/usr/share/hol88-2.02.19940316/ml/tyfns.ml is in hol88-source 2.02.19940316-28.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 | %=============================================================================%
% HOL 88 Version 2.0 %
% %
% FILE NAME: tyfns.ml %
% %
% DESCRIPTION: Auxiliary programs for recursive types. %
% AUTHOR: T. F. Melham (87.08.23) %
% %
% University of Cambridge %
% Hardware Verification Group %
% Computer Laboratory %
% New Museums Site %
% Pembroke Street %
% Cambridge CB2 3QG %
% England %
% %
% COPYRIGHT: T. F. Melham 1987 %
% %
% REVISION HISTORY: 90.06.28 %
%=============================================================================%
if compiling then loadf `ml/prim_rec`;;
% ===================================================================== %
% STRUCTURAL INDUCTION %
% ===================================================================== %
begin_section prove_induction_thm;;
% --------------------------------------------------------------------- %
% Internal function: UNIQUENESS %
% %
% This function derives uniqueness from unique existence: %
% %
% |- ?!x. P[x] %
% --------------------------------------- %
% |- !v1 v2. P[v1] /\ P[v2] ==> (v1=v2) %
% %
% The variables v1 and v2 are genvars. %
% --------------------------------------------------------------------- %
let UNIQUENESS =
let EXISTS_UNIQUE_DEF = definition `bool` `EXISTS_UNIQUE_DEF` in
let P = "P:*->bool" and v1 = genvar ":*" and v2 = genvar ":*" in
let th1 = SPEC P (CONV_RULE (X_FUN_EQ_CONV P) EXISTS_UNIQUE_DEF) in
let th2 = CONJUNCT2(UNDISCH(fst(EQ_IMP_RULE(RIGHT_BETA th1)))) in
let imp = GEN P (DISCH "$?! ^P" (SPECL [v1;v2] th2)) in
let AND = let f = "$/\" in \(e1,e2). MK_COMB((AP_TERM f e1),e2) in
let conv tm = AND ((BETA_CONV # BETA_CONV) (dest_conj tm)) and
check = assert \c. (fst(dest_const c) = `?!`) and
v = genvar ":bool" in
\th. let _,(x,body) = (check # dest_abs) (dest_comb (concl th)) in
let ty = type_of x in
let uniq = MP (SPEC(mk_abs(x,body)) (INST_TYPE [ty,":*"] imp)) th in
let V1,V2 = let i = inst [] [ty,":*"] in (i v1,i v2) in
let red = conv (fst(dest_imp(concl uniq))) in
GEN V1 (GEN V2(SUBST [red,v] (mk_imp(v,mk_eq(V1,V2))) uniq));;
% --------------------------------------------------------------------- %
% Internal function: DEPTH_FORALL_CONV %
% %
% DEPTH_FORALL_CONV conv "!x1...xn. tm" applies the conversion conv to %
% the term tm to yield |- tm = tm', and then returns: %
% %
% |- (!x1...xn. tm) = (!x1...xn. tm') %
% %
% --------------------------------------------------------------------- %
let DEPTH_FORALL_CONV conv tm =
let vs,th = (I # conv) (strip_forall tm) in itlist FORALL_EQ vs th;;
% --------------------------------------------------------------------- %
% Internal function: CONJS_CONV %
% %
% CONJS_CONV conv "t1 /\ t2 /\ ... /\ tn" applies conv to each of the %
% n conjuncts t1,t2,...,tn and then rebuilds the conjunction from the %
% results. %
% %
% --------------------------------------------------------------------- %
letrec CONJS_CONV conv tm =
(let c,cs = (conv # CONJS_CONV conv) (dest_conj tm) in
MK_COMB((AP_TERM "$/\" c),cs)) ? conv tm;;
% --------------------------------------------------------------------- %
% Internal function: CONJS_SIMP %
% %
% CONJS_SIMP conv "t1 /\ t2 /\ ... /\ tn" applies conv to each of the %
% n conjuncts t1,t2,...,tn. This should reduce each ti to "T". I.e. %
% executing conv ti should return |- ti = T. The result returned by %
% CONJS_SIMP is then: |- (t1 /\ t2 /\ ... /\ tn) = T %
% %
% --------------------------------------------------------------------- %
let CONJS_SIMP =
let T_AND_T = CONJUNCT1 (SPEC "T" AND_CLAUSES) in
letrec simp conv tm =
(let c,cs = (conv # simp conv) (dest_conj tm) in
(MK_COMB((AP_TERM "$/\" c),cs)) TRANS T_AND_T) ? conv tm in
simp;;
% --------------------------------------------------------------------- %
% Internal function: T_AND_CONV %
% %
% T_AND_CONV "T /\ t" returns |- T /\ t = t %
% %
% --------------------------------------------------------------------- %
let T_AND_CONV =
let T_AND = GEN_ALL (CONJUNCT1 (SPEC_ALL AND_CLAUSES)) in
\tm. let t = snd(dest_conj tm) in SPEC t T_AND;;
% --------------------------------------------------------------------- %
% Internal function: GENL_T %
% %
% GENL_T [x1;...;xn] returns |- (!x1...xn.T) = T %
% %
% --------------------------------------------------------------------- %
let GENL_T l =
if (null l) then REFL "T" else
let gen = list_mk_forall(l,"T") in
let imp1 = DISCH gen (SPECL l (ASSUME gen)) and
imp2 = DISCH "T" (GENL l (ASSUME "T")) in
IMP_ANTISYM_RULE imp1 imp2;;
% --------------------------------------------------------------------- %
% Internal function: SIMP_CONV %
% %
% SIMP_CONV is used by prove_induction_thm to simplify to "T" terms of %
% the following two forms: %
% %
% 1: !x1...xn. (\x.T)v = (\x1...xn.T) x1 ... xn %
% %
% 2: !x1...xn. (\x.T)v = %
% (\y1...ym x1..xn. (y1 /\.../\ ym) \/ t) ((\x.T)u1)...((\x.T)um) %
% x1 ... xn %
% %
% If tm, a term of one of these two forms, is the argument to SIMP_CONV %
% then the theorem returned is |- tm = T. %
% --------------------------------------------------------------------- %
let SIMP_CONV =
let DISJ_SIMP =
let v = genvar ":bool" and tr = "T" in
let T_OR = GEN v (CONJUNCT1 (SPEC v OR_CLAUSES)) in
\tm. let cs,ds = (dest_disj tm) in
let eqn = SYM(CONJS_SIMP BETA_CONV cs) in
SUBST [eqn,v] (mk_eq((mk_disj(v,ds)),tr)) (SPEC ds T_OR) in
let eq = "$=:bool->bool->bool" and T_EQ_T = EQT_INTRO(REFL "T") in
\tm. let vs,l,r = (I # dest_eq) (strip_forall tm) in
let rsimp = (LIST_BETA_CONV THENC (DISJ_SIMP ORELSEC REFL)) r and
lsimp = AP_TERM eq (BETA_CONV l) and
gent = GENL_T vs in
let eqsimp = (MK_COMB(lsimp,rsimp)) TRANS T_EQ_T in
(itlist FORALL_EQ vs eqsimp) TRANS gent;;
% --------------------------------------------------------------------- %
% Internal function: HYP_SIMP %
% %
% HYP_SIMP is used by prove_induction_thm to simplify induction %
% hypotheses according to the following scheme: %
% %
% 1: !x1...xn. P t = (\x1...xn.T) x1...xn %
% %
% simplifies to %
% %
% !x1...xn. P t %
% %
% 2: !x1...xn. P t = %
% (\y1..ym x1..xn. y1 /\ ... /\ ym) \/ P t) v1 ... vm x1 ... xn %
% %
% simplifies to %
% %
% !x1...xn. (v1 /\ ... /\ vm) ==> P t %
% %
% --------------------------------------------------------------------- %
let HYP_SIMP =
let R_SIMP =
let v = genvar ":bool" and tr = "T" in
let EQ_T = GEN v (CONJUNCT1 (CONJUNCT2 (SPEC v EQ_CLAUSES))) in
\tm. let l,r = dest_eq tm in
if (r = tr) then SPEC l EQ_T else
let cs = fst(dest_disj r) in SPECL [l;cs] OR_IMP_THM in
let eq = "$=:bool->bool->bool" in
\tm. let vs,l,r = (I # dest_eq) (strip_forall tm) in
let eqsimp = AP_TERM (mk_comb(eq,l)) (LIST_BETA_CONV r) in
let rsimp = CONV_RULE (RAND_CONV R_SIMP) eqsimp in
(itlist FORALL_EQ vs rsimp);;
% --------------------------------------------------------------------- %
% Internal function: ANTE_ALL_CONV %
% %
% ANTE_ALL_CONV "!x1...xn. P ==> Q" restricts the scope of as many of %
% the quantified x's as possible to the term Q. %
% --------------------------------------------------------------------- %
let ANTE_ALL_CONV tm =
let vs,hy,c = (I # dest_imp) (strip_forall tm) in
let ov,iv = partition (C free_in hy) vs in
let thm1 = GENL iv (UNDISCH (SPECL vs (ASSUME tm))) in
let thm2 = GENL ov (DISCH hy thm1) in
let asm = concl thm2 in
let thm3 = SPECL iv (UNDISCH (SPECL ov (ASSUME asm))) in
let thm4 = GENL vs (DISCH hy thm3) in
IMP_ANTISYM_RULE (DISCH tm thm2) (DISCH asm thm4);;
% --------------------------------------------------------------------- %
% Internal function: CONCL_SIMP %
% %
% CONCL_SIMP "\x.T = P" returns: |- (\x.T = P) = (!y. P y) where y is %
% an appropriately chosen variable. %
% --------------------------------------------------------------------- %
let CONCL_SIMP =
let v = genvar ":bool" in
let T_EQ = GEN v (CONJUNCT1 (SPEC v EQ_CLAUSES)) in
\tm. let eq = FUN_EQ_CONV tm in
let y,ap,bd = (I # dest_eq)(dest_forall(rhs(concl eq))) in
let eqn = RATOR_CONV(RAND_CONV BETA_CONV) (mk_eq(ap,bd)) and
simp = SPEC bd T_EQ in
eq TRANS (FORALL_EQ y (eqn TRANS simp));;
% --------------------------------------------------------------------- %
% prove_induction_thm: prove a structural induction theorem from a type %
% axiom of the form returned by define_type. %
% %
% EXAMPLE: %
% %
% Input: %
% %
% |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) %
% %
% Output: %
% %
% |- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l) %
% %
% --------------------------------------------------------------------- %
let prove_induction_thm =
letrec gen n = if (n=0) then [] else (genvar ":bool" . gen (n-1)) in
let mk_fn P ty tm =
let body = snd(strip_forall tm) in
let c,args = (rand # (snd o strip_comb))(dest_eq body) in
let vars = filter is_var args in
let n = length(filter (\t.type_of t = ty) vars) in
if (n=0) then list_mk_abs (vars, "T") else
let bools = gen n in
let term = mk_disj (list_mk_conj bools,mk_comb(P,c)) in
list_mk_abs((bools @ vars),term) in
let LCONV = RATOR_CONV o RAND_CONV in
let conv1 = LCONV(CONJS_SIMP SIMP_CONV) THENC T_AND_CONV and
conv2 = CONJS_CONV (HYP_SIMP THENC TRY_CONV ANTE_ALL_CONV) in
\th. (let fn,body = dest_abs(rand(snd(strip_forall(concl th)))) in
let [ty;rty] = snd(dest_type (type_of fn)) in
let inst = INST_TYPE [":bool",rty] th in
let P = mk_primed_var(`P`,mk_type(`fun`,[ty;":bool"])) and
v = genvar ty and cases = conjuncts body in
let uniq = let vs,tm = strip_forall(concl inst) in
let thm = UNIQUENESS(SPECL vs inst) in
GENL vs (SPECL [mk_abs(v,"T");P] thm) in
let spec = SPECL (map (mk_fn P ty) cases) uniq in
let simp = CONV_RULE (LCONV(conv1 THENC conv2)) spec in
GEN P (CONV_RULE (RAND_CONV CONCL_SIMP) simp)) ?
failwith `prove_induction_thm`;;
% --------------------------------------------------------------------- %
% Bind the function prove_induction_thm to "it", so as to export it %
% outside the current section. %
% --------------------------------------------------------------------- %
prove_induction_thm;;
end_section prove_induction_thm;;
% --------------------------------------------------------------------- %
% Save the exported value of prove_induction_thm. %
% --------------------------------------------------------------------- %
let prove_induction_thm = it;;
% ===================================================================== %
% CASES FOR RECURSIVE TYPES %
% ===================================================================== %
begin_section prove_cases_thm;;
% --------------------------------------------------------------------- %
% Internal function: NOT_ALL_THENC %
% %
% This conversion first moves negation inwards through an arbitrary %
% number of nested universal quantifiers. It then applies the supplied %
% conversion to the resulting inner negation. For example if: %
% %
% conv "~tm" ---> |- ~tm = tm' %
% then %
% %
% NOT_ALL_THENC conv "~(!x1 ... xn. tm)" %
% %
% yields: %
% %
% |- ~(!x1...xn.tm) = ?x1...xn.tm' %
% --------------------------------------------------------------------- %
letrec NOT_ALL_THENC conv tm =
(NOT_FORALL_CONV THENC (RAND_CONV (ABS_CONV (NOT_ALL_THENC conv)))) tm
? (conv tm);;
% --------------------------------------------------------------------- %
% Internal function: BASE_CONV %
% %
% This conversion does the following simplification: %
% %
% BASE_CONV "~((\x.~tm)y)" ---> |- ~((\x.~tm)y) = tm[y/x] %
% %
% --------------------------------------------------------------------- %
let BASE_CONV =
let NOT_NOT = CONJUNCT1 NOT_CLAUSES and neg = "$~" in
\tm. let beta = BETA_CONV (dest_neg tm) in
let simp = SPEC (rand(rhs(concl beta))) NOT_NOT in
TRANS (AP_TERM neg beta) simp;;
% --------------------------------------------------------------------- %
% Internal function: STEP_CONV %
% %
% This conversion does the following simplification: %
% %
% STEP_CONV "~(tm' ==> !x1..xn.(\x.~tm)z" %
% %
% yields: %
% %
% |- ~(tm' ==> !x1..xn.(\x.~tm)z = tm' /\ ?x1..xn.tm[z/x] %
% --------------------------------------------------------------------- %
let STEP_CONV =
let v1 = genvar ":bool" and v2 = genvar ":bool" in
\tm. let a,c = dest_imp(dest_neg tm) in
let th1 = SPEC c (SPEC a NOT_IMP) in
let simp = NOT_ALL_THENC BASE_CONV (mk_neg c) in
SUBST [simp,v2] (mk_eq(tm,mk_conj(a,v2))) th1;;
% --------------------------------------------------------------------- %
% Internal function: NOT_IN_CONV %
% %
% This first conversion moves negation inwards through conjunction and %
% universal quantification: %
% %
% NOT_IN_CONV "~(!x1..xn.c1 /\ ... /\ !x1..xm.cn)" %
% %
% to transform the input term into: %
% %
% ?x1..xn.~c1 \/ ... \/ ?x1..xm.~cn %
% %
% It then applies either BASE_CONV or STEP_CONV to each subterm ~ci. %
% --------------------------------------------------------------------- %
let NOT_IN_CONV =
let DE_MORG = GEN_ALL(CONJUNCT1(SPEC_ALL DE_MORGAN_THM)) and
cnv = BASE_CONV ORELSEC STEP_CONV and
v1 = genvar ":bool" and v2 = genvar ":bool" in
letrec conv tm =
(let c,cs = dest_conj(dest_neg tm) in
let thm = SPEC cs (SPEC c DE_MORG) in
let cth = NOT_ALL_THENC cnv (mk_neg c) and
csth = conv (mk_neg cs) in
SUBST [cth,v1;csth,v2] (mk_eq(tm,(mk_disj(v1,v2)))) thm) ?
NOT_ALL_THENC cnv tm in
conv;;
% --------------------------------------------------------------------- %
% Internal function: STEP_SIMP %
% %
% This rule does the following simplification: %
% %
% STEP_RULE "?x1..xi. tm1 /\ ?xj..xn. tm2" %
% %
% yields: %
% %
% ?x1..xi.tm1 /\ ?xj..xn.tm2 |- ?x1..xn.tm2 %
% %
% For input terms of other forms, the rule yields: %
% %
% STEP_RULE "tm" ---> tm |- tm %
% --------------------------------------------------------------------- %
let STEP_SIMP =
let EX tm th = EXISTS (mk_exists(tm,concl th),tm) th and
CH tm th = CHOOSE (tm,ASSUME (mk_exists(tm,hd(hyp th)))) th in
\tm. (let vs,body = strip_exists tm in
itlist (\t.CH t o EX t) vs (CONJUNCT2 (ASSUME body))) ?
ASSUME tm;;
% --------------------------------------------------------------------- %
% Internal function: DISJ_CHAIN %
% %
% Suppose that %
% %
% rule "tmi" ---> tmi |- tmi' (for 1 <= i <= n) %
% %
% then: %
% %
% |- tm1 \/ ... \/ tmn %
% --------------------------- DISJ_CHAIN rule %
% |- tm1' \/ ... \/ tmn' %
% --------------------------------------------------------------------- %
letrec DISJS_CHAIN rule th =
(let d1,d2 = dest_disj(concl th) in
let i1 = rule d1 and i2 = DISJS_CHAIN rule (ASSUME d2) in
DISJ_CASES th (DISJ1 i1 (concl i2)) (DISJ2 (concl i1) i2)) ?
MP (DISCH (concl th) (rule (concl th))) th;;
% --------------------------------------------------------------------- %
% prove_cases_thm: prove a cases or "exhaustion" theorem for a concrete %
% recursive type from a structural induction theorem of the form %
% returned by prove_induction_thm. %
% %
% EXAMPLE: %
% %
% Input: %
% %
% |- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l) %
% %
% Output: %
% %
% |- !l. (l = []) \/ (?t h. l = CONS h t) %
% %
% --------------------------------------------------------------------- %
let prove_cases_thm th =
(let x,P = dest_forall(snd(dest_imp(snd(dest_forall(concl th))))) in
let v = genvar (type_of x) in
let pred = mk_abs(v,mk_neg(mk_eq(x,v))) in
let th1 = CONV_RULE BETA_CONV (SPEC x (UNDISCH(SPEC pred th))) in
let th2 = NOT_INTRO (DISCH_ALL (NOT_MP th1 (REFL x))) in
let th3 = CONV_RULE NOT_IN_CONV th2 in
GEN x (DISJS_CHAIN STEP_SIMP th3)) ?
failwith `prove_cases_thm: invalid input theorem`;;
% --------------------------------------------------------------------- %
% Bind the function prove_cases_thm to "it", so as to export it %
% outside the current section. %
% --------------------------------------------------------------------- %
prove_cases_thm;;
end_section prove_cases_thm;;
% --------------------------------------------------------------------- %
% Save the exported value of prove_cases_thm. %
% --------------------------------------------------------------------- %
let prove_cases_thm = it;;
% ===================================================================== %
% PROOF THAT CONSTRUCTORS OF RECURSIVE TYPES ARE ONE-TO-ONE %
% ===================================================================== %
begin_section prove_constructors_one_one;;
% --------------------------------------------------------------------- %
% Internal function: PAIR_EQ_CONV %
% %
% A call to PAIR_EQ_CONV "(x1,...,xn) = (y1,...,yn)" returns: %
% %
% |- ((x1,...,xn) = (y1,...,yn)) = (x1 = y1) /\ ... /\ (xn = yn) %
% %
% --------------------------------------------------------------------- %
let PAIR_EQ_CONV =
let v = genvar ":bool" in
letrec conv tm =
(let (x,xs),(y,ys) = (dest_pair # dest_pair) (dest_eq tm) in
let xty = type_of x and xsty = type_of xs in
let thm = INST_TYPE [xty,":*";xsty,":**"] PAIR_EQ in
let spec = SPEC ys (SPEC y (SPEC xs (SPEC x thm))) in
let reqn = conv (mk_eq(xs,ys)) in
let pat = mk_eq(tm,mk_conj(mk_eq(x,y),v)) in
SUBST [reqn,v] pat spec) ? REFL tm in conv;;
% --------------------------------------------------------------------- %
% Internal function: list_variant %
% %
% makes variants of the variables in l2 such that they are all not in %
% l1 and are all different. %
% --------------------------------------------------------------------- %
letrec list_variant l1 l2 =
if (null l2) then [] else
(let v = variant l1 (hd l2) in
(v.list_variant (v.l1) (tl l2)));;
% --------------------------------------------------------------------- %
% Internal function: prove_const_one_one. %
% %
% This function proves that a single constructor of a recursive type is %
% one-to-one (it is called once for each appropriate constructor). The %
% theorem input, th, is the characterizing theorem for the recursive %
% type in question. The term, tm, is the defining equation for the %
% constructor in question, taken from the mody of the theorem th. %
% %
% For example, if: %
% %
% th = |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) %
% %
% and %
% %
% tm = "!h t. fn(CONS h t) = f(fn t)h t" %
% %
% then prove_const_one_one th tm yields: %
% %
% |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t') %
% %
% --------------------------------------------------------------------- %
let prove_const_one_one th tm =
let vs,l,r = (I # dest_eq)(strip_forall tm) in
let tup = end_itlist (curry mk_pair) (snd(strip_comb(rand l))) in
let tupty = type_of tup in
let eq = mk_eq(inst [] [tupty,type_of l] l, tup) in
let eqn = prove_rec_fn_exists th eq in
let vvs = list_variant vs vs in
let C = rand l and C' = subst (combine (vvs,vs)) (rand l) in
let vareqs = (list_mk_conj o (map mk_eq))
(combine (snd(strip_comb C),(snd(strip_comb C')))) in
let asms = combine(CONJUNCTS (ASSUME vareqs),snd(strip_comb C)) in
let imp1 = DISCH vareqs (SUBST_CONV asms C C) in
let fn,fndef = (I # ASSUME) (dest_exists(concl eqn)) in
let r1 = REWR_CONV fndef (mk_comb(fn,C)) and
r2 = REWR_CONV fndef (mk_comb(fn,C')) and
asm = AP_TERM fn (ASSUME (mk_eq(C,C'))) and
v1 = genvar tupty and v2 = genvar tupty in
let thm = (SUBST [r1,v1;r2,v2] (mk_eq(v1,v2)) asm) in
let aimp = DISCH (mk_eq(C,C')) (CONV_RULE PAIR_EQ_CONV thm) in
let imp2 = CHOOSE (fn,eqn) aimp in
GENL vs (GENL vvs (IMP_ANTISYM_RULE imp2 imp1)) ;;
% --------------------------------------------------------------------- %
% prove_constructors_one_one : prove that the constructors of a given %
% concrete recursive type are one-to-one. The input is a theorem of the %
% form returned by define_type. %
% %
% EXAMPLE: %
% %
% Input: %
% %
% |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) %
% %
% Output: %
% %
% |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t') %
% --------------------------------------------------------------------- %
let prove_constructors_one_one th =
(let eqns = conjuncts(snd(dest_abs(rand(snd(strip_forall(concl th)))))) in
let funs = filter (\tm.is_comb(rand(lhs(snd(strip_forall tm))))) eqns in
LIST_CONJ (map (prove_const_one_one th) funs)) ?
failwith `prove_constructors_one_one: invalid input theorem`;;
% --------------------------------------------------------------------- %
% Bind the function prove_constructors_one_one to "it", so as to export %
% it outside the current section. %
% --------------------------------------------------------------------- %
prove_constructors_one_one;;
end_section prove_constructors_one_one;;
% --------------------------------------------------------------------- %
% Save the exported value of prove_constructors_one_one. %
% --------------------------------------------------------------------- %
let prove_constructors_one_one = it;;
% ===================================================================== %
% DISTINCTNESS OF VALUES FOR EACH CONSTRUCTOR %
% ===================================================================== %
% --------------------------------------------------------------------- %
% prove_constructors_distinct : prove that the constructors of a given %
% recursive type yield distict (non-equal) values. %
% %
% EXAMPLE: %
% %
% Input: %
% %
% |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) %
% %
% Output: %
% %
% |- !h t. ~([] = CONS h t) %
% --------------------------------------------------------------------- %
let prove_constructors_distinct =
let NOT_SUC = theorem `num` `NOT_SUC` and
INV_SUC = theorem `num` `INV_SUC` in
letrec list_variant l1 l2 =
if (null l2) then [] else
(let v = variant l1 (hd l2) in
(v.list_variant (v.l1) (tl l2))) in
let SUC = "SUC" and zero = "0" and
lemma = GEN_ALL(NOT_ELIM(NOT_EQ_SYM(SPEC_ALL NOT_SUC))) in
letrec geneqs ls t =
let vars,l,r = (I # dest_eq) (strip_forall(hd ls)) in
if (null(tl ls)) then [],mk_eq(l,t) else
let rl,tm = geneqs(tl ls) (mk_comb(SUC,t)) in
((t.rl), mk_conj (mk_eq(l,t),tm)) in
letrec step ths =
if (null (tl ths)) then [] else
let [l;r] = snd(strip_comb(fst(dest_imp(concl (hd ths))))) in
let th = IMP_TRANS (SPEC r (SPEC l INV_SUC)) (hd ths) in
th. (step (tl ths)) in
letrec mk_rot ths =
if (null ths) then [] else ths. mk_rot (step ths) in
let rule fn eth th =
let asm = (mk_eq o (rand # rand))(dest_eq(fst(dest_imp(concl th)))) in
let imp = (IMP_TRANS (DISCH asm (AP_TERM fn (ASSUME asm))) th) in
GEN_ALL (NOT_INTRO(CHOOSE (fn,eth) imp)) in
let gv1 = genvar ":num" and gv2 = genvar ":num" in
let pat = mk_imp(mk_eq(gv1,gv2),"F") in
letrec subsfn rul eq eqs l acc =
if (null l) then acc else
let vs = frees (rand(rhs(concl eq))) and
nvs = frees (rand(rhs(concl(hd eqs)))) in
let eqn = INST (combine ((list_variant vs nvs),nvs)) (hd eqs) in
let rnum = rhs(fst(dest_imp(concl (hd l)))) in
let thm = SUBST [eq,gv1;eqn,gv2] pat (hd l) in
(rul thm).(subsfn rul eq (tl eqs) (tl l) acc) in
letrec subs rul (eq.eqs) eqls =
null eqls => [] |
subsfn rul eq eqs (hd eqls) (subs rul eqs (tl eqls)) in
\th. (let fn,body = dest_abs(rand(snd(strip_forall(concl th)))) in
let _,[_;ty] = dest_type(type_of fn) in
let eqns = conjuncts(inst [] [mk_type(`num`,[]),ty] body) in
if (null(tl eqns)) then fail else
let nums,eqs = (geneqs eqns zero) in
let eth = prove_rec_fn_exists th eqs in
let rots = mk_rot (map (C SPEC lemma) nums) in
let fn,asm = dest_exists(concl eth) in
let fneqs = map (SYM o SPEC_ALL) (CONJUNCTS (ASSUME asm)) in
LIST_CONJ (subs (rule fn eth) fneqs rots)) ?
failwith `prove_constructors_distinct: invalid input`;;
|