This file is indexed.

/usr/share/hol88-2.02.19940316/ml/tydefs.ml is in hol88-source 2.02.19940316-28.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
%=============================================================================%
%                               HOL 88 Version 2.0                            %
%                                                                             %
%     FILE NAME:        tydefs.ml                                             %
%                                                                             %
%     DESCRIPTION:      Recursive type definition package                     %
%     AUTHOR:           T. F. Melham (87.08.23)                               %
%                                                                             %
%                       University of Cambridge                               %
%                       Hardware Verification Group                           %
%                       Computer Laboratory                                   %
%                       New Museums Site                                      %
%                       Pembroke Street                                       %
%                       Cambridge  CB2 3QG                                    %
%                       England                                               %
%                                                                             %
%     COPYRIGHT:        T. F. Melham 1987 1990                                %
%                                                                             %
%     REVISION HISTORY: 90.09.03                                              %
%=============================================================================%

% --------------------------------------------------------------------- %
% begin a section.							%
% --------------------------------------------------------------------- %
begin_section define_type;;

% ===================================================================== %
% Parser for input grammar               				%
% ===================================================================== %

% --------------------------------------------------------------------- %
% ignore c = true iff c is a white space character (tab, carrage return %
% line feed, space, form feed).                                         %
% --------------------------------------------------------------------- %

let ignore c = 
    let n = ascii_code c in n=9 or n=10 or n=12 or n=13 or n=32;;

% --------------------------------------------------------------------- %
% is_sing c = true iff c is one of `#`, `+`, `|`, `(`, `)`, `,` or `=`. %
% --------------------------------------------------------------------- %

let is_sing c = c=`#` or c=`+` or c=`|` or c=`(` or c=`)` or c=`=` or c=`,`;;

% --------------------------------------------------------------------- %
% getid: strip an alphanumeric token off the front of a character list. %
% --------------------------------------------------------------------- %

letrec getid tok (c.cs) = (is_alphanum c => getid (tok ^ c) cs | (tok,c.cs));;

% --------------------------------------------------------------------- %
% getid: strip a token consisting of alphanumeric characters or `*`'s   %
% off the front of a character list. 					%
% --------------------------------------------------------------------- %

letrec gettyvid tok (c.cs) = 
       (is_alphanum c or c=`*` => gettyvid (tok ^ c) cs | (tok,c.cs));;

% --------------------------------------------------------------------- %
% gnt: get next token, where tok ::= id | tyvar | other | end           %
% --------------------------------------------------------------------- %

letrec gnt (c1.c2.cs) = 
         (ignore c1)       => gnt (c2.cs)
       | (is_sing c1)      => inr(inr(inl c1)),(c2.cs)
       | (c1 = `*`)        => ((inr o inl) # I ) (gettyvid c1 (c2.cs)) 
       | (c1=`-` & c2=`>`) => (inr(inr(inl `->`))),cs
       | (is_letter c1)    => (inl # I) (getid c1 (c2.cs))
       | (c1 = ascii 1 & c2 = ascii 1 & null cs)  => inr(inr(inr())),[]
       | failwith `illegal character: "` ^ c1 ^ `"`;;

% --------------------------------------------------------------------- %
% Recognizers for tokens                                                %
% --------------------------------------------------------------------- %

let isid      = isl and
    istyvar   = can (outl o outr) and
    is tok st = st = outl(outr(outr tok)) ? false and
    end       = can (outr o outr o outr);;

% --------------------------------------------------------------------- %
% Recognizer for type operators						%
% --------------------------------------------------------------------- %

let istyop op = (not(arity(outl op) = 0)) ? false;;

% --------------------------------------------------------------------- %
% Test for presence of closing parenthesis.				%
% --------------------------------------------------------------------- %

let ckrb tok = if (is tok `)`) then tok else failwith `missing ")"`;;

% --------------------------------------------------------------------- %
% Make a type, but issue an informative error message on error.	 	%
% --------------------------------------------------------------------- %

let mk_ty(name,tys) =
    if (is_type name) 
       then if (arity name = length tys) 
               then mk_type(name,tys) 
               else let n = string_of_int (arity name) in
                    failwith `"` ^ name ^ `" has arity ` ^ n 
       else failwith `"` ^ name ^ `" is not a type constant or operator`;;

% --------------------------------------------------------------------- %
% parse_types: parse a sequence consisting of type expressions or 	%
% instances of a special (supplied) identifier, terminated by <end> or  %
% by "|".								%
% --------------------------------------------------------------------- %

let parse_types = 

   letrec getops ty rest = 
      let tok,rem = gnt rest in
      if istyop tok then getops (mk_type(outl tok,[ty])) rem else ty,rest in

   % ------------------------------------------------------------------ %
   % <type seq> ::=  <fun type>* "|" <fun type>* <end>			%
   %									%
   % <type> ::= <fun type> | <supplied name>				%
   % ------------------------------------------------------------------ %

   letrec parse_seq name cs = 
      let tok,rest = gnt cs in
      if (end tok) then [],cs else
      if (is tok `|`) then [],rest else
      if (tok = inl name) 
         then ((curry $. (inr ())) # I) (parse_seq name rest) 
         else let ty,rest = parse_fun name cs in 
	      ((curry $. (inl ty)) # I) (parse_seq name rest)

   % ------------------------------------------------------------------ %
   % <fun type> ::= <fun type> -> <sum type> | <sum type>               %
   % ------------------------------------------------------------------ %

   and parse_fun name cs =
       let ty,rest = parse_sum name cs in
       let tok,rem = gnt rest in
       if (is tok `->`)
          then let ty2,Rem = parse_fun name rem in 
               mk_type(`fun`,[ty;ty2]),Rem
          else ty,rest 

   % ------------------------------------------------------------------ %
   % <sum type> ::= <sum type> + <prod type> | <prod type>              %
   % ------------------------------------------------------------------ %

   and parse_sum name cs =
       let ty,rest = parse_prod name cs in
       let tok,rem = gnt rest in
       if (is tok `+`) 
          then let ty2,Rem = parse_sum name rem in 
	       mk_type(`sum`,[ty;ty2]),Rem
          else ty,rest 

   % ------------------------------------------------------------------ %
   % <prod type> ::= <prod type> # <comp type> | <comp type>         	%
   % ------------------------------------------------------------------ %

   and parse_prod name cs =
       let ty,rest = parse_comp1 name cs in
       let tok,rem = gnt rest in
       if (is tok `#`)
          then let ty2,Rem = parse_prod name rem in 
               mk_type(`prod`,[ty;ty2]),Rem
          else ty,rest 

   % ------------------------------------------------------------------ %
   % <comp1 type> ::= <comp1 type> op | <basic type>           		%
   % ------------------------------------------------------------------ %

   and parse_comp1 name cs = 
       let ty,rest = parse_basic name cs in getops ty rest 

   % ------------------------------------------------------------------ %
   % <basic type> ::=   (<args>) op    					%
   %                  | (<fun type>) 					%
   %                  | <id> 						%
   %                  | <tyvar>						%
   % ------------------------------------------------------------------ %

   and parse_basic name cs =
       let tok,rest = gnt cs in
       if (is tok `(`) then
          let ty,(next,rem) = (I # gnt) (parse_fun name rest) in
          if (is next `,`) then 
             let args,opl = parse_args name rem in
             let op,Rem = (gnt o snd) ((ckrb # I) (gnt opl)) in
             if (isid op & not(op = inl name)) 
                then mk_ty(outl op,ty.args),Rem 
	        else failwith `missing tyop after "(<ty>,...,<ty>)"` else
          if (is next `)`) then ty,rem else failwith `missing ")"` else
       if (isid tok & not(tok = inl name)) then mk_ty(outl tok,[]),rest else
       if (istyvar tok) then (mk_vartype(outl(outr tok))),rest else 
       failwith `ill-formed type expression(s)`

   % ------------------------------------------------------------------ %
   % <args> ::= <fun type> , <args> | <fun type>                        %
   % ------------------------------------------------------------------ %

   and parse_args name cs =
       let ty,rest = parse_fun name cs in
       let tok,rem = gnt rest in
       if (is tok `,`) 
          then ((\l.ty.l) # I) (parse_args name rem) else [ty],rest

   in parse_seq;; 


% --------------------------------------------------------------------- %
% Parse one clause in the input grammar					%
% 									%
% Bugfix: "or (tok = inl name)" deleted in third line.   [TFM 91.02.23] %
% --------------------------------------------------------------------- %

let parse_clause after name used cs = 
    let tok,rest = gnt cs in
    if (not(isid tok)) then % or (tok = inl name)) then  [TFM 91.02.23]	%
       failwith `missing constructor name after ` ^ after else
    let con = outl tok in
    if (mem con used) then
       failwith `duplicate constructor: "` ^ con ^ `"`else
    if (is_constant con) then
       failwith `"` ^ con ^ `" is already a constant` else 
       con,(parse_types name rest);;

% --------------------------------------------------------------------- %
% Parse the clauses in the input grammar				%
% --------------------------------------------------------------------- %

letrec parse_clauses name used cs = 
   let tok,rest = gnt cs in
   if (end tok) then [] else
   let con,(args,rem) = parse_clause `"|"` name used cs in
       (con,args). parse_clauses name (con.used) rem;;

% --------------------------------------------------------------------- %
% Parse the user's input grammar					%
% --------------------------------------------------------------------- %

let parse_input = 
    let endc = ascii 1 in
    let check c = (c=endc => failwith `illegal character: "` ^ c ^ `"` | c) in
    \st. let cs = (map check (explode st)) @ [endc;endc] in
         let ty,rest = gnt cs in
         if (end ty) then failwith `empty input string` else
         if (not(isid ty)) then failwith `ill-formed name for new type` else
         let name = outl ty in
         if (is_type name) then failwith `"`^name^` " is already a type` else
         let eq,rem = gnt rest in
         if (not(is eq `=`)) then failwith `missing "=" after "`^name^`"` else
         let con,(args,clcs) = parse_clause `"="` name [] rem in
         let cls = parse_clauses name [con] clcs in
             (name,((con,args).cls));;

% ===================================================================== %
% Code for constructing the type definiton subset predicate		%
% ===================================================================== %

% --------------------------------------------------------------------- %
% pargs : split the list of argument types for a constructor (returned  %
% by parse_input) into a list of types (for non-recursve arguments) and %
% a numerical constant giving a count of the number of recursive args.  %
% 									%
% For example:								%
% 									%
% pargs [inl ":ty1";inl ":ty2";inr (); inl ":ty3"]			%
%									%
% yields  1) [":ty1";":ty2";":ty3"] (types of non recursive args)	%
%	  2) "SUC 0"		    (the no. of recursive arguments)	%
%									%
% --------------------------------------------------------------------- %

let pargs = 
    let SUC = curry mk_comb "SUC" and consf h t = h.t in
    letrec argsf n as = 
       if (null as) then ([],n) else
       (let ty = outl (hd as) in (consf ty # I) (argsf n (tl as))) ?
       argsf (SUC n) (tl as) in
    argsf "0";;

% --------------------------------------------------------------------- %
% mk_tuple_ty : make a tuple type of a list of types.			%
%									%
% Special case: if the list is empty, then the output is ":one".	%
% --------------------------------------------------------------------- %
let mk_tuple_ty = 
    let mk_prod ty1 ty2 = mk_type(`prod`,[ty1;ty2]) in
    let onety = ":one" in \l. end_itlist mk_prod l ? onety;;

% --------------------------------------------------------------------- %
% mk_tuple : make a tuple of a list of terms.				%
%									%
% Special case: if the list is empty, then the output is "one:one".	%
% --------------------------------------------------------------------- %
let mk_tuple = let onec = "one" in \l. end_itlist (curry mk_pair) l ? onec;;

% --------------------------------------------------------------------- %
% mk_sum_ty : make a tum type of a list of types.			%
% --------------------------------------------------------------------- %
let mk_sum_ty = 
    let mk_sum ty1 ty2 = mk_type(`sum`,[ty1;ty2]) in end_itlist mk_sum;;

% --------------------------------------------------------------------- %
% inject : make a list of injections of a list of values, given a sum   %
% type into which they are to be injected.				%
% 									%
% For example, if ty = (ty1,(ty2,ty3))sum and vs = [v1;v2;v3] then:	%
%									%
%     inject ty vs = [INL v1; INL(INR v2); INR(INR v3)]			%
% --------------------------------------------------------------------- %

letrec inject ty (v.vs) = 
   if (null vs) then [v] else
   let _,[lty;rty] = dest_type ty in
   let inlty = mk_type(`fun`,[lty;ty]) in
   let res = mk_comb(mk_const(`INL`,inlty),v) in
   let inrty = mk_type(`fun`,[rty;ty]) in
   let Inr = curry mk_comb (mk_const(`INR`,inrty)) in
       res.(map Inr (inject rty vs));;

% --------------------------------------------------------------------- %
% mkvars : generate sensible variable names for the arguments to the 	%
% non-recursive constructors of a newly-defined type.  A call to mkvars %
% takes the form:							%
%									%
%     mkvars [t1;...;tn]						%
%									%
% where t1,...,tn are the types required for the variables.		%
% --------------------------------------------------------------------- %

let mkvars =
    let fch ty = (hd o explode o fst o dest_type) ty ? `x` in
    let suff f c l = 
        if (f c = ``) then
           if (exists (\x. fch x = c) l) then
              `0`, \ch. (ch=c) => `0` | f ch else ``,f else
           let n = string_of_int(int_of_string(f c) + 1) in 
	       n,\ch. (ch=c) => n | f ch in
    letrec mkvs fn rvs l = 
       if (null l) then [] else
          let c = fch (hd l) in
          let s,fn' = suff fn c (tl l) in
          let v = variant rvs (mk_primed_var(c^s,hd l)) in
	      v . mkvs fn' (v.rvs) (tl l) in
    \l. mkvs (\x.``) [] l;;

% --------------------------------------------------------------------- %
% mk_subset_pred : make a subset predicate from the parse of the user's %
% input. For a full description of the form of this predicate, see:	%
%									%
% Melham, T.F.								%
% "Automating Recursive Type Definitions in Higher Order Logic",	%
% in: Current Trends in Hardware Verification and Automated 		%
% Theorem Proving, edited by G. Birtwistle and P.A. Subrahmanyam,	%
% (Springer-Verlag 1989) pp. 341-386.					%
% --------------------------------------------------------------------- %

let mk_subset_pred = 
    let boolty = ":bool" in
    let zero = let Z = "0" in \n. n = Z in
    let LEN = 
        let numty = ":num" and eq = "$=:num->num->bool" in
        \tl. let lenty = mk_type(`fun`,[type_of tl;numty]) in
	     let lentl = mk_comb(eq,mk_comb(mk_const(`LENGTH`,lenty),tl)) in
                 \n. mk_comb(lentl,n) in
    \tysl. let tys,rectys = split (map pargs tysl) in
           if (not(exists zero rectys)) then
	       failwith `no non-recursive constructor` else
           let repty = mk_sum_ty (map mk_tuple_ty tys) in
           let tlty = mk_type(`list`,[mk_type(`ltree`,[repty])]) in
           let v = mk_var(`v`,repty) and tlv = mk_var(`tl`,tlty) in
           let lens = map (LEN tlv) rectys in
           let cases = 
               if (null(tl tys)) then 
     	          (let vars = mkvars (hd tys) in
                   [list_mk_exists(vars, mk_eq(v,mk_tuple vars))]) else
                  (let vsl =  map mkvars tys in
                   let tuples = (map mk_tuple vsl) in
                   let injs = inject repty tuples in
   	           let eqs = map (curry mk_eq v) injs in
                   map list_mk_exists (combine(vsl,eqs))) in
           let body = list_mk_disj (map mk_conj (combine(cases,lens))) in
               mk_abs(v,mk_abs(tlv,body));;

% ===================================================================== %
% existence proof for the subset predicate				%
% ===================================================================== %

% --------------------------------------------------------------------- %
% splitf : split a list at a value satisfying a given predicate.	%
% --------------------------------------------------------------------- %
letrec splitf p (x.xs) = 
   if (p x) then [],x,xs else (curry $. x # I) (splitf p xs);;

% --------------------------------------------------------------------- %
% prove_existence_thm : prove the existence theorem required for making %
% the type definition.							%
% 									%
% Given a subset predicate, pred, of the form:				%
%									%
%    \v tl. (?x1 ... xn. v = INL(x1,...,xn) /\ LENGTH tl = l1) /\       %
%	    (?x1 ... xm. v = INL(INR(x1...xm)) /\ LENGTH tl = l2)	%
%		  :							%
%	         etc							%
%									%
% this function look for a case where "LENGTH tl = 0" and then proves	%
% that |- ?r. TRP pred r  						%
%									%
% --------------------------------------------------------------------- %

let prove_existence_thm = 
    let LEN0 = CONJUNCT1 (definition `list` `LENGTH`) in
    let EXTH = theorem `tydefs` `exists_TRP` in
    let zero = let Z = "0" in \tm. tm = Z in
    let efn (nv,ov) th = 
        let vs,l,r = (I # dest_eq) (strip_exists (concl th)) in
        let pat = list_mk_exists(ov.vs,mk_eq(l,subst[ov,nv]r)) in
            EXISTS (pat,nv) th in
    \pred. let rty = hd(snd(dest_type(type_of pred))) in
           let [v;tl],cs = (I # disjuncts)(strip_abs pred) in
           let b,cl,a = splitf (zero o rand o rand) cs in
           let body = rand(rator cl) in
           let vs,val = (I # rand) (strip_exists body) in
           let nvs = map (\v. variant vs v,v) vs in
           let nval = subst nvs val in
           let veth = itlist efn nvs (REFL nval) in
           let lem = EXISTS (mk_exists(v,body),nval) veth in
	   let ltrty = mk_type(`ltree`,[rty]) in
           let cth = CONJ (ASSUME body) (INST_TYPE [ltrty,":*"] LEN0) in
           let Nil = mk_const(`NIL`,mk_type(`list`,[ltrty])) in
           let app = mk_comb(mk_comb (pred,v),Nil) in
           let beta = EXISTS_EQ v (SYM(LIST_BETA_CONV app)) in
           let thm1 = if (null a) then cth else DISJ1 cth (list_mk_disj a) in
           let thm2 = INST [Nil,tl](itlist DISJ2 b thm1) in 
           let eth = CHOOSE (v,lem) (EXISTS (lhs(concl beta),v) thm2) in
    	   let exth = SPEC pred (INST_TYPE [rty,":*"] EXTH) in
               NOT_MP exth (EQ_MP beta eth);;

% ===================================================================== %
% variant_tyvar: Find the type variable with the least number of stars	%
% that doesn't occur in the given list (for instantiating TY_DEF_THM).	%
% ===================================================================== %

letrec variant_tyvar l1 l2 = 
   let ty = mk_vartype(implode l2) in
   if (exists (\t.t=ty) l1) then variant_tyvar l1 (`*`.l2) else ty;;

% ===================================================================== %
% Procedures for cleaning up the type axiom after instantiation.	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% OR_IMP_CONV: eliminate disjuncts in the antecedent of an implication. %
%									%
% Given a term "(D1 \/ ... \/ Dn) ==> C", OR_IMP_CONV returns:		%
%									%
%    |- ((D1 \/ ... \/ Dn) ==> C) = (D1 ==> C /\ ... /\ Dn ==> C)	%
% --------------------------------------------------------------------- %

let OR_IMP_CONV = 
    letrec proveimp f DS = 
       (let (D1,D2) = dest_disj DS in 
        let res = DISCH D1 (f (DISJ1 (ASSUME D1) D2)) in
            CONJ res (proveimp (f o (DISJ2 D1)) D2)) ? 
       DISCH DS (f (ASSUME DS)) in
    let disjfn th1 th2 = 
        let D = mk_disj(rand(rator(concl th1)),rand(rator(concl th2))) in
            DISCH D (DISJ_CASES (ASSUME D) (UNDISCH th1) (UNDISCH th2)) in
    \tm. let DS,C = (dest_imp tm) in
         let imp1 = DISCH tm (proveimp (MP (ASSUME tm)) DS) in
	 let rtm = snd(dest_imp(concl imp1)) in
	 let imp2 = DISCH rtm (end_itlist disjfn (CONJUNCTS(ASSUME rtm))) in
             IMP_ANTISYM_RULE imp1 imp2;;

% --------------------------------------------------------------------- %
% FORALL_IN_CONV: move two universal quantifiers into a conjunction.	%
%									%
% Given a term "!x y. C1 /\ ... /\ Cn", the conversion proves:		%
%									%
%    |- (!x y. C1 /\ ... /\ Cn) = (!x y. C1) /\ ... /\ (!x y. Cn)	%
%									%
% Note: this conversion can easily be adapted to deal with more than 	%
% two universally quantified variables by using SPECL and GENL.		%
% --------------------------------------------------------------------- %

let FORALL_IN_CONV = 
    letrec mconj f th = 
       (let th1,th2 = (f # mconj f) (CONJ_PAIR th) in CONJ th1 th2) ? f th in
    \tm. let [x;y],cs = (I # conjuncts) (strip_forall tm) in
         let spec = (SPEC y) o (SPEC x) and gen = (GEN x) o (GEN y) in 
         let imp1 = DISCH tm (mconj gen (spec (ASSUME tm))) in
         let acs = snd(dest_imp(concl imp1)) in
	 let imp2 = DISCH acs (gen (mconj spec (ASSUME acs))) in
             IMP_ANTISYM_RULE imp1 imp2;;

% --------------------------------------------------------------------- %
% CONJS_CONV : apply a given conversion to a sequence of conjuncts	%
%									%
% CONJS_CONV conv "t1 /\ t2 /\ ... /\ tn" applies conv to each of the   %
% n conjuncts t1,t2,...,tn and then rebuilds the conjunction from the   %
% results.								%
%									%
% --------------------------------------------------------------------- %

letrec CONJS_CONV conv tm = 
       (let c,cs  = (conv # CONJS_CONV conv) (dest_conj tm) in
            MK_COMB((AP_TERM "$/\" c),cs)) ? conv tm;;

% --------------------------------------------------------------------- %
% EQN_ELIM_CONV : eliminate antecedent defining equations for the node  %
% verticies (see below).						%
%									%
% The terms in question have the form:					%
%									%
%    "!v tl. ((?x1...xn. v=tm) /\ P) ==> Q"				%
%									%
% This conversion transforms this term as follows:			%
%									%
%    |- (!v tl. ((?x1...xn. v=tm) /\ P) ==> Q)				%
%         = 								%
%       !tl. P ==> !x1...xn. Q[tm/v]					%
% 									%
% --------------------------------------------------------------------- %

let EQN_ELIM_CONV = 
    let efn (nv,ov) th = 
        let vs,(l,r) = (I # dest_eq) (strip_exists(concl th)) in
	let pat = list_mk_exists(nv.vs,mk_eq(l,subst[nv,ov]r)) in
	    EXISTS (pat,ov) th in
    let chfn fn v th = 
        let asm = ASSUME (mk_exists(v,find fn (hyp th))) in
	   CHOOSE (v,asm) th in
    \tm. let [v;tl],ANTE,Q = (I # dest_imp) (strip_forall tm) in
         let (vs,def),P = (strip_exists # I) (dest_conj ANTE) in
         let thm1 = SPEC tl (SPEC (rand def) (ASSUME tm)) in
         let goal = fst(dest_conj(fst(dest_imp(concl thm1)))) in
	 let nvs = fst(strip_exists goal) in
	 let thm2 = itlist efn (combine(nvs,vs)) (REFL (rand def)) in
	 let thm3 = DISCH P (GENL vs (MP thm1 (CONJ thm2 (ASSUME P)))) in
	 let imp1 = DISCH tm (GEN tl thm3) in
	 let res = snd(dest_imp(concl imp1)) in
	 let a1,a2 = CONJ_PAIR(ASSUME ANTE) in
	 let asm = MP (SPEC tl (ASSUME res)) a2 in
	 let thm4 = SUBST [SYM (ASSUME def),v] Q (SPECL vs asm) in
         let fn tm = lhs(snd(strip_exists tm)) = v ? false in
	 let thm5 = PROVE_HYP a1 (itlist (chfn fn) vs thm4) in
	 let imp2 = DISCH res (GEN v (GEN tl (DISCH ANTE thm5))) in
	     IMP_ANTISYM_RULE imp1 imp2;;

% --------------------------------------------------------------------- %
% LENGTH_MAP_CONV : eliminate the "LENGTH (MAP REP tl) = n" terms in	%
% favour of "LENGTH tl = n".						%
%									%
% The terms in question have the form:					%
%									%
%    "!tl. (LENGTH (MAP REP tl) = n) ==> Q"				%
%									%
% The conversion is supplied with the theorem:				%
%									%
%    |- $= LENGTH (MAP REP tl) = $= LENGTH tl				%
%									%
% and transforms the input term as follows:				%
%									%
%    |- !tl. (LENGTH (MAP REP tl) = n) ==> Q				%
%         = 								%
%       !tl. (LENGTH tl = n) ==> Q					%
% 									%
% --------------------------------------------------------------------- %

let LENGTH_MAP_CONV = 
    let IMP = "==>" in
    \eq tm. let tl,n,Q = (I # ((rand # I) o dest_imp)) (dest_forall tm) in
    	    FORALL_EQ tl (AP_THM (AP_TERM IMP (AP_THM eq n)) Q);;


% --------------------------------------------------------------------- %
% LENGTH_ELIM_CONV : Eliminate "LENGTH" expressions.                    %
%                                                                       %
% If n is a number in successor notation (e.g. "0", "SUC 0", etc) then: %
%                                                                       %
%    LENGTH_ELIM_CONV ":ty" "!l:(ty)list. (LENGTH l = n) ==> tm[l]"     %
%                                                                       %
% returns:                                                              %
%                                                                       %
%    |- (!l. (LENGTH l = n) ==> tm[l]) = !x0...xi. tm[[x0;...;xi]/l]    %
%                                                                       %
% where i = n-1, and the `x`'s have sensibly-chosen names.		%
% --------------------------------------------------------------------- %

let LENGTH_ELIM_CONV =
    let ZERO = "0" and N = "n:num" in
    let lcons = theorem `list` `LENGTH_EQ_CONS` and
        lnil  = theorem `list` `LENGTH_EQ_NIL` in
    let genvs =
        let ONE = "SUC 0" in
        let mkvar ty st i = mk_primed_var(st ^ string_of_int i,ty) in
        letrec gvs bvs ty st n i = 
            if (n=ZERO) then [] else
            let v = variant bvs (mkvar ty st i) in
                v. gvs (v.bvs) ty st (rand n) (i+1) in
        \bvs ty st n. 
           if (n=ONE) then
              let v = mk_primed_var(st,ty) in [variant bvs v] else
              gvs bvs ty st n 1 in
    let pred_ty = let bty = ":bool" in \ty. mk_type(`fun`,[ty;bty]) in
    letrec bconv tm = 
      (let (l,v,bd),ar = (((I # dest_forall) o dest_abs) # I)(dest_comb tm) in
       let th = FORALL_EQ v (bconv bd) in RIGHT_BETA (AP_THM (ABS l th) ar))
      ? BETA_CONV tm in
    letrec conv (cth,nth) Pv P n vs = 
       if (n=ZERO) then INST [P,Pv] nth else
       let pre = rand n in
       let th1 = INST [P,Pv] (INST [pre,N] cth) in
       let l,body = dest_forall(rand(concl th1)) in
       let l',x,bdy = (I # dest_forall) (dest_abs(rator(rand body))) in
       let P' = mk_abs(l',mk_forall(hd vs,subst[hd vs,x]bdy)) in
           TRANS th1 (conv (cth,nth) Pv P' pre (tl vs)) in
    \tm. let l,lenl,body = (I # dest_comb) (dest_forall tm) in
         let n = rand(rand lenl) in
         let _,[ty] = dest_type(type_of l) in
	 let (st._) = explode(fst(dest_type ty)) in
	 let bvs = fst(strip_forall body) in
         let vs = genvs bvs ty st n in
         let lam = mk_abs(l,body) in
         let bth = AP_TERM lenl (SYM(BETA_CONV (mk_comb(lam,l)))) in
         let Pv = genvar (pred_ty(type_of l)) in
         let cth = SPEC N (SPEC Pv (INST_TYPE [ty,":*"] lcons)) in
         let nth = SPEC Pv (INST_TYPE [ty,":*"] lnil) in
	 let thm1 = conv (cth,nth) Pv lam n vs in
         let thm2 = TRANS (FORALL_EQ l bth) thm1 in
             CONV_RULE (RAND_CONV bconv) thm2;;

% --------------------------------------------------------------------- %
% MAP_CONV : expand "MAP f [...]" with the definition of "MAP"		%
% --------------------------------------------------------------------- %

let MAP_CONV = 
    let mnil,mcons = CONJ_PAIR (definition `list` `MAP`) in
    letrec conv (nth,cth) tm = 
       (let _,[h;t] = strip_comb tm in
        let thm = SPEC t (SPEC h cth) in
	let cfn = rator(rand(concl thm)) in
            TRANS thm (AP_TERM cfn (conv (nth,cth) t))) ? nth in
    \tm. let _,[f;l] = strip_comb tm in conv (ISPEC f mnil, ISPEC f mcons) l;;

% --------------------------------------------------------------------- %
% ELIM_MAP_CONV : use MAP_CONV where appropriate.			%
% --------------------------------------------------------------------- %

let ELIM_MAP_CONV tm = 
    let vs,(EQ,[l;r]) = (I # strip_comb) (strip_forall tm) in
    let fn,A,Na,arg = (I # ((I # dest_comb) o dest_comb)) (dest_comb l) in
    let thm1 = AP_TERM fn (AP_TERM A (AP_TERM Na (MAP_CONV arg))) in
    let f,[a1;a2;a3] = strip_comb r in 
    let thm2 = AP_THM (AP_THM (AP_TERM f (MAP_CONV a1)) a2) a3 in
    let thm = MK_COMB (AP_TERM EQ thm1, thm2) in
        itlist FORALL_EQ vs thm;;

% --------------------------------------------------------------------- %
% TRANSFORM : transform the type axiom towards its final form:		%
%									%
%       |- !f. ?!fn. !v tl. <term>					%
%   ---------------------------------					%
%     |- ?!fn.  <transformed term>					%
% 									%
% The transformations are:						%
%									%
%  (1) two beta conversions:						%
%									%
%       "(\v tl. tm) t1 t2"      --->    "tm[t1/v,t2/tl]"		%
%									%
%  (2) eliminate the antecedent disjunction:				%
%									%
%       "D1 \/ .. \/ Dn ==> Q"   --->    "D1 ==> Q /\ .. /\ Dn ==> Q"	%
%									%
%  (3) move universally quantified vars into resulting conjunction:	%
%									%
%       "!v tl. i1 /\ .. /\ in   --->    "!v tl. i1 /\ .. /\ !v tl. in" %
%									%
%  (4) apply the transfomation given by EQN_ELIM_CONV to each conjunct. %
%									%
%  (5) transform LENGTH(MAP REP tl) into LENGTH tl (as described above) %
%									%
%  (6) eliminate "LENGTH tl = n ==> P" using LENGTH_ELIM_CONV.		%
% 									%
%  (7) expand "MAP f [...]" using the definition of MAP.		%
% 									%
% 									%
% NB: the function drops the "f", and returns it.			%
% --------------------------------------------------------------------- %

let TRANSFORM = 
    let EQ = "$=:num->num->bool" in
    let lmap = theorem `list` `LENGTH_MAP` in
    let cconv lm = EVERY_CONV [EQN_ELIM_CONV;			  % (4) %
                               LENGTH_MAP_CONV lm;		  % (5) %
	                       LENGTH_ELIM_CONV;		  % (6) %
	                       ELIM_MAP_CONV] in	          % (7) %
    \REP th. 
      let f,EU,body = (I # dest_comb) (dest_forall (concl th)) in
      let fn,[v;tl],imp = (I # strip_forall) (dest_abs body) in
      let (IMP,hy),cncl = (dest_comb # I) (dest_comb imp) in
      let beta = (RATOR_CONV BETA_CONV THENC BETA_CONV) hy in     % (1) %
      let thm1 = AP_THM (AP_TERM IMP beta) cncl in
      let red  = rand (concl thm1) in
      let thm2 = TRANS thm1 (OR_IMP_CONV red) in		  % (2) %
      let thm3 = FORALL_EQ v (FORALL_EQ tl thm2) in
      let gen  = rand (concl thm3) in
      let thm4 = TRANS thm3 (FORALL_IN_CONV gen) in	  	  % (3) %
      let cs   = rand (concl thm4) in
      let lmth = AP_TERM EQ (ISPECL [tl;REP] lmap) in
      let thm5 = TRANS thm4 (CONJS_CONV (cconv lmth) cs) in 
      let thm6 = AP_TERM EU (ABS fn thm5) in
          (f,EQ_MP thm6 (SPEC f th));;


% ===================================================================== %
% Define the constructors of the recursive type.			%
% ===================================================================== %

% --------------------------------------------------------------------- %
% part : split a list into two parts: a list of the first n elements, 	%
% and a list of the remaining elements.					%
% --------------------------------------------------------------------- %

letrec part n l = (n=0 => [],l | (curry $. (hd l) # I) (part (n-1) (tl l)));;

% --------------------------------------------------------------------- %
% define_const : define one of the constructors for the concrete 	%
% recursive type specified by the user.  The arguments are:		%
%									%
%       c   : the constructor name 					%
%       tys : its types, as returned by parse_input			%
%	tm  : the equation for that constructor, in its current state.	%
% --------------------------------------------------------------------- %

let define_const = 
    let cfn ty n = (isl ty => n+1 | n) in
    letrec combin evs rvs tys = 
       if (null tys) then [] else
          if (isl (hd tys)) then
             hd evs . combin (tl evs) rvs (tl tys) else
             hd rvs . combin evs (tl rvs) (tl tys) in
    let mkfnty v ty = mk_type(`fun`,[type_of v;ty]) in
    let geneq uovs odvs tm = 
        let imp1 = GENL odvs (SPECL uovs (ASSUME tm)) in
        let body = concl imp1 in
        let imp2 = DISCH body (GENL uovs (SPECL odvs (ASSUME body))) in
	    IMP_ANTISYM_RULE (DISCH tm imp1) imp2 in
    \(c,tys,tm).
       let vs,(EQ,[l;r]) = (I # strip_comb) (strip_forall tm) in
       let f = fst(strip_comb r) in
       let count = itlist (\ty n. isl ty => n | n+1)  tys 0 in
       let rvs,evs = (rev # I) (part count vs) in 
       let vars = combin evs rvs tys in
       let cty = itlist mkfnty vars (type_of (rand l)) in
       let Ccomb = list_mk_comb(mk_var(c,cty),vars) in
       let def = new_definition(c^`_DEF`,mk_eq(Ccomb,rand l)) in
       let dvs = fst(strip_forall(concl def)) in
       let thm1 = AP_TERM EQ (AP_TERM (rator l) (SPECL dvs def)) in
       let thm2 = itlist FORALL_EQ dvs (SYM (AP_THM thm1 r)) in
	   (TRANS (geneq vs vars tm) thm2) ;;

% --------------------------------------------------------------------- %
% DEFINE_CONSTRUCTORS : defines the constructors for the concrete 	%
% recursive type specified by the user.  This function just maps 	%
% define_const over the conjuncts of the current theorem.		%
% --------------------------------------------------------------------- %

let DEFINE_CONSTRUCTORS = 
    let mkconj = let AND = "/\" in \t1 t2. MK_COMB(AP_TERM AND t1,t2) in
    \cs atys th.
      let EU,(fn,body) = (I # dest_abs) (dest_comb (concl th)) in
      let dcs = map define_const (combine(cs,combine(atys,conjuncts body))) in
      let thm = end_itlist mkconj dcs in
          EQ_MP (AP_TERM EU (ABS fn thm)) th;;

% ===================================================================== %
% Construct the function which applies a separate function variable to  %
% the values present on the right-hand side of each defining equation	%
% in the recursive function definition.					%
% ===================================================================== %

% --------------------------------------------------------------------- %
% mk_tests : make the discriminator tests for each clause of the type   %
% definition theorem.  A call to:					%
%									%
%   mk_tests [x1,x2...,xn] ":ty1 + ty2 + ... + tyn"			%
%									%
% returns a variable v, and a list of tests:				%
%									%
%   [ISL v; ISL (OUTR v); ... ; ISL (OUTR ... (OUTR v)..)]		%
%									%
% where v is a genvar of type ":ty1 + ty2 + ... + tyn"			%
%									%
% --------------------------------------------------------------------- %

let mk_tests = 
    let boolty = ":bool" in
    letrec make (c.cs) v ty =
       if (null cs) then [] else
       let _,[_;outty] = dest_type ty in
       let Isl = mk_const(`ISL`,mk_type(`fun`,[ty;boolty])) in
       let Outr = mk_const(`OUTR`,mk_type(`fun`,[ty;outty])) in
       let test = mk_comb(Isl,v) and out = mk_comb(Outr,v) in
           test . make cs out outty in
    \cs ty. let v = genvar ty in v, make cs v ty;;

% --------------------------------------------------------------------- %
% mk_proj : make the projections for each clause of the type definition	%
% theorem.  A call to:							%
%									%
%   mk_proj v [x1,x2...,xn] ":ty1 + ty2 + ... + tyn"			%
%									%
% returns a list of projections:			%
%									%
%   [OUTL v; OUTL(OUTR v); ... ; OUTR (OUTR ... (OUTR v)..)]		%
%									%
% where v is a supplied genvar of type ":ty1 + ty2 + ... + tyn"		%
%									%
% --------------------------------------------------------------------- %

letrec mk_proj v (c.cs) ty = 
   if (null cs) then [v] else
      let _,[ty1;ty2] = dest_type ty in
      let Outr = mk_const(`OUTR`,mk_type(`fun`,[ty;ty2])) in
      let Outl = mk_const(`OUTL`,mk_type(`fun`,[ty;ty1])) in
      let ltm = mk_comb(Outl,v) and rtm = mk_comb(Outr,v) in
          ltm . mk_proj rtm cs ty2;;

% --------------------------------------------------------------------- %
% extract_list : generate expressions that extract the components of an	%
% object-language list.  A call to:					%
%									%
%   extract_list "(ty)list" "v:ty list" "[x1:ty;...,xn]"		%
%									%
% returns a list of terms:						%
%									%
%   ["HD v"; "HD(TL v)"; ... ; "HD(TL ... (TL v)..)"]			%
%									%
% Note: the list can be empty.						%
% --------------------------------------------------------------------- %

let extract_list ty = 
    let _,[ety] = dest_type ty in
    let Hd = mk_const(`HD`,mk_type(`fun`,[ty;ety])) in
    let Tl = mk_const(`TL`,mk_type(`fun`,[ty;ty])) in
    letrec extr Hd Tl v tm = 
       (let _,[h;t] = strip_comb tm in
        let hval = mk_comb(Hd,v) in
        let tval = mk_comb(Tl,v) in 
	hval . extr Hd Tl tval t) ? [] in
    extr Hd Tl;;

% --------------------------------------------------------------------- %
% strip_inj : strip an arbitrary number of injections off a term.  A	%
% typical call to strip_inj looks like:					%
%   									%
%   strip_inj "INR(INR(INR....(INL <val>)..)				%
%									%
% and returns <val>.							%
% --------------------------------------------------------------------- %

letrec strip_inj tm = 
   (let op,arg = ((fst o dest_const) # I) (dest_comb tm) in
    if (op = `INR` or op = `INL`) then strip_inj arg else tm) ? tm;;

% --------------------------------------------------------------------- %
% extract_tuple : generate expressions that extract the components of	%
% an object-language tuple.  A call to:					%
%									%
%   extract_tuple "ty" "v:ty" "(x1,...,xn)ty"				%
%									%
% returns a list of terms:						%
%									%
%   ["FST v"; "FST(SND v)"; ... ; "FST(SND ... (SND v)..)"]		%
%									%
% Note: the list will not be empty.					%
% --------------------------------------------------------------------- %

letrec extract_tuple ty v tm = 
   (let _,[c1;c2] = strip_comb tm in
    let _,[ty1;ty2] = dest_type ty in
    let Fst = mk_const(`FST`,mk_type(`fun`,[ty;ty1])) in
    let Snd = mk_const(`SND`,mk_type(`fun`,[ty;ty2])) in
    let fval = mk_comb(Fst,v) in
        let sval = mk_comb(Snd,v) in 
	fval . extract_tuple ty2 sval c2) ? [v];;


% --------------------------------------------------------------------- %
% gen_names : generate reasonable names for the function variables on	%
% the right-hand sides of the equations in the type axiom.  There are   %
% two kinds of names: 							%
%									%
%     `e<suffix>`    and     `f<suffix>`				%
%									%
% A name has the e-form if the corresponding "function" is just a 	%
% constant (this information is obtained from the "cs" list). Otherwise %
% the name has the f-form.  Suffixes are numerical, and are generated	%
% in the order: 0,1,2...etc.  When ef is true, however, there will be   %
% only one e-type name, for which the suffix will be empty.  Likewise	%
% for functions proper when the ff flag is true.			%
% --------------------------------------------------------------------- %

let gen_names = 
    letrec gen (ef,ff) (n,m) cs = 
       if (null cs) then [] else
       if (null (hd cs)) then
          let ename = (`e` ^ (if ef then string_of_int n else ``)) in
              ename . gen (ef,ff) (n+1,m) (tl cs) else
          let fname = (`f` ^ (if ff then string_of_int m else ``)) in
              fname . gen (ef,ff) (n,m+1) (tl cs) in
    \(ef,ff) cs. gen (ef,ff) (0,0) cs;;


% --------------------------------------------------------------------- %
% mk_fun_ty : construct a function type, given a term and the type of   %
% the expected result.							%
%									%
%   mk_fun_ty "tm:ty1" ":ty2"  =  ":ty1 -> ty2"				%
% --------------------------------------------------------------------- %

let mk_fun_ty tm ty = mk_type(`fun`,[type_of tm;ty]);;

% --------------------------------------------------------------------- %
% make_rhs : make the right-hand side for one clause of the type axiom. %
% The ty argument is the resulting type of the right-hand side. The 	%
% variables rv and tv are genvars, standing for the list of results of  %
% recursive applications of the recursive function and the subtrees,	%
% respectively. The variable pv is the result of projecting out the 	%
% tuple of non-recursive values, and the flag fl indicates if any such  %
% values are actually present (this distinguishes between a constructor %
% with a single argument of the user-specified type :one and the use of %
% ":one" to represent constant constructors).  The terms rl, val, and 	%
% tl are the right-hand side values to be extracted. The string `name`	%
% gives the function name for this right-hand side.			%
% --------------------------------------------------------------------- %

let make_rhs ty rv tv (fl,pv,name,[rl;val;tl]) = 
    let exrl = extract_list (type_of rl) rv rl in
    let extl = extract_list (type_of tl) tv tl in
    let svl = strip_inj val in
    let extu = (fl => [] | extract_tuple (type_of pv) pv svl) in
    let args = exrl @ extu @ extl in
    let v = mk_var(name,itlist mk_fun_ty args ty) in
        v,list_mk_comb(v,args);;
    
% --------------------------------------------------------------------- %
% make_conditional : make an interated conditional. A call to:		%
%									%
%    make_conditional ["t1";...;"tn"] ["x1";...;"xn+1"]			%
%									%
% returns:								%
%									%
%    "(t1 => x1 | (t2 => x2 | ... | xn+1))]"				%
%									%
% Note that n can be zero, in which case the result is "x1".		%
% --------------------------------------------------------------------- %
letrec make_conditional ts rs = 
    if (null ts) then hd rs else 
        mk_cond (hd ts,hd rs,make_conditional (tl ts) (tl rs));;

% --------------------------------------------------------------------- %
% make_function : Make the function that extracts the values present on %
% the right-hand sides of each clause, and introduces separate function %
% variables for each clause.						%
% --------------------------------------------------------------------- %

let make_function = 
    let mkflag l = not(length l = 1) in
    let nonrec l = not(exists isl l) in
    \atys th.
       let cs = conjuncts(snd(dest_abs(rand(concl th)))) in
       let ef,ff = (mkflag # mkflag) (partition null atys) in
       let names = gen_names (ef,ff) atys in
       let f,[rl;val;ts] = strip_comb (rand(snd(strip_forall(hd cs)))) in
       let _,[resty] = dest_type(type_of rl) in
       let rv = genvar (type_of rl) and tv = genvar (type_of ts) in
       let vv,tests = mk_tests names (type_of val) in
       let proj = mk_proj vv names (type_of val) in
       let vs,rs = (flat # I) (split(map ((I # rand) o strip_forall) cs)) in
       let rhss = map (snd o strip_comb) rs in
       let arg = combine(map nonrec atys,combine(proj,combine(names,rhss))) in
       let vs,res = split(map (make_rhs resty rv tv) arg) in
          (vs, list_mk_abs ([rv;vv;tv],make_conditional tests res));;

% ===================================================================== %
% Procedures for simplifying the type axiom into its final form.	%
% ===================================================================== %

% --------------------------------------------------------------------- %
% PROJ_CONV : simplify right-projections of right-injections.		%
%									%
% A call to: PROJ_CONV "OUTR(OUTR ... (INR(INR x)))" returns:		%
%									%
%   |-  OUTR(OUTR ... (INR(INR x))) = x					%
% --------------------------------------------------------------------- %

let PROJ_CONV = 
    let thm = definition `sum` `OUTR` in
    let rew = \tm. REWR_CONV thm tm ? (REFL tm) in
    letrec conv tm = 
       (let C,arg = dest_comb tm in
        if (fst(dest_const C) = `OUTR`) 
           then let th = AP_TERM C (conv arg) in
	            TRANS th (rew (rand(concl th))) 
           else REFL tm) ? REFL tm in conv;;

% --------------------------------------------------------------------- %
% TEST_SIMP_CONV : repeatedly simplify conditionals as follows:		%
%									%
%   (1)  TEST_SIMP_CONV "(ISL...(INL x)) => a | b" returns:		%
%									%
%	   |- (ISL...(INL x) => a | b) = a				%
% 									%
%   (2)  TEST_SIMP_CONV "(ISL...(INR x)) => a | b" returns:		%
%									%
%	   |- (ISL...(INR x) => a | b) = b				%
%									%
% where the dots "..." stand for any number of intermediate right	%
% projections of left injections as simplified by PROJ_CONV.		%
% --------------------------------------------------------------------- %

let TEST_SIMP_CONV = 
    let thm = definition `sum` `ISL` in
    let th1,th2 = (SPEC "x:*" # SPEC "y:**") (CONJ_PAIR thm) in
    let Tth = EQT_INTRO th1 and Fth = EQF_INTRO th2 in
    let rewconv = FIRST_CONV [REWR_CONV Fth;REWR_CONV Tth] in
    letrec conv cond = 
        (let C,[test;a;b] = strip_comb cond in
             let simp = ((RAND_CONV PROJ_CONV) THENC rewconv) test in
	     let thm2 = MK_COMB(AP_THM (AP_TERM C simp) a, conv b) in
	         CONV_RULE (RAND_CONV COND_CONV) thm2) ? REFL cond 
    in conv;;


% --------------------------------------------------------------------- %
% LIST_ELS : extract the elements of a list.				%
%									%
% Given "[x1;x2;...;xn]", LIST_ELS produces a list of theorems:		%
%									%
% [|- HD [x1;x2;...;xn]      =     x1;					%
%     HD (TL [x1;x2;...;xn]) =     x2;					%
%     ... etc ...            = xn]					%
% --------------------------------------------------------------------- %

let LIST_ELS = 
    let H = definition `list` `HD` and T = definition `list` `TL` in
    letrec genels (hth,tth) (hf,tf) th = 
       (let _,[h;t] = strip_comb(rand(concl th)) in
        let thm = TRANS (hf th) (SPEC t (SPEC h hth)) in
        let tthm = TRANS (tf th) (SPEC t (SPEC h tth)) in
            thm . genels (hth,tth) (hf,tf) tthm) ? [] in
    \tm. let lty = type_of tm in
         let _,[ty] = dest_type lty in
         let hth = INST_TYPE [ty,":*"] H and tth = INST_TYPE [ty,":*"] T in
         let hf = AP_TERM(mk_const(`HD`,mk_type(`fun`,[lty;ty]))) in
         let tf = AP_TERM(mk_const(`TL`,mk_type(`fun`,[lty;lty]))) in
             genels (hth,tth) (hf,tf) (REFL tm);;


% --------------------------------------------------------------------- %
% GEN_PROJ_CONV : generate projections of sum-injections.		%
%									%
% A call to GEN_PROJ_CONV generates a theorem that projects a value	%
% which has been injected into a sum.  For example:			%
%									%
%   PROJ_CONV "INL x"     =  |- OUTL(INL x) = x				%
%   PROJ_CONV "INR(INL x)" = |- OUTL(OUTR(INR(INL x))) = x 		%
%   ... etc.								%
% --------------------------------------------------------------------- %

let GEN_PROJ_CONV = 
    let orth = definition `sum` `OUTR` in
    let olth = definition `sum` `OUTL` in
    let inst = let v1,v2 = ":*",":**" in \t1 t2. INST_TYPE [t1,v1;t2,v2] in
    letrec conv th = 
       (let inj = rand(concl th) in
	let C,arg = dest_comb inj in
        let injty = type_of inj in
        let _,[lty;rty] = dest_type injty in
        if (fst(dest_const C) = `INR`) then
	   let proj = mk_const(`OUTR`,mk_type(`fun`,[injty;rty])) in
           let thm1 = AP_TERM proj th in
	   let thm2 = SPEC arg (inst lty rty orth) in
	       conv (TRANS thm1 thm2) else
        if (fst(dest_const C) = `INL`) then
	   let proj = mk_const(`OUTL`,mk_type(`fun`,[injty;lty])) in
           let thm1 = AP_TERM proj th in
	   let thm2 = SPEC arg (inst lty rty olth) in
	       conv (TRANS thm1 thm2) else th) ? th in
    \tm. conv (REFL tm);;

% --------------------------------------------------------------------- %
% TUPLE_COMPS : extract the components of a tuple.			%
%									%
% Given a theorem of the form:						%
%									%
%   |- tm = (x1,x2,...,xn)						%
%									%
% TUPLE_COMPS produces a list of theorems:				%
%									%
% [|- FST tm = x1;							%
%     FST(SND tm) = x2;							%
%      .								%
%      .								%
%     SND(...(SND tm)...) = xn]						%
%									%
% There are two special cases:						%
%									%
%  1) when given a theorem of the form |- tm = v, where v is a variable %
%     the function returns [|- tm = v].					%
% 									%
%  2) when given a theorem of the form |- tm = one, where one is the 	%
%     constant value of type one, the function returns [].		%
% --------------------------------------------------------------------- %

let TUPLE_COMPS = 
    letrec generate th = 
       (let _,[f;s] = strip_comb(rand(concl th)) in
        let thm1 = ISPECL [f;s] FST in
        let thm = TRANS (AP_TERM (rator(lhs(concl thm1))) th) thm1 in
        let thm2 = ISPECL [f;s] SND in 
        let tthm = TRANS (AP_TERM (rator(lhs(concl thm2))) th) thm2 in
            thm . generate tthm) ? [th] in
    let onec = "one:one" in
    \th. rand(concl th) = onec => [] | generate th;;


% --------------------------------------------------------------------- %
% SIMP_CONV : simplifies the conditional expression on the right-hand  	%
% side of an equation.							%
% --------------------------------------------------------------------- %

let SIMP_CONV = 
    let itfn th1 th2 = MK_COMB(th2,th1) in
    \tm. let vs,(Leq,r) = (I # dest_comb) (strip_forall tm) in
         let thm1 = LIST_BETA_CONV r in
         let cond = rand(concl thm1) in
         let thm2 = TRANS thm1 (TEST_SIMP_CONV cond) in
         let [l1;lab;l2] = snd(strip_comb r) in
         let eqs1 = LIST_ELS l1 and eqs3 = LIST_ELS l2 in
         let eqs2 = TUPLE_COMPS (GEN_PROJ_CONV lab) in
	 let fn = fst(strip_comb(rand(concl thm2))) in
         let thm3 = rev_itlist itfn (eqs1 @ eqs2 @ eqs3) (REFL fn) in 
	 let thm = TRANS thm2 thm3 in
             itlist FORALL_EQ vs (AP_TERM Leq thm);;

% --------------------------------------------------------------------- %
% SIMPLIFY : simplifies the type axiom into its final form.		%
% --------------------------------------------------------------------- %

let SIMPLIFY = 
    let mkconj = let AND = "/\" in \t1 t2. MK_COMB(AP_TERM AND t1,t2) in
    \th. let EU,(fn,body) = (I # dest_abs) (dest_comb (concl th)) in
         let thm = CONJS_CONV SIMP_CONV body in
             EQ_MP (AP_TERM EU (ABS fn thm)) th;;

% ===================================================================== %
% Now, the main program							%
% ===================================================================== %

% --------------------------------------------------------------------- %
% define_type: construct a user-specified concrete recursive type and   %
% derive an abstract characterization of it.				%
%									%
% E.g. define_type name `ty = C1 * | C2 ty * | C3 ty ty` defines:	%
%									%
%	1) a type operator (*)ty					%
%	2) constants C1:*->(*)ty, 					%
%		     C2:(*)ty->*->(*)ty,				%
%		     C3:(*)ty->(*)ty->(*)ty				%
%									%
% and proves that ty has the following property:			%
%									%
%	|- !f0 f1 f2. ?!fn.						%
%             (!x. fn(C1 x) = f0 x) /\					%
%             (!x t. fn(C2 t x) = f1(fn t)x t) /\              		%
%	      (!t t'. fn(C3 t t') = f2(fn t)(fn t')t t')		%
%									%
% the axiom is stored under "name" and is returned.			%
% --------------------------------------------------------------------- %

let define_type = 
    let TYDEFTHM = theorem `tydefs` `TY_DEF_THM` in
    \savename spec.
      let name,cs,atys = (I # split) (parse_input spec) in
      let isodef = name ^ `_ISO_DEF` in
      if is_axiom (current_theory(),isodef) then 	
         failwith `"` ^ isodef ^ `" already an axiom or definition` else
      let ABS = `ABS_` ^ name and REP = `REP_` ^ name in
      if (is_constant ABS) then failwith ABS ^ ` is already a constant` else
      if (is_constant REP) then failwith REP ^ ` is already a constant` else
      if can (theorem (current_theory())) savename then 
         failwith `"` ^ savename ^ `" already a theorem in current thy` else
      let pred = mk_subset_pred atys in
      let eth = prove_existence_thm pred in
      let predtm = rator(snd(dest_exists(concl eth))) in
      let tyax = new_type_definition(name, predtm, eth) in
      let ARth = define_new_type_bijections isodef ABS REP tyax in
      let rty = hd(snd(dest_type(type_of pred))) in
      let newty = hd(snd(dest_type(type_of(fst(dest_exists(concl tyax)))))) in
      let resty = variant_tyvar (type_tyvars rty) [`*`] in
      let Pthm = INST_TYPE [rty,":*";newty,":**";resty,":***"] TYDEFTHM in
      let A,R = let _,AR = dest_forall(rand(rator(concl ARth))) in
   	           (I # rator) (dest_comb(lhs AR)) in
      let Sthm = MP (SPEC pred (SPEC A (SPEC R Pthm))) ARth in
      let f,trans = TRANSFORM R Sthm in
      let defns = DEFINE_CONSTRUCTORS cs atys trans in
      let fs,funct = make_function atys defns in
      let newfs = INST [funct,f] defns in
      let abstax = GENL fs (SIMPLIFY newfs) in
          save_thm(savename,abstax);;

% --------------------------------------------------------------------- %
% Bind the value of define_type to "it".				%
% --------------------------------------------------------------------- %
define_type;;

% --------------------------------------------------------------------- %
% end the section.							%
% --------------------------------------------------------------------- %
end_section define_type;; 

% --------------------------------------------------------------------- %
% Save define_type.							%
% --------------------------------------------------------------------- %
let define_type = it;;


% ===================================================================== %
%< TESTS:

new_theory `temp`;;

let void_Axiom = define_type `void_Axiom` `void = Void`;;

let pair = define_type `pair` `pair = CONST *#**`;;

let onetest = define_type `onetest` `onetest = OOOO one`;;

let tri_Axiom =  define_type `tri_Axiom` `tri = Hi | Lo | Fl`;;

let iso_Axiom =  define_type `iso_Axiom` `iso = ISO *`;;

let List_Axiom = define_type `List_Axiom` `List = Nil | Cons * List`;;

let ty_Axiom =   
    define_type `ty_Axiom` 
	        `ty = C1 * | C2 | C3 * ** ty | C4 ty *** ty * ** | C5 ty ty`;;

define_type `bintree` `bintree = LEAF * | TREE bintree bintree`;;

define_type `seven` 
     `typ = C one one#one (one->(one->(*)list)) (*,one#one,(*)list)ty`;;

								       >%
% ===================================================================== %