This file is indexed.

/usr/share/perl5/Genome/Model/Tools/Music/Bmr/CalcBmr.pm is in libgenome-model-tools-music-perl 0.04-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
package Genome::Model::Tools::Music::Bmr::CalcBmr;

use warnings;
use strict;
use Genome;
use IO::File;
use Bit::Vector;
use List::Util qw( min sum );

our $VERSION = $Genome::Model::Tools::Music::VERSION;

# These constants let us use space-efficient arrays instead of hashes, while keeping the code fairly readable
use constant { AT_Transitions => 0, AT_Transversions => 1, CG_Transitions => 2, CG_Transversions => 3,
               CpG_Transitions => 4, CpG_Transversions => 5, Indels => 6, Truncations => 7, Overall => 8,
               covd_bases => 0, mutations => 1, bmr => 2 };

class Genome::Model::Tools::Music::Bmr::CalcBmr {
    is => 'Genome::Model::Tools::Music::Bmr::Base',
    has_input => [
        roi_file => { is => 'Text', doc => "Tab delimited list of ROIs [chr start stop gene_name] (See DESCRIPTION)" },
        reference_sequence => { is => 'Text', doc => "Path to reference sequence in FASTA format" },
        bam_list => { is => 'Text', doc => "Tab delimited list of BAM files [sample_name normal_bam tumor_bam] (See DESCRIPTION)" },
        output_dir => { is => 'Text', doc => "Directory where output files will be written (Use the same one used with calc-covg)" },
        maf_file => { is => 'Text', doc => "List of mutations using TCGA MAF specification v2.3" },
        bmr_groups => { is => 'Integer', doc => "Number of clusters of samples with comparable BMRs (See DESCRIPTION)", is_optional => 1, default => 1 },
        show_skipped => { is => 'Boolean', doc => "Report each skipped mutation, not just how many", is_optional => 1, default => 0 },
        separate_truncations => { is => 'Boolean', doc => "Group truncational mutations as a separate category", is_optional => 1, default => 0 },
        merge_concurrent_muts => { is => 'Boolean', doc => "Multiple mutations of a gene in the same sample are treated as 1", is_optional => 1, default => 0 },
        genes_to_ignore => { is => 'Text', doc => "Comma-delimited list of genes to ignore for background mutation rates", is_optional => 1 },
        skip_non_coding => { is => 'Boolean', doc => "Skip non-coding mutations from the provided MAF file", is_optional => 1, default => 1 },
        skip_silent => { is => 'Boolean', doc => "Skip silent mutations from the provided MAF file", is_optional => 1, default => 1 },
    ],
    has_output => [
        bmr_output => { is => 'Number', doc => "TODO" },
        gene_mr_file => { is => 'Text', doc => "TODO" },
    ],
    doc => "Calculates mutation rates given per-gene coverage (from \"music bmr calc-covg\"), and a mutation list",
};

sub help_synopsis {
    return <<HELP
 ... music bmr calc-bmr \\
    --bam-list input_dir/bam_list \\
    --maf-file input_dir/myMAF.tsv \\
    --output-dir output_dir/ \\
    --reference-sequence input_dir/all_sequences.fa \\
    --roi-file input_dir/all_coding_exons.tsv

 ... music bmr calc-bmr \\
    --bam-list input_dir/bam_list \\
    --maf-file input_dir/myMAF.tsv \\
    --output-dir output_dir/ \\
    --reference-sequence input_dir/all_sequences.fa \\
    --roi-file input_dir/all_coding_exons.tsv \\
    --genes-to-ignore GENE1,GENE2
HELP
}

sub help_detail {
    return <<HELP;
Given a mutation list (MAF), and per-gene coverage data calculated using \"music bmr calc-covg\"),
this script calculates overall Background Mutation Rate (BMR) and BMRs in the categories of
AT/CG/CpG Transitions, AT/CG/CpG Transversions, and Indels. An optional category for truncational
mutations can also be specified. The script generates a file with per-gene mutation rates that can
be used with the tool that tests for significantly mutated genes (music smg).
HELP
}

sub _additional_help_sections {
    return (
    "ARGUMENTS",
<<EOS

=over 4

=item --roi-file

=over 8

=item The regions of interest (ROIs) of each gene are typically regions targeted for sequencing or
  are merged exon loci (from multiple transcripts) of genes with 2-bp flanks (splice junctions).
  ROIs from the same chromosome must be listed adjacent to each other in this file. This allows
  the underlying C-based code to run much more efficiently and avoid re-counting bases seen in
  overlapping ROIs (for overall covered base counts). For per-gene base counts, an overlapping
  base will be counted each time it appears in an ROI of the same gene. To avoid this, be sure to
  merge together overlapping ROIs of the same gene. BEDtools' mergeBed can help if used per gene.

=back

=item --reference-sequence

=over 8

=item The reference sequence in FASTA format. If a reference sequence index is not found next to
  this file (a .fai file), it will be created.

=back

=item --bam-list

=over 8

=item Provide a file containing sample names and normal/tumor BAM locations for each. Use the tab-
  delimited format [sample_name normal_bam tumor_bam] per line. Additional columns like clinical
  data are allowed, but ignored. The sample_name must be the same as the tumor sample names used
  in the MAF file (16th column, with the header Tumor_Sample_Barcode).

=back

=item --bmr-groups

=over 8

=item Ideally, we want to test the mutation rate (MR) of a gene in a sample against the background
  mutation rate (BMR) across that sample. But if the BMRs of some samples are comparable, we can
  instead test the MR of a gene across a group of samples with comparable BMR, against the overall
  BMR of that group. This argument specifies how many such groups you want to cluster samples
  into. By default, it is assumed that all samples have comparable BMRs (bmr-groups = 1).

=back

=item --output-dir

=over 8

=item This should be the same output directory used when running "music bmr calc-covg". The
  following outputs of this script will also be created/written:
  overall_bmrs: File containing categorized overall background mutation rates.
  gene_mrs: File containing categorized per-gene mutation rates.

=back

=item --genes-to-ignore

=over 8

=item A comma-delimited list of genes to ignore for overall BMR calculations. List genes that are
  known factors in this disease and whose mutations should not be classified as background.

=back

=back

EOS
  );
}

sub _doc_authors {
    return " Cyriac Kandoth, Ph.D.";
}

sub _doc_see_also {
    return <<EOS
B<genome-music-bmr>(1),
B<genome-music>(1),
B<genome>(1)
EOS
}

sub execute {
    my $self = shift;
    my $roi_file = $self->roi_file;
    my $ref_seq = $self->reference_sequence;
    my $bam_list = $self->bam_list;
    my $output_dir = $self->output_dir;
    my $maf_file = $self->maf_file;
    my $show_skipped = $self->show_skipped;
    my $bmr_groups = $self->bmr_groups;
    my $separate_truncations = $self->separate_truncations;
    my $merge_concurrent_muts = $self->merge_concurrent_muts;
    my $genes_to_ignore = $self->genes_to_ignore;
    my $skip_non_coding = $self->skip_non_coding;
    my $skip_silent = $self->skip_silent;

    # Check on all the input data before starting work
    print STDERR "ROI file not found or is empty: $roi_file\n" unless( -s $roi_file );
    print STDERR "Reference sequence file not found: $ref_seq\n" unless( -e $ref_seq );
    print STDERR "List of BAMs not found or is empty: $bam_list\n" unless( -s $bam_list );
    print STDERR "Output directory not found: $output_dir\n" unless( -e $output_dir );
    print STDERR "MAF file not found or is empty: $maf_file\n" unless( -s $maf_file );
    return undef unless( -s $roi_file && -e $ref_seq && -s $bam_list && -e $output_dir && -s $maf_file );

    # Check on the files we expect to find within the provided output directory
    $output_dir =~ s/(\/)+$//; # Remove trailing forward slashes if any
    my $gene_covg_dir = "$output_dir/gene_covgs"; # Should contain per-gene coverage files per sample
    my $total_covgs_file = "$output_dir/total_covgs"; # Should contain overall coverages per sample
    print STDERR "Directory with per-gene coverages not found: $gene_covg_dir\n" unless( -e $gene_covg_dir );
    print STDERR "Total coverages file not found or is empty: $total_covgs_file\n" unless( -s $total_covgs_file );
    return undef unless( -e $gene_covg_dir && -s $total_covgs_file );

    # Outputs of this script will be written to these locations in the output directory
    my $overall_bmr_file = "$output_dir/overall_bmrs";
    my $gene_mr_file = "$output_dir/gene_mrs";
    $self->gene_mr_file( $gene_mr_file );

    # Build a hash to quickly lookup the genes to be ignored for overall BMRs
    my %ignored_genes = ();
    if( defined $genes_to_ignore ) {
        %ignored_genes = map { $_ => 1 } split( /,/, $genes_to_ignore );
    }

    # Parse out the names of the samples which should match the names of the coverage files needed
    my ( @all_sample_names, %sample_idx );
    my $idx = 0;
    my $sampleFh = IO::File->new( $bam_list ) or die "Couldn't open $bam_list. $!";
    while( my $line = $sampleFh->getline ) {
        next if ( $line =~ m/^#/ );
        chomp( $line );
        my ( $sample ) = split( /\t/, $line );
        push( @all_sample_names, $sample );
        $sample_idx{$sample} = $idx++;
    }
    $sampleFh->close;

    # If the reference sequence FASTA file hasn't been indexed, do it
    my $ref_seq_idx = "$ref_seq.fai";
    Genome::Sys->shellcmd( cmd => "samtools faidx $ref_seq" ) unless( -e $ref_seq_idx );

    # Parse gene names and ROIs. Mutations outside these ROIs will be skipped
    my ( @all_gene_names, %gene_idx );
    $idx = 0;
    my $roi_bitmask = $self->create_empty_genome_bitmask( $ref_seq_idx );
    my $roiFh = IO::File->new( $roi_file ) or die "Couldn't open $roi_file. $!";
    while( my $line = $roiFh->getline ) {
        next if( $line =~ m/^#/ );
        chomp $line;
        my ( $chr, $start, $stop, $gene ) = split( /\t/, $line );
        if( !$roi_bitmask->{$chr} or $start > $roi_bitmask->{$chr}->Size ) {
            print STDERR "Skipping invalid ROI bitmask $chr:$start-$stop\n";
            next;
        }
        $roi_bitmask->{$chr}->Interval_Fill( $start, $stop );
        unless( defined $gene_idx{$gene} ) {
            push( @all_gene_names, $gene );
            $gene_idx{$gene} = $idx++;
        }
    }
    $roiFh->close;

    # These are the various categories that each mutation will be classified into
    my @mut_classes = ( AT_Transitions, AT_Transversions, CG_Transitions, CG_Transversions, CpG_Transitions, CpG_Transversions, Indels );
    push( @mut_classes, Truncations ) if( $separate_truncations );
    # Save the actual class names for reporting purposes, because the elements above are really just numerical constants
    my @mut_class_names = qw( AT_Transitions AT_Transversions CG_Transitions CG_Transversions CpG_Transitions CpG_Transversions Indels );
    push( @mut_class_names, 'Truncations' ) if( $separate_truncations );

    my @sample_mr; # Stores per sample covg and mutation information
    foreach my $sample ( @all_sample_names ) {
        $sample_mr[$sample_idx{$sample}][$_][mutations] = 0 foreach( @mut_classes );
        $sample_mr[$sample_idx{$sample}][$_][covd_bases] = 0 foreach( @mut_classes );
    }

    # Load the covered base-counts per sample from the output of "music bmr calc-covg"
    print STDERR "Loading per-sample coverages stored in $total_covgs_file\n";
    my $sample_cnt_in_total_covgs_file = 0;
    my $totCovgFh = IO::File->new( $total_covgs_file ) or die "Couldn't open $total_covgs_file. $!";
    while( my $line = $totCovgFh->getline ) {
        next unless( $line =~ m/^\S+\t\d+\t\d+\t\d+\t\d+$/ and $line !~ m/^#/ );
        chomp( $line );
        ++$sample_cnt_in_total_covgs_file;
        my ( $sample, $covd_bases, $covd_at_bases, $covd_cg_bases, $covd_cpg_bases ) = split( /\t/, $line );
        $sample_mr[$sample_idx{$sample}][AT_Transitions][covd_bases] = $covd_at_bases;
        $sample_mr[$sample_idx{$sample}][AT_Transversions][covd_bases] = $covd_at_bases;
        $sample_mr[$sample_idx{$sample}][CG_Transitions][covd_bases] = $covd_cg_bases;
        $sample_mr[$sample_idx{$sample}][CG_Transversions][covd_bases] = $covd_cg_bases;
        $sample_mr[$sample_idx{$sample}][CpG_Transitions][covd_bases] = $covd_cpg_bases;
        $sample_mr[$sample_idx{$sample}][CpG_Transversions][covd_bases] = $covd_cpg_bases;
        $sample_mr[$sample_idx{$sample}][Indels][covd_bases] = $covd_bases;
        $sample_mr[$sample_idx{$sample}][Truncations][covd_bases] = $covd_bases if( $separate_truncations );
    }
    $totCovgFh->close;

    unless( $sample_cnt_in_total_covgs_file == scalar( @all_sample_names )) {
        print STDERR "Mismatching number of samples in $total_covgs_file and $bam_list\n";
        return undef;
    }

    my @gene_mr; # Stores per gene covg and mutation information
    foreach my $gene ( @all_gene_names ) {
        foreach my $sample ( @all_sample_names ) {
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][$_][mutations] = 0 foreach( @mut_classes );
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][$_][covd_bases] = 0 foreach( @mut_classes );
        }
    }

    # Sum up the per-gene covered base-counts across samples from the output of "music bmr calc-covg"
    print STDERR "Loading per-gene coverage files stored under $gene_covg_dir/\n";
    foreach my $sample ( @all_sample_names ) {
        my $sample_covg_file = "$gene_covg_dir/$sample.covg";
        my $sampleCovgFh = IO::File->new( $sample_covg_file ) or die "Couldn't open $sample_covg_file. $!";
        while( my $line = $sampleCovgFh->getline ) {
            next unless( $line =~ m/^\S+\t\d+\t\d+\t\d+\t\d+\t\d+$/ and $line !~ m/^#/ );
            chomp( $line );
            my ( $gene, undef, $covd_bases, $covd_at_bases, $covd_cg_bases, $covd_cpg_bases ) = split( /\t/, $line );
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][AT_Transitions][covd_bases] += $covd_at_bases;
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][AT_Transversions][covd_bases] += $covd_at_bases;
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][CG_Transitions][covd_bases] += $covd_cg_bases;
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][CG_Transversions][covd_bases] += $covd_cg_bases;
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][CpG_Transitions][covd_bases] += $covd_cpg_bases;
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][CpG_Transversions][covd_bases] += $covd_cpg_bases;
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][Indels][covd_bases] += $covd_bases;
            $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][Truncations][covd_bases] += $covd_bases if( $separate_truncations );
        }
        $sampleCovgFh->close;
    }

    # Run "joinx ref-stats" to classify SNVs as being at AT, CG, or CpG sites in the reference
    print STDERR "Running 'joinx ref-stats' to read reference FASTA and identify SNVs at AT, CG, CpG sites\n";
    my $maf_bed = Genome::Sys->create_temp_file_path();
    my $mafBedFh = IO::File->new( $maf_bed, ">" ) or die "Temporary file could not be created. $!";
    my $mafFh = IO::File->new( $maf_file ) or die "Couldn't open $maf_file. $!";
    while( my $line = $mafFh->getline ) {
        next if( $line =~ m/^(#|Hugo_Symbol)/ );
        chomp $line;
        my @cols = split( /\t/, $line );
        my ( $chr, $start, $stop, $mutation_type, $ref, $var1, $var2 ) = @cols[4..6,9..12];
        if( $mutation_type =~ m/^(SNP|DNP|ONP|TNP)$/ ) {
            $mafBedFh->print( "$chr\t" . ( $start - 2 ) . "\t" . ( $start + 1 ) . "\n" );
        }
    }
    $mafFh->close;
    $mafBedFh->close;
    my $refstats_file = Genome::Sys->create_temp_file_path();
    Genome::Sys->shellcmd( cmd => "joinx ref-stats --ref-bases --bed $maf_bed --fasta $ref_seq --output $refstats_file" );

    # Parse through the ref-stats output and load it into hashes for quick lookup later
    my ( %ref_base, %cpg_site );
    my $refStatsFh = IO::File->new( $refstats_file ) or die "Couldn't open $refstats_file. $!";
    while( my $line = $refStatsFh->getline ) {
        next if( $line =~ m/^#/ );
        chomp $line;
        my ( $chr, undef, $pos, undef, undef, undef, $ref ) = split( /\t/, $line );
        my $locus = "$chr\t" . ( $pos - 1 );
        $ref_base{$locus} = substr( $ref, 1, 1 );
        $cpg_site{$locus} = 1 if( $ref =~ m/CG/ );
    }
    $refStatsFh->close;

    # Create a hash to help classify SNVs
    my %classify;
    $classify{$_} = AT_Transitions foreach( qw( AG TC ));
    $classify{$_} = AT_Transversions foreach( qw( AC AT TA TG ));
    $classify{$_} = CG_Transitions foreach( qw( CT GA ));
    $classify{$_} = CG_Transversions foreach( qw( CA CG GC GT ));

    # Parse through the MAF file and categorize each somatic mutation
    print STDERR "Parsing MAF file to classify mutations\n";
    my %skip_cnts;
    $mafFh = IO::File->new( $maf_file ) or die "Couldn't open $maf_file. $!";
    while( my $line = $mafFh->getline ) {
        next if( $line =~ m/^(#|Hugo_Symbol)/ );
        chomp $line;
        my @cols = split( /\t/, $line );
        my ( $gene, $chr, $start, $stop, $mutation_class, $mutation_type, $ref, $var1, $var2, $sample ) = @cols[0,4..6,8..12,15];

        # Skip mutations in samples that are not in the provided bam list
        unless( defined $sample_idx{$sample} ) {
            $skip_cnts{"belong to unrecognized samples"}++;
            print STDERR "Skipping unrecognized sample ($sample not in BAM list): $gene, $chr:$start-$stop\n" if( $show_skipped );
            next;
        }

        # If the mutation classification is odd, quit with error
        if( $mutation_class !~ m/^(Missense_Mutation|Nonsense_Mutation|Nonstop_Mutation|Splice_Site|Translation_Start_Site|Frame_Shift_Del|Frame_Shift_Ins|In_Frame_Del|In_Frame_Ins|Silent|Intron|RNA|3'Flank|3'UTR|5'Flank|5'UTR|IGR|Targeted_Region|De_novo_Start_InFrame|De_novo_Start_OutOfFrame)$/ ) {
            print STDERR "Unrecognized Variant_Classification \"$mutation_class\" in MAF file: $gene, $chr:$start-$stop\n";
            print STDERR "Please use TCGA MAF Specification v2.3.\n";
            return undef;
        }

        # If user wants, skip Silent mutations, or those in Introns, RNA, UTRs, Flanks, IGRs, or the ubiquitous Targeted_Region
        if(( $skip_non_coding && $mutation_class =~ m/^(Intron|RNA|3'Flank|3'UTR|5'Flank|5'UTR|IGR|Targeted_Region)$/ ) ||
          ( $skip_silent && $mutation_class =~ m/^Silent$/ )) {
            $skip_cnts{"are classified as $mutation_class"}++;
            print STDERR "Skipping $mutation_class mutation: $gene, $chr:$start-$stop\n" if( $show_skipped );
            next;
        }

        # If the mutation type is odd, quit with error
        if( $mutation_type !~ m/^(SNP|DNP|TNP|ONP|INS|DEL|Consolidated)$/ ) {
            print STDERR "Unrecognized Variant_Type \"$mutation_type\" in MAF file: $gene, $chr:$start-$stop\n";
            print STDERR "Please use TCGA MAF Specification v2.3.\n";
            return undef;
        }

        # Skip mutations that were consolidated into others (E.g. SNP consolidated into a TNP)
        if( $mutation_type =~ m/^Consolidated$/ ) {
            $skip_cnts{"are consolidated into another"}++;
            print STDERR "Skipping consolidated mutation: $gene, $chr:$start-$stop\n" if( $show_skipped );
            next;
        }

        # Skip mutations that fall completely outside any of the provided regions of interest
        if( $self->count_bits( $roi_bitmask->{$chr}, $start, $stop ) == 0 ) {
            $skip_cnts{"are outside any ROIs"}++;
            print STDERR "Skipping mutation that falls outside ROIs: $gene, $chr:$start-$stop\n" if( $show_skipped );
            next;
        }

        # Skip mutations whose gene names don't match any of those in the ROI list
        unless( defined $gene_idx{$gene} ) {
            $skip_cnts{"have unrecognized gene names"}++;
            print STDERR "Skipping unrecognized gene name (not in ROI file): $gene, $chr:$start-$stop\n" if( $show_skipped );
            next;
        }

        my $class = '';
        # Check if the mutation is the truncating type, if the user wanted a separate category of those
        if( $separate_truncations && $mutation_class =~ m/^(Nonsense_Mutation|Splice_Site|Frame_Shift_Del|Frame_Shift_Ins)/ ) {
            $class = Truncations;
        }
        # Classify the mutation as AT/CG/CpG Transition, AT/CG/CpG Transversion
        elsif( $mutation_type =~ m/^(SNP|DNP|ONP|TNP)$/ ) {
            # ::TBD:: For DNPs and TNPs, we use only the first base for mutation classification
            $ref = substr( $ref, 0, 1 );
            $var1 = substr( $var1, 0, 1 );
            $var2 = substr( $var2, 0, 1 );

            # If the alleles are anything but A, C, G, or T then quit with error
            if( $ref !~ m/[ACGT]/ || $var1 !~ m/[ACGT]/ || $var2 !~ m/[ACGT]/ ) {
                print STDERR "Unrecognized allele in column Reference_Allele, Tumor_Seq_Allele1, or Tumor_Seq_Allele2: $gene, $chr:$start-$stop\n";
                print STDERR "Please use TCGA MAF Specification v2.3.\n";
                return undef;
            }

            # Use the classify hash to find whether this SNV is an AT/CG Transition/Transversion
            $class = $classify{ "$ref$var1" } if( defined $classify{ "$ref$var1" } );
            $class = $classify{ "$ref$var2" } if( defined $classify{ "$ref$var2" } );

            # Check if the ref base in the MAF matched what we fetched from the ref-seq
            my $locus = "$chr\t$start";
            if( defined $ref_base{$locus} && $ref_base{$locus} ne $ref ) {
                print STDERR "Reference allele $ref for $gene variant at $chr:$start-$stop is " . $ref_base{$locus} . " in the FASTA. Using it anyway.\n";
            }

            # Check if a C or G reference allele belongs to a CpG pair in the refseq
            if(( $ref eq 'C' || $ref eq 'G' ) && defined $cpg_site{$locus} ) {
                $class = (( $class == CG_Transitions ) ? CpG_Transitions : CpG_Transversions );
            }
        }
        # Classify it as an indel (excludes splice-site and frame-shift if user wanted truncations separately)
        elsif( $mutation_type =~ m/^(INS|DEL)$/ ) {
            $class = Indels;
        }

        # The user's gene exclusion list affects only the overall BMR calculations
        $sample_mr[$sample_idx{$sample}][$class][mutations]++ unless( defined $ignored_genes{$gene} );
        $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][$class][mutations]++;
    }
    $mafFh->close;

    # Display statistics related to parsing the MAF
    print STDERR "Finished Parsing the MAF file to classify mutations\n";
    foreach my $skip_type ( sort {$skip_cnts{$b} <=> $skip_cnts{$a}} keys %skip_cnts ) {
        print STDERR "Skipped " . $skip_cnts{$skip_type} . " mutation(s) that $skip_type\n" if( defined $skip_cnts{$skip_type} );
    }

    # If the user wants, merge together concurrent mutations of a gene in the same sample
    if( $merge_concurrent_muts ) {
        foreach my $sample ( @all_sample_names ) {
            foreach my $gene ( @all_gene_names ) {
                next unless( defined $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}] );
                my $num_muts = 0;
                $num_muts += $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][$_][mutations] foreach( @mut_classes );
                if( $num_muts > 1 ) {
                    foreach my $class ( @mut_classes ) {
                        my $muts_in_class = $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][$class][mutations]; # Num of muts of gene in this class
                        $sample_mr[$sample_idx{$sample}][$class][mutations] -= $muts_in_class; # Take it out of the sample total
                        $muts_in_class /= $num_muts; # Turn it into a fraction of the total number of muts in this gene
                        $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][$class][mutations] = $muts_in_class; # Use the fraction as the num muts of gene in this class
                        $sample_mr[$sample_idx{$sample}][$class][mutations] += $muts_in_class; # Add the same fraction to the sample total
                    }
                }
            }
        }
    }

    # Calculate per-sample BMRs, and also subtract out covered bases in genes the user wants ignored
    foreach my $sample ( @all_sample_names ) {
        my $tot_muts = 0;
        foreach my $class ( @mut_classes ) {
            # Subtract the covered bases in this class that belong to the genes to be ignored
            # ::TBD:: Some of these bases may also belong to another gene (on the other strand maybe?), and those should not be subtracted
            foreach my $ignored_gene ( keys %ignored_genes ) {
                $sample_mr[$sample_idx{$sample}][$class][covd_bases] -= $gene_mr[$sample_idx{$sample}][$gene_idx{$ignored_gene}][$class][covd_bases] if( defined $gene_mr[$sample_idx{$sample}][$gene_idx{$ignored_gene}] );
            }
            $tot_muts += $sample_mr[$sample_idx{$sample}][$class][mutations];
        }
        $sample_mr[$sample_idx{$sample}][Overall][bmr] = $tot_muts / $sample_mr[$sample_idx{$sample}][Indels][covd_bases];
    }

    # Cluster samples into bmr-groups using k-means clustering
    my @sample_bmrs = map { $sample_mr[$sample_idx{$_}][Overall][bmr] } @all_sample_names;
    my @bmr_clusters = k_means( $bmr_groups, \@sample_bmrs );

    # Calculate overall BMRs for each cluster of samples, and print them to file
    my %cluster_bmr; # Stores per cluster categorized BMR
    my $totBmrFh = IO::File->new( $overall_bmr_file, ">" ) or die "Couldn't open $overall_bmr_file. $!";
    $totBmrFh->print( "#User-specified genes skipped in these calculations: $genes_to_ignore\n" ) if( defined $genes_to_ignore );
    my ( $covered_bases_sum, $mutations_sum ) = ( 0, 0 );
    for( my $i = 0; $i < scalar( @bmr_clusters ); ++$i ) {
        my @samples_in_cluster = map { $all_sample_names[$_] } @{$bmr_clusters[$i]};
        unless( $bmr_groups == 1 ) {
            $totBmrFh->print( "#BMR sub-group ", $i + 1, " (", scalar( @{$bmr_clusters[$i]} ), " samples)\n" );
            $totBmrFh->print( "#Samples: ", join( ",", @samples_in_cluster ), "\n" );
        }
        $totBmrFh->print( "#Mutation_Class\tCovered_Bases\tMutations\tOverall_BMR\n" );

        my ( $tot_covd_bases, $tot_muts ) = ( 0, 0 );
        foreach my $class ( @mut_classes ) {
            my ( $covd_bases, $mutations ) = ( 0, 0 );
            foreach my $sample ( @samples_in_cluster ) {
                $covd_bases += $sample_mr[$sample_idx{$sample}][$class][covd_bases];
                $mutations += $sample_mr[$sample_idx{$sample}][$class][mutations];
            }
            $tot_covd_bases = $covd_bases if( $class == Indels ); # Save this to calculate overall BMR below
            # Calculate overall BMR for this mutation class and print it to file
            $cluster_bmr{$i}[$class][bmr] = ( $covd_bases == 0 ? 0 : ( $mutations / $covd_bases ));
            $totBmrFh->print( join( "\t", $mut_class_names[$class], $covd_bases, $mutations, $cluster_bmr{$i}[$class][bmr] ), "\n" );
            $tot_muts += $mutations;
        }
        $totBmrFh->print( join( "\t", "Overall_BMR", $tot_covd_bases, $tot_muts, $tot_muts / $tot_covd_bases ), "\n\n" );
        $covered_bases_sum += $tot_covd_bases;
        $mutations_sum += $tot_muts;
    }
    $totBmrFh->close;
    $self->bmr_output( $mutations_sum / $covered_bases_sum );

    # Print out a file containing per-gene mutation counts and covered bases for use by "music smg"
    my $geneBmrFh = IO::File->new( $gene_mr_file, ">" ) or die "Couldn't open $gene_mr_file. $!";
    $geneBmrFh->print( "#Gene\tMutation_Class\tCovered_Bases\tMutations\tBMR\n" );
    foreach my $gene ( sort @all_gene_names ) {
        my ( $tot_covd_bases, $tot_muts ) = ( 0, 0 );
        for( my $i = 0; $i < scalar( @bmr_clusters ); ++$i ) {
            my @samples_in_cluster = map { $all_sample_names[$_] } @{$bmr_clusters[$i]};
            foreach my $class ( @mut_classes ) {
                my ( $covd_bases, $mutations ) = ( 0, 0 );
                foreach my $sample( @samples_in_cluster ) {
                    if( defined $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}] ) {
                        $covd_bases += $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][$class][covd_bases];
                        $mutations += $gene_mr[$sample_idx{$sample}][$gene_idx{$gene}][$class][mutations];
                    }
                }
                my $rename_class = $mut_class_names[$class];
                $rename_class = ( $rename_class . "_SubGroup" . ( $i + 1 )) if( $bmr_groups > 1 );
                $geneBmrFh->print( join( "\t", $gene, $rename_class, $covd_bases, $mutations, $cluster_bmr{$i}[$class][bmr] ), "\n" );
                $tot_muts += $mutations;
                $tot_covd_bases += $covd_bases if( $class == Indels );
            }
        }
        $geneBmrFh->print( join( "\t", $gene, "Overall", $tot_covd_bases, $tot_muts, $self->bmr_output ), "\n" );
    }
    $geneBmrFh->close;

    return 1;
}

# Creates an empty whole genome bitmask based on the given reference sequence index
sub create_empty_genome_bitmask {
    my ( $self, $ref_seq_idx_file ) = @_;
    my %genome;
    my $refFh = IO::File->new( $ref_seq_idx_file ) or die "Couldn't open $ref_seq_idx_file. $!";
    while( my $line = $refFh->getline ) {
        my ( $chr, $length ) = split( /\t/, $line );
        $genome{$chr} = Bit::Vector->new( $length + 1 ); # Adding a base for 1-based coordinates
    }
    $refFh->close;
    return \%genome;
}

# Counts the number of bits that are set in the given region of a Bit:Vector
sub count_bits {
    my ( $self, $vector, $start, $stop ) = @_;
    my $count = 0;
    for my $pos ( $start..$stop ) {
        ++$count if( $vector->bit_test( $pos ));
    }
    return $count;
}

# Given a list of numerical values, returns k clusters based on k-means clustering
sub k_means {
    my ( $k, $list_ref ) = @_;
    my @vals = @{$list_ref};
    my $num_vals = scalar( @vals );

    # Start with the first k values as the centroids
    my @centroids = @vals[0..($k-1)];
    my @prev_centroids = map { 0 } @centroids;
    my @groups = ();

    my $diff_means = 1; # Arbitrary non-zero value
    # Repeat until the difference between these centroids and the previous ones, converges to zero
    while( $diff_means > 0 ) {
        @groups = ();
        # Group values into clusters based on closest centroid
        for( my $i = 0; $i < $num_vals; ++$i ) {
            my @distances = map { abs( $vals[$i] - $_ ) } @centroids;
            my $closest = min( @distances );
            for( my $j = 0; $j < $k; ++$j ) {
                if( $distances[$j] == $closest ) { push( @{$groups[$j]}, $i ); last; }
            }
        }

        # Calculate means to be the new centroids, and the sum of differences
        $diff_means = 0;
        for( my $i = 0; $i < $k; ++$i ) {
            $centroids[$i] = sum( map {$vals[$_]} @{$groups[$i]} );
            $centroids[$i] /= scalar( @{$groups[$i]} );
            $diff_means += abs( $centroids[$i] - $prev_centroids[$i] );
        }

        # Save the current centroids for comparisons with those in the next iteration
        @prev_centroids = @centroids;
    }
    return @groups;
}

1;