This file is indexed.

/usr/share/perl5/Genome/Model/Tools/Music/ClinicalCorrelation.pm.R is in libgenome-model-tools-music-perl 0.04-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#determine which test method to use
method = as.character(commandArgs()[4]);

if (method == "glm") {

    ### This program is for Generalized Linear Model (GLM) analysis
    ### Y = X + covar1 + covar2 ......
    ### Usually (not limited),
    ### Y is clinical trait (quantitative or binary)
    ### X is variant/gene/mutation etc.
    ### covar means covariate
    ### by Qunyuan Zhang (qunyuan@wustl.edu), 02/16/2012 updated 

    ### input options
    model.file = as.character(commandArgs()[5]);
    y.file = as.character(commandArgs()[6]);
    x.file = as.character(commandArgs()[7]);
    out.file = as.character(commandArgs()[8]);
    x.names="*";

    ### to run it on command line, type
    # R --no-save < glm.R model.file y.file x.file * out.csv
    # or (if you want to define x variables)
    # R --no-save < glm.R model.csv y.file x.file x1|x2|x3 out.csv
    # or (if x.file has been merged into y.file)
    # R --no-save < glm.R model.csv y.file * x1|x2|x3 out.csv
    # or (if you have defined x variable in model.file)
    # R --no-save < glm.R model.csv y.file * * out.csv

    ### about model.file 
    # column "type":  Q=quantitative trait, B=binary trait
    # column "y":     trait name
    # colum  "x":     variant/gene name; if x=NA or blank, it will determined by x.file and x.names
    # column "cvar":  covariate(s)
    # tab delimited 

    ### about y.file 
    # trait data file, column 1 must be sample id 
    # tab delimited 

    ### about x.file
    # usually mutation/variant/geene data file 
    # the first column must be sample id (the same as in y.file, ordered or not)
    # tab delimited  
    # x.file="*" if x.file already merged into y.file 

    ### about x.names
    # x.names="*" will use all column names in x.file as x variable names
    # or you can define it in the format x.names="gene1|gene2|gene3"
    # self-defined x.names have to be found in column names of y.file and/or x.file  

    #################### myglm fuction ##############
    myglm=function(z,trait,variant,covar=NA,ytype) {
        if (nchar(covar)==0 | is.na(covar) | is.null(covar)) { 
            model=formula(paste(trait,"~",variant)) 
        } else {
            model=formula(paste(trait,"~",variant,"+",covar))
        }
        if (ytype=="B") fit=glm(formula=model,data=z,family=binomial(link = "logit"))
        if (ytype=="Q") fit=glm(formula=model,data=z,family=gaussian(link = "identity"))
        fit
    }
    #################################################


    ### data input #####
    read.table(model.file,colClasses="character",na.strings = c("","NA"),sep="\t",header=T)->md
    read.table(y.file,na.strings = c("","NA"),sep="\t",header=T)->y
    if (x.names!="*") x.names=strsplit(x.names,split="[|]")[[1]]

    if (x.file!="*")
    {
        read.table(x.file,na.strings = c("","NA"),sep="\t",header=T)->x
        xid=colnames(x)[1]
        xs=colnames(x)[-1]
        if (x.names!="*") {x=x[,c(xid,x.names)];xs=colnames(x)[-1]}
        x.names=xs
        yid=colnames(y)[1]
        ysid = ! (colnames(y) %in% xs)
        y=y[,ysid]
        if (sum(ysid)==1) {y=data.frame(id=y);colnames(y)[1]=yid}
        #y=merge(y,x,by.x = xid, by.y = yid)
        y=merge(x,y,by.x = xid, by.y = yid)
    }

    ######### analysis ##########
    tt=NULL
    for (i in c(1:nrow(md)))
    {
        ytype=md[i,1];yi=md[i,2];xs=md[i,3];covi=md[i,4];memo=md[i,5]
        if (!is.na(xs) & nchar(xs)>0) xs=strsplit(xs,split="[|]")[[1]]
        if (is.na(xs)[1]|nchar(xs)[1]==0) xs=x.names 
        if (length(covi)==0) covi=NA
        for (xi in xs)
        {
            print(yi); print(xi); print(covi); print("******")
            if (ytype=="Q") try(anova(myglm(y,yi,xi,covi,ytype),test="F"))->fit
            if (ytype=="B") try(anova(myglm(y,yi,xi,covi,ytype),test="Chisq"))->fit
            if (class(fit)[1]!="try-error")
            {
                fit=as.matrix(fit)
                if (xi %in% rownames(fit)) tt=rbind(tt, cbind(yi,ytype,xi,as.data.frame(t(fit[xi,])),covi,memo))
            }
        }
    }
    #"yi","ytype","xi","Df","Deviance","Resid. Df","Resid. Dev","F","Pr(>F)","covi","memo"
    if (ytype=="Q") colnames(tt) = c("y","y_type","x","degrees_freedom","deviance","residual_degrees_freedom","residual_deviance","F_statistic","p-value","covariants","memo");
    if (ytype=="B") colnames(tt) = c("y","y_type","x","degrees_freedom","deviance","residual_degrees_freedom","residual_deviance","p-value","covariants","memo");
    write.table(tt,file=out.file,quote=F,sep="\t",row.names=F);

} else {

    # else, we process numerical or categorical clinical data correlation

    clinical_data = as.character(commandArgs()[5]);
    mutation_matrix = as.character(commandArgs()[6]);
    output_file = as.character(commandArgs()[7]);

    # FUNCTION finds the correlation between two variables
    cor2=function(ty,tx,method)
    {

        id=intersect(!is.na(ty),!is.na(tx));
        ty=ty[id];
        tx=tx[id];

        if(method=="cor")
        {
            tst=cor.test(tx,ty);
            s=tst$est;
            p=tst$p.value;
        }

        if(method=="wilcox")  #x must be (0,1) mutation data
        {
            tst=wilcox.test(x=ty[tx==0],y=ty[tx>=1])
            s=tst$stat
            p=tst$p.value
        }

        if(method=="chisq")
        {
            tst=chisq.test(tx,ty);
            s=tst$stat;
            p=tst$p.value;
        }

        if(method=="fisher")
        {
            tst=fisher.test(tx,ty)
            s=tst$p.value
            p=tst$p.value
        }

        if(method=="anova")
        {
            tst=summary(aov(ty~tx,as.data.frame(cbind(tx,ty))))
            s=tst[[1]]$F[1]
            p=tst[[1]]$Pr[1]
        }

        tt=c(p,s);
        tt;
    }
    # END cor2

    # FUNCTION runs correlation test on matrixes of data
    cor2test =function(y,x=NULL,method="cor",cutoff=1,sep="\t",outf=NULL)
    {

        if (!is.null(x))
        {

            if (length(x)==1) {read.table(x,header=T,sep=sep)->x;}
            if (length(y)==1) {read.table(y,header=T,sep=sep)->y;}
            colnames(y)[1]="id";
            colnames(x)[1]="id";
            tt=character(0);
            for (vi in colnames(x)[-1])
            {
                for (vj in colnames(y)[-1])
                {
                    tx=x[,c("id",vi)];
                    tx=tx[!is.na(tx[,vi]),];
                    tx=tx[!duplicated(tx[,"id"]),];
                    ty=y[,c("id",vj)];
                    ty=ty[!is.na(ty[,vj]),];
                    ty=ty[!duplicated(ty[,"id"]),];
                    xy=merge(tx,ty,by.x="id",by.y="id");
                    tx=xy[,2];
                    ty=xy[,3];
                    n=length(xy[,"id"]);
                    rst=try(cor2(ty,tx,method));
                    if (class(rst)=="try-error") {p=NA;s=NA;} else {p=rst[1];s=rst[2];}
                    t=c(vi,vj,method,n,s,p)

                    tt=rbind(tt,t);
                } #end vj
            } #end vi

            rownames(tt)=NULL;
            colnames(tt)=c("x","y","method","n","s","p");
            tt=as.data.frame(tt);
            tt[,"s"]=as.character(tt[,"s"]);
            tt[,"s"]=as.numeric(tt[,"s"]);
            tt[,"p"]=as.character(tt[,"p"]);
            tt[,"p"]=as.numeric(tt[,"p"]);
            fdr=p.adjust(tt[,"p"],method="fdr");
            bon=p.adjust(tt[,"p"],method="bon");
            tt=cbind(tt,fdr,bon);
            tt=tt[order(tt[,"p"]),];
        }

        if (is.null(x))
        {

            if (length(y)==1) {read.table(y,header=T,sep=sep)->y;}
            x=y;
            nxy=ncol(y)-1;
            colnames(y)[1]="id";
            colnames(x)[1]="id"
            tt=character(0);
            for (i in c(1:(nxy-1)))
            {
                for (j in c((i+1):nxy))
                {

                    vi=colnames(x)[-1][i];
                    vj=colnames(y)[-1][j];

                    tx=x[,c("id",vi)];
                    tx=tx[!is.na(tx[,vi]),];
                    tx=tx[!duplicated(tx[,"id"]),]
                    ty=y[,c("id",vj)];
                    ty=ty[!is.na(ty[,vj]),];
                    ty=ty[!duplicated(ty[,"id"]),];
                    xy=merge(tx,ty,by.x="id",by.y="id");
                    tx=xy[,2];
                    ty=xy[,3];
                    n=length(xy[,"id"]);
                    rst=try(cor2(ty,tx,method));
                    if (class(rst)=="try-error") {p=NA;s=NA;} else {p=rst[1];s=rst[2];}
                    t=c(vi,vj,method,n,s,p);
                    tt=rbind(tt,t);
                } #end vj
            } #end vi

            rownames(tt)=NULL;
            colnames(tt)=c("x","y","method","n","s","p");
            tt=as.data.frame(tt);
            tt[,"s"]=as.character(tt[,"s"]);
            tt[,"s"]=as.numeric(tt[,"s"]);
            tt[,"p"]=as.character(tt[,"p"]);
            tt[,"p"]=as.numeric(tt[,"p"]);
            fdr=p.adjust(tt[,"p"],method="fdr");
            bon=p.adjust(tt[,"p"],method="bon");
            tt=cbind(tt,fdr,bon);
            tt=tt[order(tt[,"p"]),];
        }


        if (!is.null(outf))
        {
            colnames(tt)=c("x","y","method","n","s","p","fdr","bon");

            #The amount of precision that R prints with is somehow machine dependent (or the R version?)
            tt[,"s"] = sapply(tt[,"s"], sprintf, fmt="%.4E");
            tt[,"p"] = sapply(tt[,"p"], sprintf, fmt="%.4E");
            tt[,"fdr"] = sapply(tt[,"fdr"], sprintf, fmt="%.2E");
            tt[,"bon"] = sapply(tt[,"bon"], sprintf, fmt="%.2E");

            #The ordering should be done after reformatting the precision (duh)
            tt=tt[order(tt[,"x"]),];
            tt=tt[order(tt[,"p"]),];

            write.table(tt,file=outf,quote=FALSE,row.names=FALSE,sep=",");
        }
        invisible(tt);
    }
    #END cor2test

    #run correlation test using function
    cor2test(y = clinical_data, x = mutation_matrix, method = method, outf = output_file);
}