will be %
% only one e-type name, for which the suffix will be empty. Likewise %
% for functions proper when the ff flag is true. %
% --------------------------------------------------------------------- %
let gen_names =
letrec gen (ef,ff) (n,m) cs =
if (null cs) then [] else
if (null (hd cs)) then
let ename = (`e` ^ (if ef then string_of_int n else ``)) in
ename . gen (ef,ff) (n+1,m) (tl cs) else
let fname = (`f` ^ (if ff then string_of_int m else ``)) in
fname . gen (ef,ff) (n,m+1) (tl cs) in
\(ef,ff) cs. gen (ef,ff) (0,0) cs;;
% --------------------------------------------------------------------- %
% mk_fun_ty : construct a function type, given a term and the type of %
% the expected result. %
% %
% mk_fun_ty "tm:ty1" ":ty2" = ":ty1 -> ty2" %
% --------------------------------------------------------------------- %
let mk_fun_ty tm ty = mk_type(`fun`,[type_of tm;ty]);;
% --------------------------------------------------------------------- %
% make_rhs : make the right-hand side for one clause of the type axiom. %
% The ty argument is the resulting type of the right-hand side. The %
% variables rv and tv are genvars, standing for the list of results of %
% recursive applications of the recursive function and the subtrees, %
% respectively. The variable pv is the result of projecting out the %
% tuple of non-recursive values, and the flag fl indicates if any such %
% values are actually present (this distinguishes between a constructor %
% with a single argument of the user-specified type :one and the use of %
% ":one" to represent constant constructors). The terms rl, val, and %
% tl are the right-hand side values to be extracted. The string `name` %
% gives the function name for this right-hand side. %
% --------------------------------------------------------------------- %
let make_rhs ty rv tv (fl,pv,name,[rl;val;tl]) =
let exrl = extract_list (type_of rl) rv rl in
let extl = extract_list (type_of tl) tv tl in
let svl = strip_inj val in
let extu = (fl => [] | extract_tuple (type_of pv) pv svl) in
let args = exrl @ extu @ extl in
let v = mk_var(name,itlist mk_fun_ty args ty) in
v,list_mk_comb(v,args);;
% --------------------------------------------------------------------- %
% make_conditional : make an interated conditional. A call to: %
% %
% make_conditional ["t1";...;"tn"] ["x1";...;"xn+1"] %
% %
% returns: %
% %
% "(t1 => x1 | (t2 => x2 | ... | xn+1))]" %
% %
% Note that n can be zero, in which case the result is "x1". %
% --------------------------------------------------------------------- %
letrec make_conditional ts rs =
if (null ts) then hd rs else
mk_cond (hd ts,hd rs,make_conditional (tl ts) (tl rs));;
% --------------------------------------------------------------------- %
% make_function : Make the function that extracts the values present on %
% the right-hand sides of each clause, and introduces separate function %
% variables for each clause. %
% --------------------------------------------------------------------- %
let make_function =
let mkflag l = not(length l = 1) in
let nonrec l = not(exists isl l) in
\atys th.
let cs = conjuncts(snd(dest_abs(rand(concl th)))) in
let ef,ff = (mkflag # mkflag) (partition null atys) in
let names = gen_names (ef,ff) atys in
let f,[rl;val;ts] = strip_comb (rand(snd(strip_forall(hd cs)))) in
let _,[resty] = dest_type(type_of rl) in
let rv = genvar (type_of rl) and tv = genvar (type_of ts) in
let vv,tests = mk_tests names (type_of val) in
let proj = mk_proj vv names (type_of val) in
let vs,rs = (flat # I) (split(map ((I # rand) o strip_forall) cs)) in
let rhss = map (snd o strip_comb) rs in
let arg = combine(map nonrec atys,combine(proj,combine(names,rhss))) in
let vs,res = split(map (make_rhs resty rv tv) arg) in
(vs, list_mk_abs ([rv;vv;tv],make_conditional tests res));;
% ===================================================================== %
% Procedures for simplifying the type axiom into its final form. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% PROJ_CONV : simplify right-projections of right-injections. %
% %
% A call to: PROJ_CONV "OUTR(OUTR ... (INR(INR x)))" returns: %
% %
% |- OUTR(OUTR ... (INR(INR x))) = x %
% --------------------------------------------------------------------- %
let PROJ_CONV =
let thm = definition `sum` `OUTR` in
let rew = \tm. REWR_CONV thm tm ? (REFL tm) in
letrec conv tm =
(let C,arg = dest_comb tm in
if (fst(dest_const C) = `OUTR`)
then let th = AP_TERM C (conv arg) in
TRANS th (rew (rand(concl th)))
else REFL tm) ? REFL tm in conv;;
% --------------------------------------------------------------------- %
% TEST_SIMP_CONV : repeatedly simplify conditionals as follows: %
% %
% (1) TEST_SIMP_CONV "(ISL...(INL x)) => a | b" returns: %
% %
% |- (ISL...(INL x) => a | b) = a %
% %
% (2) TEST_SIMP_CONV "(ISL...(INR x)) => a | b" returns: %
% %
% |- (ISL...(INR x) => a | b) = b %
% %
% where the dots "..." stand for any number of intermediate right %
% projections of left injections as simplified by PROJ_CONV. %
% --------------------------------------------------------------------- %
let TEST_SIMP_CONV =
let thm = definition `sum` `ISL` in
let th1,th2 = (SPEC "x:*" # SPEC "y:**") (CONJ_PAIR thm) in
let Tth = EQT_INTRO th1 and Fth = EQF_INTRO th2 in
let rewconv = FIRST_CONV [REWR_CONV Fth;REWR_CONV Tth] in
letrec conv cond =
(let C,[test;a;b] = strip_comb cond in
let simp = ((RAND_CONV PROJ_CONV) THENC rewconv) test in
let thm2 = MK_COMB(AP_THM (AP_TERM C simp) a, conv b) in
CONV_RULE (RAND_CONV COND_CONV) thm2) ? REFL cond
in conv;;
% --------------------------------------------------------------------- %
% LIST_ELS : extract the elements of a list. %
% %
% Given "[x1;x2;...;xn]", LIST_ELS produces a list of theorems: %
% %
% [|- HD [x1;x2;...;xn] = x1; %
% HD (TL [x1;x2;...;xn]) = x2; %
% ... etc ... = xn] %
% --------------------------------------------------------------------- %
let LIST_ELS =
let H = definition `list` `HD` and T = definition `list` `TL` in
letrec genels (hth,tth) (hf,tf) th =
(let _,[h;t] = strip_comb(rand(concl th)) in
let thm = TRANS (hf th) (SPEC t (SPEC h hth)) in
let tthm = TRANS (tf th) (SPEC t (SPEC h tth)) in
thm . genels (hth,tth) (hf,tf) tthm) ? [] in
\tm. let lty = type_of tm in
let _,[ty] = dest_type lty in
let hth = INST_TYPE [ty,":*"] H and tth = INST_TYPE [ty,":*"] T in
let hf = AP_TERM(mk_const(`HD`,mk_type(`fun`,[lty;ty]))) in
let tf = AP_TERM(mk_const(`TL`,mk_type(`fun`,[lty;lty]))) in
genels (hth,tth) (hf,tf) (REFL tm);;
% --------------------------------------------------------------------- %
% GEN_PROJ_CONV : generate projections of sum-injections. %
% %
% A call to GEN_PROJ_CONV generates a theorem that projects a value %
% which has been injected into a sum. For example: %
% %
% PROJ_CONV "INL x" = |- OUTL(INL x) = x %
% PROJ_CONV "INR(INL x)" = |- OUTL(OUTR(INR(INL x))) = x %
% ... etc. %
% --------------------------------------------------------------------- %
let GEN_PROJ_CONV =
let orth = definition `sum` `OUTR` in
let olth = definition `sum` `OUTL` in
let inst = let v1,v2 = ":*",":**" in \t1 t2. INST_TYPE [t1,v1;t2,v2] in
letrec conv th =
(let inj = rand(concl th) in
let C,arg = dest_comb inj in
let injty = type_of inj in
let _,[lty;rty] = dest_type injty in
if (fst(dest_const C) = `INR`) then
let proj = mk_const(`OUTR`,mk_type(`fun`,[injty;rty])) in
let thm1 = AP_TERM proj th in
let thm2 = SPEC arg (inst lty rty orth) in
conv (TRANS thm1 thm2) else
if (fst(dest_const C) = `INL`) then
let proj = mk_const(`OUTL`,mk_type(`fun`,[injty;lty])) in
let thm1 = AP_TERM proj th in
let thm2 = SPEC arg (inst lty rty olth) in
conv (TRANS thm1 thm2) else th) ? th in
\tm. conv (REFL tm);;
% --------------------------------------------------------------------- %
% TUPLE_COMPS : extract the components of a tuple. %
% %
% Given a theorem of the form: %
% %
% |- tm = (x1,x2,...,xn) %
% %
% TUPLE_COMPS produces a list of theorems: %
% %
% [|- FST tm = x1; %
% FST(SND tm) = x2; %
% . %
% . %
% SND(...(SND tm)...) = xn] %
% %
% There are two special cases: %
% %
% 1) when given a theorem of the form |- tm = v, where v is a variable %
% the function returns [|- tm = v]. %
% %
% 2) when given a theorem of the form |- tm = one, where one is the %
% constant value of type one, the function returns []. %
% --------------------------------------------------------------------- %
let TUPLE_COMPS =
letrec generate th =
(let _,[f;s] = strip_comb(rand(concl th)) in
let thm1 = ISPECL [f;s] FST in
let thm = TRANS (AP_TERM (rator(lhs(concl thm1))) th) thm1 in
let thm2 = ISPECL [f;s] SND in
let tthm = TRANS (AP_TERM (rator(lhs(concl thm2))) th) thm2 in
thm . generate tthm) ? [th] in
let onec = "one:one" in
\th. rand(concl th) = onec => [] | generate th;;
% --------------------------------------------------------------------- %
% SIMP_CONV : simplifies the conditional expression on the right-hand %
% side of an equation. %
% --------------------------------------------------------------------- %
let SIMP_CONV =
let itfn th1 th2 = MK_COMB(th2,th1) in
\tm. let vs,(Leq,r) = (I # dest_comb) (strip_forall tm) in
let thm1 = LIST_BETA_CONV r in
let cond = rand(concl thm1) in
let thm2 = TRANS thm1 (TEST_SIMP_CONV cond) in
let [l1;lab;l2] = snd(strip_comb r) in
let eqs1 = LIST_ELS l1 and eqs3 = LIST_ELS l2 in
let eqs2 = TUPLE_COMPS (GEN_PROJ_CONV lab) in
let fn = fst(strip_comb(rand(concl thm2))) in
let thm3 = rev_itlist itfn (eqs1 @ eqs2 @ eqs3) (REFL fn) in
let thm = TRANS thm2 thm3 in
itlist FORALL_EQ vs (AP_TERM Leq thm);;
% --------------------------------------------------------------------- %
% SIMPLIFY : simplifies the type axiom into its final form. %
% --------------------------------------------------------------------- %
let SIMPLIFY =
let mkconj = let AND = "/\" in \t1 t2. MK_COMB(AP_TERM AND t1,t2) in
\th. let EU,(fn,body) = (I # dest_abs) (dest_comb (concl th)) in
let thm = CONJS_CONV SIMP_CONV body in
EQ_MP (AP_TERM EU (ABS fn thm)) th;;
% ===================================================================== %
% Now, the main program %
% ===================================================================== %
% --------------------------------------------------------------------- %
% define_type: construct a user-specified concrete recursive type and %
% derive an abstract characterization of it. %
% %
% E.g. define_type name `ty = C1 * | C2 ty * | C3 ty ty` defines: %
% %
% 1) a type operator (*)ty %
% 2) constants C1:*->(*)ty, %
% C2:(*)ty->*->(*)ty, %
% C3:(*)ty->(*)ty->(*)ty %
% %
% and proves that ty has the following property: %
% %
% |- !f0 f1 f2. ?!fn. %
% (!x. fn(C1 x) = f0 x) /\ %
% (!x t. fn(C2 t x) = f1(fn t)x t) /\ %
% (!t t'. fn(C3 t t') = f2(fn t)(fn t')t t') %
% %
% the axiom is stored under "name" and is returned. %
% --------------------------------------------------------------------- %
let define_type =
let TYDEFTHM = theorem `tydefs` `TY_DEF_THM` in
\savename spec.
let name,cs,atys = (I # split) (parse_input spec) in
let isodef = name ^ `_ISO_DEF` in
if is_axiom (current_theory(),isodef) then
failwith `"` ^ isodef ^ `" already an axiom or definition` else
let ABS = `ABS_` ^ name and REP = `REP_` ^ name in
if (is_constant ABS) then failwith ABS ^ ` is already a constant` else
if (is_constant REP) then failwith REP ^ ` is already a constant` else
if can (theorem (current_theory())) savename then
failwith `"` ^ savename ^ `" already a theorem in current thy` else
let pred = mk_subset_pred atys in
let eth = prove_existence_thm pred in
let predtm = rator(snd(dest_exists(concl eth))) in
let tyax = new_type_definition(name, predtm, eth) in
let ARth = define_new_type_bijections isodef ABS REP tyax in
let rty = hd(snd(dest_type(type_of pred))) in
let newty = hd(snd(dest_type(type_of(fst(dest_exists(concl tyax)))))) in
let resty = variant_tyvar (type_tyvars rty) [`*`] in
let Pthm = INST_TYPE [rty,":*";newty,":**";resty,":***"] TYDEFTHM in
let A,R = let _,AR = dest_forall(rand(rator(concl ARth))) in
(I # rator) (dest_comb(lhs AR)) in
let Sthm = MP (SPEC pred (SPEC A (SPEC R Pthm))) ARth in
let f,trans = TRANSFORM R Sthm in
let defns = DEFINE_CONSTRUCTORS cs atys trans in
let fs,funct = make_function atys defns in
let newfs = INST [funct,f] defns in
let abstax = GENL fs (SIMPLIFY newfs) in
save_thm(savename,abstax);;
% --------------------------------------------------------------------- %
% Bind the value of define_type to "it". %
% --------------------------------------------------------------------- %
define_type;;
% --------------------------------------------------------------------- %
% end the section. %
% --------------------------------------------------------------------- %
end_section define_type;;
% --------------------------------------------------------------------- %
% Save define_type. %
% --------------------------------------------------------------------- %
let define_type = it;;
% ===================================================================== %
%< TESTS:
new_theory `temp`;;
let void_Axiom = define_type `void_Axiom` `void = Void`;;
let pair = define_type `pair` `pair = CONST *#**`;;
let onetest = define_type `onetest` `onetest = OOOO one`;;
let tri_Axiom = define_type `tri_Axiom` `tri = Hi | Lo | Fl`;;
let iso_Axiom = define_type `iso_Axiom` `iso = ISO *`;;
let List_Axiom = define_type `List_Axiom` `List = Nil | Cons * List`;;
let ty_Axiom =
define_type `ty_Axiom`
`ty = C1 * | C2 | C3 * ** ty | C4 ty *** ty * ** | C5 ty ty`;;
define_type `bintree` `bintree = LEAF * | TREE bintree bintree`;;
define_type `seven`
`typ = C one one#one (one->(one->(*)list)) (*,one#one,(*)list)ty`;;
>%
% ===================================================================== %
|