/usr/include/asio/io_service.hpp is in libasio-dev 1:1.10.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 | //
// io_service.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_IO_SERVICE_HPP
#define ASIO_IO_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include <stdexcept>
#include <typeinfo>
#include "asio/async_result.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/wrapped_handler.hpp"
#include "asio/error_code.hpp"
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
# include "asio/detail/winsock_init.hpp"
#elif defined(__sun) || defined(__QNX__) || defined(__hpux) || defined(_AIX) \
|| defined(__osf__)
# include "asio/detail/signal_init.hpp"
#endif
#include "asio/detail/push_options.hpp"
namespace asio {
class io_service;
template <typename Service> Service& use_service(io_service& ios);
template <typename Service> void add_service(io_service& ios, Service* svc);
template <typename Service> bool has_service(io_service& ios);
namespace detail {
#if defined(ASIO_HAS_IOCP)
typedef class win_iocp_io_service io_service_impl;
class win_iocp_overlapped_ptr;
#else
typedef class task_io_service io_service_impl;
#endif
class service_registry;
} // namespace detail
/// Provides core I/O functionality.
/**
* The io_service class provides the core I/O functionality for users of the
* asynchronous I/O objects, including:
*
* @li asio::ip::tcp::socket
* @li asio::ip::tcp::acceptor
* @li asio::ip::udp::socket
* @li asio::deadline_timer.
*
* The io_service class also includes facilities intended for developers of
* custom asynchronous services.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Safe, with the specific exceptions of the reset() and
* notify_fork() functions. Calling reset() while there are unfinished run(),
* run_one(), poll() or poll_one() calls results in undefined behaviour. The
* notify_fork() function should not be called while any io_service function,
* or any function on an I/O object that is associated with the io_service, is
* being called in another thread.
*
* @par Concepts:
* Dispatcher.
*
* @par Synchronous and asynchronous operations
*
* Synchronous operations on I/O objects implicitly run the io_service object
* for an individual operation. The io_service functions run(), run_one(),
* poll() or poll_one() must be called for the io_service to perform
* asynchronous operations on behalf of a C++ program. Notification that an
* asynchronous operation has completed is delivered by invocation of the
* associated handler. Handlers are invoked only by a thread that is currently
* calling any overload of run(), run_one(), poll() or poll_one() for the
* io_service.
*
* @par Effect of exceptions thrown from handlers
*
* If an exception is thrown from a handler, the exception is allowed to
* propagate through the throwing thread's invocation of run(), run_one(),
* poll() or poll_one(). No other threads that are calling any of these
* functions are affected. It is then the responsibility of the application to
* catch the exception.
*
* After the exception has been caught, the run(), run_one(), poll() or
* poll_one() call may be restarted @em without the need for an intervening
* call to reset(). This allows the thread to rejoin the io_service object's
* thread pool without impacting any other threads in the pool.
*
* For example:
*
* @code
* asio::io_service io_service;
* ...
* for (;;)
* {
* try
* {
* io_service.run();
* break; // run() exited normally
* }
* catch (my_exception& e)
* {
* // Deal with exception as appropriate.
* }
* }
* @endcode
*
* @par Stopping the io_service from running out of work
*
* Some applications may need to prevent an io_service object's run() call from
* returning when there is no more work to do. For example, the io_service may
* be being run in a background thread that is launched prior to the
* application's asynchronous operations. The run() call may be kept running by
* creating an object of type asio::io_service::work:
*
* @code asio::io_service io_service;
* asio::io_service::work work(io_service);
* ... @endcode
*
* To effect a shutdown, the application will then need to call the io_service
* object's stop() member function. This will cause the io_service run() call
* to return as soon as possible, abandoning unfinished operations and without
* permitting ready handlers to be dispatched.
*
* Alternatively, if the application requires that all operations and handlers
* be allowed to finish normally, the work object may be explicitly destroyed.
*
* @code asio::io_service io_service;
* auto_ptr<asio::io_service::work> work(
* new asio::io_service::work(io_service));
* ...
* work.reset(); // Allow run() to exit. @endcode
*
* @par The io_service class and I/O services
*
* Class io_service implements an extensible, type-safe, polymorphic set of I/O
* services, indexed by service type. An object of class io_service must be
* initialised before I/O objects such as sockets, resolvers and timers can be
* used. These I/O objects are distinguished by having constructors that accept
* an @c io_service& parameter.
*
* I/O services exist to manage the logical interface to the operating system on
* behalf of the I/O objects. In particular, there are resources that are shared
* across a class of I/O objects. For example, timers may be implemented in
* terms of a single timer queue. The I/O services manage these shared
* resources.
*
* Access to the services of an io_service is via three function templates,
* use_service(), add_service() and has_service().
*
* In a call to @c use_service<Service>(), the type argument chooses a service,
* making available all members of the named type. If @c Service is not present
* in an io_service, an object of type @c Service is created and added to the
* io_service. A C++ program can check if an io_service implements a
* particular service with the function template @c has_service<Service>().
*
* Service objects may be explicitly added to an io_service using the function
* template @c add_service<Service>(). If the @c Service is already present, the
* service_already_exists exception is thrown. If the owner of the service is
* not the same object as the io_service parameter, the invalid_service_owner
* exception is thrown.
*
* Once a service reference is obtained from an io_service object by calling
* use_service(), that reference remains usable as long as the owning io_service
* object exists.
*
* All I/O service implementations have io_service::service as a public base
* class. Custom I/O services may be implemented by deriving from this class and
* then added to an io_service using the facilities described above.
*/
class io_service
: private noncopyable
{
private:
typedef detail::io_service_impl impl_type;
#if defined(ASIO_HAS_IOCP)
friend class detail::win_iocp_overlapped_ptr;
#endif
public:
class work;
friend class work;
class id;
class service;
class strand;
/// Constructor.
ASIO_DECL io_service();
/// Constructor.
/**
* Construct with a hint about the required level of concurrency.
*
* @param concurrency_hint A suggestion to the implementation on how many
* threads it should allow to run simultaneously.
*/
ASIO_DECL explicit io_service(std::size_t concurrency_hint);
/// Destructor.
/**
* On destruction, the io_service performs the following sequence of
* operations:
*
* @li For each service object @c svc in the io_service set, in reverse order
* of the beginning of service object lifetime, performs
* @c svc->shutdown_service().
*
* @li Uninvoked handler objects that were scheduled for deferred invocation
* on the io_service, or any associated strand, are destroyed.
*
* @li For each service object @c svc in the io_service set, in reverse order
* of the beginning of service object lifetime, performs
* <tt>delete static_cast<io_service::service*>(svc)</tt>.
*
* @note The destruction sequence described above permits programs to
* simplify their resource management by using @c shared_ptr<>. Where an
* object's lifetime is tied to the lifetime of a connection (or some other
* sequence of asynchronous operations), a @c shared_ptr to the object would
* be bound into the handlers for all asynchronous operations associated with
* it. This works as follows:
*
* @li When a single connection ends, all associated asynchronous operations
* complete. The corresponding handler objects are destroyed, and all
* @c shared_ptr references to the objects are destroyed.
*
* @li To shut down the whole program, the io_service function stop() is
* called to terminate any run() calls as soon as possible. The io_service
* destructor defined above destroys all handlers, causing all @c shared_ptr
* references to all connection objects to be destroyed.
*/
ASIO_DECL ~io_service();
/// Run the io_service object's event processing loop.
/**
* The run() function blocks until all work has finished and there are no
* more handlers to be dispatched, or until the io_service has been stopped.
*
* Multiple threads may call the run() function to set up a pool of threads
* from which the io_service may execute handlers. All threads that are
* waiting in the pool are equivalent and the io_service may choose any one
* of them to invoke a handler.
*
* A normal exit from the run() function implies that the io_service object
* is stopped (the stopped() function returns @c true). Subsequent calls to
* run(), run_one(), poll() or poll_one() will return immediately unless there
* is a prior call to reset().
*
* @return The number of handlers that were executed.
*
* @throws asio::system_error Thrown on failure.
*
* @note The run() function must not be called from a thread that is currently
* calling one of run(), run_one(), poll() or poll_one() on the same
* io_service object.
*
* The poll() function may also be used to dispatch ready handlers, but
* without blocking.
*/
ASIO_DECL std::size_t run();
/// Run the io_service object's event processing loop.
/**
* The run() function blocks until all work has finished and there are no
* more handlers to be dispatched, or until the io_service has been stopped.
*
* Multiple threads may call the run() function to set up a pool of threads
* from which the io_service may execute handlers. All threads that are
* waiting in the pool are equivalent and the io_service may choose any one
* of them to invoke a handler.
*
* A normal exit from the run() function implies that the io_service object
* is stopped (the stopped() function returns @c true). Subsequent calls to
* run(), run_one(), poll() or poll_one() will return immediately unless there
* is a prior call to reset().
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of handlers that were executed.
*
* @note The run() function must not be called from a thread that is currently
* calling one of run(), run_one(), poll() or poll_one() on the same
* io_service object.
*
* The poll() function may also be used to dispatch ready handlers, but
* without blocking.
*/
ASIO_DECL std::size_t run(asio::error_code& ec);
/// Run the io_service object's event processing loop to execute at most one
/// handler.
/**
* The run_one() function blocks until one handler has been dispatched, or
* until the io_service has been stopped.
*
* @return The number of handlers that were executed. A zero return value
* implies that the io_service object is stopped (the stopped() function
* returns @c true). Subsequent calls to run(), run_one(), poll() or
* poll_one() will return immediately unless there is a prior call to
* reset().
*
* @throws asio::system_error Thrown on failure.
*/
ASIO_DECL std::size_t run_one();
/// Run the io_service object's event processing loop to execute at most one
/// handler.
/**
* The run_one() function blocks until one handler has been dispatched, or
* until the io_service has been stopped.
*
* @return The number of handlers that were executed. A zero return value
* implies that the io_service object is stopped (the stopped() function
* returns @c true). Subsequent calls to run(), run_one(), poll() or
* poll_one() will return immediately unless there is a prior call to
* reset().
*
* @return The number of handlers that were executed.
*/
ASIO_DECL std::size_t run_one(asio::error_code& ec);
/// Run the io_service object's event processing loop to execute ready
/// handlers.
/**
* The poll() function runs handlers that are ready to run, without blocking,
* until the io_service has been stopped or there are no more ready handlers.
*
* @return The number of handlers that were executed.
*
* @throws asio::system_error Thrown on failure.
*/
ASIO_DECL std::size_t poll();
/// Run the io_service object's event processing loop to execute ready
/// handlers.
/**
* The poll() function runs handlers that are ready to run, without blocking,
* until the io_service has been stopped or there are no more ready handlers.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of handlers that were executed.
*/
ASIO_DECL std::size_t poll(asio::error_code& ec);
/// Run the io_service object's event processing loop to execute one ready
/// handler.
/**
* The poll_one() function runs at most one handler that is ready to run,
* without blocking.
*
* @return The number of handlers that were executed.
*
* @throws asio::system_error Thrown on failure.
*/
ASIO_DECL std::size_t poll_one();
/// Run the io_service object's event processing loop to execute one ready
/// handler.
/**
* The poll_one() function runs at most one handler that is ready to run,
* without blocking.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of handlers that were executed.
*/
ASIO_DECL std::size_t poll_one(asio::error_code& ec);
/// Stop the io_service object's event processing loop.
/**
* This function does not block, but instead simply signals the io_service to
* stop. All invocations of its run() or run_one() member functions should
* return as soon as possible. Subsequent calls to run(), run_one(), poll()
* or poll_one() will return immediately until reset() is called.
*/
ASIO_DECL void stop();
/// Determine whether the io_service object has been stopped.
/**
* This function is used to determine whether an io_service object has been
* stopped, either through an explicit call to stop(), or due to running out
* of work. When an io_service object is stopped, calls to run(), run_one(),
* poll() or poll_one() will return immediately without invoking any
* handlers.
*
* @return @c true if the io_service object is stopped, otherwise @c false.
*/
ASIO_DECL bool stopped() const;
/// Reset the io_service in preparation for a subsequent run() invocation.
/**
* This function must be called prior to any second or later set of
* invocations of the run(), run_one(), poll() or poll_one() functions when a
* previous invocation of these functions returned due to the io_service
* being stopped or running out of work. After a call to reset(), the
* io_service object's stopped() function will return @c false.
*
* This function must not be called while there are any unfinished calls to
* the run(), run_one(), poll() or poll_one() functions.
*/
ASIO_DECL void reset();
/// Request the io_service to invoke the given handler.
/**
* This function is used to ask the io_service to execute the given handler.
*
* The io_service guarantees that the handler will only be called in a thread
* in which the run(), run_one(), poll() or poll_one() member functions is
* currently being invoked. The handler may be executed inside this function
* if the guarantee can be met.
*
* @param handler The handler to be called. The io_service will make
* a copy of the handler object as required. The function signature of the
* handler must be: @code void handler(); @endcode
*
* @note This function throws an exception only if:
*
* @li the handler's @c asio_handler_allocate function; or
*
* @li the handler's copy constructor
*
* throws an exception.
*/
template <typename CompletionHandler>
ASIO_INITFN_RESULT_TYPE(CompletionHandler, void ())
dispatch(ASIO_MOVE_ARG(CompletionHandler) handler);
/// Request the io_service to invoke the given handler and return immediately.
/**
* This function is used to ask the io_service to execute the given handler,
* but without allowing the io_service to call the handler from inside this
* function.
*
* The io_service guarantees that the handler will only be called in a thread
* in which the run(), run_one(), poll() or poll_one() member functions is
* currently being invoked.
*
* @param handler The handler to be called. The io_service will make
* a copy of the handler object as required. The function signature of the
* handler must be: @code void handler(); @endcode
*
* @note This function throws an exception only if:
*
* @li the handler's @c asio_handler_allocate function; or
*
* @li the handler's copy constructor
*
* throws an exception.
*/
template <typename CompletionHandler>
ASIO_INITFN_RESULT_TYPE(CompletionHandler, void ())
post(ASIO_MOVE_ARG(CompletionHandler) handler);
/// Create a new handler that automatically dispatches the wrapped handler
/// on the io_service.
/**
* This function is used to create a new handler function object that, when
* invoked, will automatically pass the wrapped handler to the io_service
* object's dispatch function.
*
* @param handler The handler to be wrapped. The io_service will make a copy
* of the handler object as required. The function signature of the handler
* must be: @code void handler(A1 a1, ... An an); @endcode
*
* @return A function object that, when invoked, passes the wrapped handler to
* the io_service object's dispatch function. Given a function object with the
* signature:
* @code R f(A1 a1, ... An an); @endcode
* If this function object is passed to the wrap function like so:
* @code io_service.wrap(f); @endcode
* then the return value is a function object with the signature
* @code void g(A1 a1, ... An an); @endcode
* that, when invoked, executes code equivalent to:
* @code io_service.dispatch(boost::bind(f, a1, ... an)); @endcode
*/
template <typename Handler>
#if defined(GENERATING_DOCUMENTATION)
unspecified
#else
detail::wrapped_handler<io_service&, Handler>
#endif
wrap(Handler handler);
/// Fork-related event notifications.
enum fork_event
{
/// Notify the io_service that the process is about to fork.
fork_prepare,
/// Notify the io_service that the process has forked and is the parent.
fork_parent,
/// Notify the io_service that the process has forked and is the child.
fork_child
};
/// Notify the io_service of a fork-related event.
/**
* This function is used to inform the io_service that the process is about
* to fork, or has just forked. This allows the io_service, and the services
* it contains, to perform any necessary housekeeping to ensure correct
* operation following a fork.
*
* This function must not be called while any other io_service function, or
* any function on an I/O object associated with the io_service, is being
* called in another thread. It is, however, safe to call this function from
* within a completion handler, provided no other thread is accessing the
* io_service.
*
* @param event A fork-related event.
*
* @throws asio::system_error Thrown on failure. If the notification
* fails the io_service object should no longer be used and should be
* destroyed.
*
* @par Example
* The following code illustrates how to incorporate the notify_fork()
* function:
* @code my_io_service.notify_fork(asio::io_service::fork_prepare);
* if (fork() == 0)
* {
* // This is the child process.
* my_io_service.notify_fork(asio::io_service::fork_child);
* }
* else
* {
* // This is the parent process.
* my_io_service.notify_fork(asio::io_service::fork_parent);
* } @endcode
*
* @note For each service object @c svc in the io_service set, performs
* <tt>svc->fork_service();</tt>. When processing the fork_prepare event,
* services are visited in reverse order of the beginning of service object
* lifetime. Otherwise, services are visited in order of the beginning of
* service object lifetime.
*/
ASIO_DECL void notify_fork(asio::io_service::fork_event event);
/// Obtain the service object corresponding to the given type.
/**
* This function is used to locate a service object that corresponds to
* the given service type. If there is no existing implementation of the
* service, then the io_service will create a new instance of the service.
*
* @param ios The io_service object that owns the service.
*
* @return The service interface implementing the specified service type.
* Ownership of the service interface is not transferred to the caller.
*/
template <typename Service>
friend Service& use_service(io_service& ios);
/// Add a service object to the io_service.
/**
* This function is used to add a service to the io_service.
*
* @param ios The io_service object that owns the service.
*
* @param svc The service object. On success, ownership of the service object
* is transferred to the io_service. When the io_service object is destroyed,
* it will destroy the service object by performing:
* @code delete static_cast<io_service::service*>(svc) @endcode
*
* @throws asio::service_already_exists Thrown if a service of the
* given type is already present in the io_service.
*
* @throws asio::invalid_service_owner Thrown if the service's owning
* io_service is not the io_service object specified by the ios parameter.
*/
template <typename Service>
friend void add_service(io_service& ios, Service* svc);
/// Determine if an io_service contains a specified service type.
/**
* This function is used to determine whether the io_service contains a
* service object corresponding to the given service type.
*
* @param ios The io_service object that owns the service.
*
* @return A boolean indicating whether the io_service contains the service.
*/
template <typename Service>
friend bool has_service(io_service& ios);
private:
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
detail::winsock_init<> init_;
#elif defined(__sun) || defined(__QNX__) || defined(__hpux) || defined(_AIX) \
|| defined(__osf__)
detail::signal_init<> init_;
#endif
// The service registry.
asio::detail::service_registry* service_registry_;
// The implementation.
impl_type& impl_;
};
/// Class to inform the io_service when it has work to do.
/**
* The work class is used to inform the io_service when work starts and
* finishes. This ensures that the io_service object's run() function will not
* exit while work is underway, and that it does exit when there is no
* unfinished work remaining.
*
* The work class is copy-constructible so that it may be used as a data member
* in a handler class. It is not assignable.
*/
class io_service::work
{
public:
/// Constructor notifies the io_service that work is starting.
/**
* The constructor is used to inform the io_service that some work has begun.
* This ensures that the io_service object's run() function will not exit
* while the work is underway.
*/
explicit work(asio::io_service& io_service);
/// Copy constructor notifies the io_service that work is starting.
/**
* The constructor is used to inform the io_service that some work has begun.
* This ensures that the io_service object's run() function will not exit
* while the work is underway.
*/
work(const work& other);
/// Destructor notifies the io_service that the work is complete.
/**
* The destructor is used to inform the io_service that some work has
* finished. Once the count of unfinished work reaches zero, the io_service
* object's run() function is permitted to exit.
*/
~work();
/// Get the io_service associated with the work.
asio::io_service& get_io_service();
private:
// Prevent assignment.
void operator=(const work& other);
// The io_service implementation.
detail::io_service_impl& io_service_impl_;
};
/// Class used to uniquely identify a service.
class io_service::id
: private noncopyable
{
public:
/// Constructor.
id() {}
};
/// Base class for all io_service services.
class io_service::service
: private noncopyable
{
public:
/// Get the io_service object that owns the service.
asio::io_service& get_io_service();
protected:
/// Constructor.
/**
* @param owner The io_service object that owns the service.
*/
ASIO_DECL service(asio::io_service& owner);
/// Destructor.
ASIO_DECL virtual ~service();
private:
/// Destroy all user-defined handler objects owned by the service.
virtual void shutdown_service() = 0;
/// Handle notification of a fork-related event to perform any necessary
/// housekeeping.
/**
* This function is not a pure virtual so that services only have to
* implement it if necessary. The default implementation does nothing.
*/
ASIO_DECL virtual void fork_service(
asio::io_service::fork_event event);
friend class asio::detail::service_registry;
struct key
{
key() : type_info_(0), id_(0) {}
const std::type_info* type_info_;
const asio::io_service::id* id_;
} key_;
asio::io_service& owner_;
service* next_;
};
/// Exception thrown when trying to add a duplicate service to an io_service.
class service_already_exists
: public std::logic_error
{
public:
ASIO_DECL service_already_exists();
};
/// Exception thrown when trying to add a service object to an io_service where
/// the service has a different owner.
class invalid_service_owner
: public std::logic_error
{
public:
ASIO_DECL invalid_service_owner();
};
namespace detail {
// Special derived service id type to keep classes header-file only.
template <typename Type>
class service_id
: public asio::io_service::id
{
};
// Special service base class to keep classes header-file only.
template <typename Type>
class service_base
: public asio::io_service::service
{
public:
static asio::detail::service_id<Type> id;
// Constructor.
service_base(asio::io_service& io_service)
: asio::io_service::service(io_service)
{
}
};
template <typename Type>
asio::detail::service_id<Type> service_base<Type>::id;
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/io_service.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/impl/io_service.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_IO_SERVICE_HPP
|