This file is indexed.

/usr/share/perl5/Math/PlanePath.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

package Math::PlanePath;
use 5.004;
use strict;

use vars '$VERSION';
$VERSION = 117;

# uncomment this to run the ### lines
# use Smart::Comments;


# defaults
use constant figure => 'square';
use constant default_n_start => 1;
sub n_start {
  my ($self) = @_;
  if (ref $self && defined $self->{'n_start'}) {
    return $self->{'n_start'};
  } else {
    return $self->default_n_start;
  }
}
sub arms_count {
  my ($self) = @_;
  return $self->{'arms'} || 1;
}

use constant class_x_negative => 1;
use constant class_y_negative => 1;
sub x_negative { $_[0]->class_x_negative }
sub y_negative { $_[0]->class_y_negative }
use constant x_negative_at_n => undef;
use constant y_negative_at_n => undef;
use constant n_frac_discontinuity => undef;

use constant parameter_info_array => [];
sub parameter_info_list {
  return @{$_[0]->parameter_info_array};
}

# x_negative(),y_negative() existed before x_minimum(),y_minimum(), so
# default x_minimum(),y_minimum() from those.
sub x_minimum {
  my ($self) = @_;
  return ($self->x_negative ? undef : 0);
}
sub y_minimum {
  my ($self) = @_;
  return ($self->y_negative ? undef : 0);
}
use constant x_maximum => undef;
use constant y_maximum => undef;

sub sumxy_minimum {
  my ($self) = @_;
  ### PlanePath sumxy_minimum() ...
  if (defined (my $x_minimum = $self->x_minimum)
      && defined (my $y_minimum = $self->y_minimum)) {
    ### $x_minimum
    ### $y_minimum
    return $x_minimum + $y_minimum;
  }
  return undef;
}
use constant sumxy_maximum => undef;

sub sumabsxy_minimum {
  my ($self) = @_;
  my $x_minimum = $self->x_minimum;
  my $y_minimum = $self->y_minimum;
  if (defined $x_minimum && $x_minimum >= 0
      && defined $y_minimum && $y_minimum >= 0) {
    # X>=0 and Y>=0 so abs(X)+abs(Y) == X+Y
    return $self->sumxy_minimum;
  }
  return _max($x_minimum||0,0) + _max($y_minimum||0,0);
}
use constant sumabsxy_maximum => undef;

use constant diffxy_minimum => undef;
#
# If the path is confined to the fourth quadrant, so X>=something and
# Y<=something then a minimum X-Y exists.  But fourth-quadrant-only path is
# unusual, so don't bother with code checking that.
# sub diffxy_minimum {
#   my ($self) = @_;
#   if (defined (my $y_maximum = $self->y_maximum)
#       && defined (my $x_minimum = $self->x_minimum)) {
#     return $x_minimum - $y_maximum;
#   } else {
#     return undef;
#   }
# }

# If the path is confined to the second quadrant, so X<=something and
# Y>=something, then has a maximum X-Y.  Presume that the x_maximum() and
# y_minimum() occur together.
#
sub diffxy_maximum {
  my ($self) = @_;
  if (defined (my $y_minimum = $self->y_minimum)
      && defined (my $x_max = $self->x_maximum)) {
    return $x_max - $y_minimum;
  } else {
    return undef;
  }
}

# absdiffxy = abs(X-Y)
sub absdiffxy_minimum {
  my ($self) = @_;
  # if X-Y all one sign, so X-Y>=0 or X-Y<=0, then abs(X-Y) from that
  my $m;
  if (defined($m = $self->diffxy_minimum) && $m >= 0) {
    return $m;
  }
  if (defined($m = $self->diffxy_maximum) && $m <= 0) {
    return - $m;
  }
  return 0;
}
sub absdiffxy_maximum {
  my ($self) = @_;
  # if X-Y constrained so min<=X-Y<=max then max abs(X-Y) one of the two ends
  if (defined (my $min = $self->diffxy_minimum)
      && defined (my $max = $self->diffxy_maximum)) {
    return _max(abs($min),abs($max));
  }
  return undef;
}


# experimental default from x_minimum(),y_minimum()
# FIXME: should use absx_minimum, absy_minimum, for paths outside first quadrant
sub rsquared_minimum {
  my ($self) = @_;

  # The X and Y each closest to the origin.  This assumes that point is
  # actually visited, but is likely to be close.
  my $x_minimum = $self->x_minimum;
  my $x_maximum = $self->x_maximum;
  my $y_minimum = $self->y_minimum;
  my $y_maximum = $self->y_maximum;
  my $x = ((  defined $x_minimum && $x_minimum) > 0 ? $x_minimum
           : (defined $x_maximum && $x_maximum) < 0 ? $x_maximum
           : 0);
  my $y = ((  defined $y_minimum && $y_minimum) > 0 ? $y_minimum
           : (defined $y_maximum && $y_maximum) < 0 ? $y_maximum
           : 0);
  return ($x*$x + $y*$y);

  # # Maybe initial point $self->n_to_xy($self->n_start)) as the default,
  # # but that's not the minimum on "wider" paths.
  # return 0;
}
use constant rsquared_maximum => undef;

sub gcdxy_minimum {
  my ($self) = @_;
  ### gcdxy_minimum(): "visited=".($self->xy_is_visited(0,0)||0)
  return ($self->xy_is_visited(0,0)
          ? 0   # gcd(0,0)=0
          : 1); # any other has gcd>=1
}
use constant gcdxy_maximum => undef;

#------------------------------------------------------------------------------

use constant dir_minimum_dxdy => (1,0);   # East
use constant dir_maximum_dxdy => (0,0);   # supremum all angles

use constant dx_minimum => undef;
use constant dy_minimum => undef;
use constant dx_maximum => undef;
use constant dy_maximum => undef;
#
# =item C<$n = $path-E<gt>_UNDOCUMENTED__dxdy_list_at_n()>
#
# Return the N at which all possible dX,dY will have been seen.  If there is
# not a finite set of possible dX,dY steps then return C<undef>.
#
use constant _UNDOCUMENTED__dxdy_list => ();  # default empty for not a finite list
use constant _UNDOCUMENTED__dxdy_list_at_n => undef; # maybe dxdy_at_n()
use constant _UNDOCUMENTED__dxdy_list_three => (2,0,    # E
                                                -1,1,   # NW
                                                -1,-1); # SW
use constant _UNDOCUMENTED__dxdy_list_six => (2,0,   # E
                                              1,1,   # NE
                                              -1,1,  # NW
                                              -2,0,  # W
                                              -1,-1, # SW
                                              1,-1); # SE
use constant _UNDOCUMENTED__dxdy_list_eight => (1,0,   # E
                                                1,1,   # NE
                                                0,1,   # N
                                                -1,1,  # NW
                                                -1,0,  # W
                                                -1,-1, # SW
                                                0,-1,  # S
                                                1,-1); # SE

sub absdx_minimum {
  my ($self) = @_;
  # If dX>=0 then abs(dX)=dX always and absdx_minimum()==dx_minimum().
  # This happens for column style paths like CoprimeColumns.
  # dX>0 is only for line paths so not very interesting.
  if (defined (my $dx_minimum = $self->dx_minimum)) {
    if ($dx_minimum >= 0) { return $dx_minimum; }
  }
  return 0;
}
sub absdx_maximum {
  my ($self) = @_;
  if (defined (my $dx_minimum = $self->dx_minimum)
      && defined (my $dx_maximum = $self->dx_maximum)) {
    return _max(abs($dx_minimum),abs($dx_maximum));
  }
  return undef;
}

sub absdy_minimum {
  my ($self) = @_;
  # if dY>=0 then abs(dY)=dY always and absdy_minimum()==dy_minimum()
  if (defined (my $dy_minimum = $self->dy_minimum)) {
    if ($dy_minimum >= 0) { return $dy_minimum; }
  }
  return 0;
}
sub absdy_maximum {
  my ($self) = @_;
  if (defined (my $dy_minimum = $self->dy_minimum)
      && defined (my $dy_maximum = $self->dy_maximum)) {
    return _max(abs($dy_minimum),abs($dy_maximum));
  } else {
    return undef;
  }
}

use constant dsumxy_minimum => undef;
use constant dsumxy_maximum => undef;
use constant ddiffxy_minimum => undef;
use constant ddiffxy_maximum => undef;

#------------------------------------------------------------------------------

sub new {
  my $class = shift;
  return bless { @_ }, $class;
}

{
  my %parameter_info_hash;
  sub parameter_info_hash {
    my ($class_or_self) = @_;
    my $class = (ref $class_or_self || $class_or_self);
    return ($parameter_info_hash{$class}
            ||= { map { $_->{'name'} => $_ }
                  $class_or_self->parameter_info_list });
  }
}

sub xy_to_n_list {
  ### xy_to_n_list() ...
  if (defined (my $n = shift->xy_to_n(@_))) {
    ### $n
    return $n;
  }
  ### empty ...
  return;
}
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  ### xy_is_visited(): "$x,$y is ndefined=".defined($self->xy_to_n($x,$y))
  return defined($self->xy_to_n($x,$y));
}

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n
  my ($x,$y) = $self->n_to_xy ($n)
    or return;
  my ($next_x,$next_y) = $self->n_to_xy ($n + $self->arms_count)
    or return;
  ### points: "$x,$y  $next_x,$next_y"
  return ($next_x - $x,
          $next_y - $y);
}
sub n_to_rsquared {
  my ($self, $n) = @_;
  my ($x,$y) = $self->n_to_xy($n) or return undef;
  return $x*$x + $y*$y;
}
sub n_to_radius {
  my ($self, $n) = @_;
  my $rsquared = $self->n_to_rsquared($n);
  return (defined $rsquared ? sqrt($rsquared) : undef);
}

#------------------------------------------------------------------------------
# tree

sub is_tree {
  my ($self) = @_;
  return $self->tree_n_num_children($self->n_start);
}

use constant tree_n_parent => undef;  # default always no parent

use constant tree_n_children => ();   # default no children
sub tree_n_num_children {
  my ($self, $n) = @_;
  if ($n >= $self->n_start) {
    my @n_list = $self->tree_n_children($n);
    return scalar(@n_list);
  } else {
    return undef;
  }
}

# For non-trees n_num_children() always returns 0 so that's the single
# return here.
use constant tree_num_children_list => (0);
sub tree_num_children_minimum {
  my ($self) = @_;
  return ($self->tree_num_children_list)[0];
}
sub tree_num_children_maximum {
  my ($self) = @_;
  return ($self->tree_num_children_list)[-1];
}
sub tree_any_leaf {
  my ($self) = @_;
  return ($self->tree_num_children_minimum == 0);
}

use constant tree_n_to_subheight => 0; # default all leaf node

use constant tree_n_to_depth => undef;
use constant tree_depth_to_n => undef;
sub tree_depth_to_n_end {
  my ($self, $depth) = @_;
  if ($depth >= 0
      && defined (my $n = $self->tree_depth_to_n($depth+1))) {
    ### tree_depth_to_n_end(): $depth, $n
    return $n-1;
  } else {
    return undef;
  }
}
sub tree_depth_to_n_range {
  my ($self, $depth) = @_;
  if (defined (my $n = $self->tree_depth_to_n($depth))
      && defined (my $n_end = $self->tree_depth_to_n_end($depth))) {
    return ($n, $n_end);
  }
  return;
}

sub tree_depth_to_width {
  my ($self, $depth) = @_;
  if (defined (my $n = $self->tree_depth_to_n($depth))
      && defined (my $n_end = $self->tree_depth_to_n_end($depth))) {
    return $n_end - $n + 1;
  }
  return undef;
}

sub tree_num_roots {
  my ($self) = @_;
  my @root_n_list = $self->tree_root_n_list;
  return scalar(@root_n_list);
}
sub tree_root_n_list {
  my ($self) = @_;
  my $n_start = $self->n_start;
  my @ret;
  for (my $n = $n_start; ; $n++) {
    # stop on finding a non-root (has a parent), or a non-tree path has no
    # children at all
    if (defined($self->tree_n_parent($n))
        || ! $self->tree_n_num_children($n)) {
      last;
    }
    push @ret, $n;
  }
  return @ret;
}

# Generic search upwards.  Not fast, but works with past Toothpick or
# anything slack which doesn't have own tree_n_root().  When only one root
# there's no search.
sub tree_n_root {
  my ($self, $n) = @_;
  my $num_roots = $self->tree_num_roots;
  if ($num_roots == 0) {
    return undef;  # not a tree
  }
  my $n_start = $self->n_start;
  unless ($n >= $n_start) {  # and warn if $n==undef
    return undef;  # -inf or NaN
  }
  if ($num_roots == 1) {
    return $n_start;  # only one root, no search
  }

  for (;;) {
    my $n_parent = $self->tree_n_parent($n);
    if (! defined $n_parent) {
      return $n; # found root
    }
    unless ($n_parent < $n) {
      return undef;  # +inf or something bad not making progress
    }
    $n = $n_parent;
  }
}

# Generic search for where no more children.
# But must watch out for infinite lets, and might also watch out for
# rounding or overflow.
#
# sub path_tree_n_to_subheight {
#   my ($path, $n) = @_;
#   ### path_tree_n_to_subheight(): "$n"
#
#   if (is_infinite($n)) {
#     return $n;
#   }
#   my $max = $path->tree_n_to_depth($n) + 10;
#   my @n = ($n);
#   my $height = 0;
#   do {
#     @n = map {$path->tree_n_children($_)} @n
#       or return $height;
#     $height++;
#   } while (@n && $height < $max);
#
#   ### height infinite ...
#   return undef;
# }

#------------------------------------------------------------------------------
# levels

use constant level_to_n_range => ();
use constant n_to_level => undef;


#------------------------------------------------------------------------------
# shared internals

sub _max {
  my $max = 0;
  foreach my $i (1 .. $#_) {
    if ($_[$i] > $_[$max]) {
      $max = $i;
    }
  }
  return $_[$max];
}
sub _min {
  my $min = 0;
  foreach my $i (1 .. $#_) {
    if ($_[$i] < $_[$min]) {
      $min = $i;
    }
  }
  return $_[$min];
}

use Math::PlanePath::Base::Generic 'round_nearest';
sub _rect_for_first_quadrant {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  $x1 = round_nearest($x1);
  $y1 = round_nearest($y1);
  $x2 = round_nearest($x2);
  $y2 = round_nearest($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  if ($x2 < 0 || $y2 < 0) {
    return;
  }
  return ($x1,$y1, $x2,$y2);
}

# return ($quotient, $remainder)
sub _divrem {
  my ($n, $d) = @_;
  if (ref $n && $n->isa('Math::BigInt')) {
    my ($quot,$rem) = $n->copy->bdiv($d);
    if (! ref $d || $d < 1_000_000) {
      $rem = $rem->numify;  # plain remainder if fits
    }
    return ($quot, $rem);
  }
  my $rem = $n % $d;
  return (int(($n-$rem)/$d), # exact division stays in UV
          $rem);
}

# return $remainder, modify $n
# the scalar $_[0] is modified, but if it's a BigInt then a new BigInt is made
# and stored there, the bigint value is not changed
sub _divrem_mutate {
  my $d = $_[1];
  my $rem;
  if (ref $_[0] && $_[0]->isa('Math::BigInt')) {
    ($_[0], $rem) = $_[0]->copy->bdiv($d);  # quot,rem in array context
    if (! ref $d || $d < 1_000_000) {
      return $rem->numify;  # plain remainder if fits
    }
  } else {
    $rem = $_[0] % $d;
    $_[0] = int(($_[0]-$rem)/$d); # exact division stays in UV
  }
  return $rem;
}

1;
__END__

=for stopwords PlanePath Ryde Math-PlanePath Math-PlanePath-Toothpick 7-gonals 8-gonal (step+2)-gonal heptagonals octagonals bignum multi-arm eg PerlMagick NaN NaNs subclasses incrementing arrayref hashref filename enum radix ie dX dY dX,dY Rsquared radix SUBCLASSING Ns onwards supremum radix radix-1 octant dSum dDiffXY RSquared Manhatten SumAbs infimum

=head1 NAME

Math::PlanePath -- points on a path through the 2-D plane

=head1 SYNOPSIS

 use Math::PlanePath;
 # only a base class, see the subclasses for actual operation

=head1 DESCRIPTION

This is a base class for some mathematical paths which map an integer
position C<$n> to and from coordinates C<$x,$y> in the 2D plane.

The current classes include the following.  The intention is that any
C<Math::PlanePath::Something> is a PlanePath, and supporting base classes or
related things are further down like C<Math::PlanePath::Base::Xyzzy>.

=for my_pod list begin

    SquareSpiral           four-sided spiral
    PyramidSpiral          square base pyramid
    TriangleSpiral         equilateral triangle spiral
    TriangleSpiralSkewed   equilateral skewed for compactness
    DiamondSpiral          four-sided spiral, looping faster
    PentSpiral             five-sided spiral
    PentSpiralSkewed       five-sided spiral, compact
    HexSpiral              six-sided spiral
    HexSpiralSkewed        six-sided spiral skewed for compactness
    HeptSpiralSkewed       seven-sided spiral, compact
    AnvilSpiral            anvil shape
    OctagramSpiral         eight pointed star
    KnightSpiral           an infinite knight's tour
    CretanLabyrinth        7-circuit extended infinitely

    SquareArms             four-arm square spiral
    DiamondArms            four-arm diamond spiral
    AztecDiamondRings      four-sided rings
    HexArms                six-arm hexagonal spiral
    GreekKeySpiral         square spiral with Greek key motif
    MPeaks                 "M" shape layers

    SacksSpiral            quadratic on an Archimedean spiral
    VogelFloret            seeds in a sunflower
    TheodorusSpiral        unit steps at right angles
    ArchimedeanChords      unit chords on an Archimedean spiral
    MultipleRings          concentric circles
    PixelRings             concentric rings of midpoint pixels
    FilledRings            concentric rings of pixels
    Hypot                  points by distance
    HypotOctant            first octant points by distance
    TriangularHypot        points by triangular distance
    PythagoreanTree        X^2+Y^2=Z^2 by trees

    PeanoCurve             3x3 self-similar quadrant
    WunderlichSerpentine   transpose parts of PeanoCurve
    HilbertCurve           2x2 self-similar quadrant
    HilbertSpiral          2x2 self-similar whole-plane
    ZOrderCurve            replicating Z shapes
    GrayCode               Gray code splits
    WunderlichMeander      3x3 "R" pattern quadrant
    BetaOmega              2x2 self-similar half-plane
    AR2W2Curve             2x2 self-similar of four parts
    KochelCurve            3x3 self-similar of two parts
    DekkingCurve           5x5 self-similar, edges
    DekkingCentres         5x5 self-similar, centres
    CincoCurve             5x5 self-similar

    ImaginaryBase          replicate in four directions
    ImaginaryHalf          half-plane replicate three directions
    CubicBase              replicate in three directions
    SquareReplicate        3x3 replicating squares
    CornerReplicate        2x2 replicating "U"
    LTiling                self-simlar L shapes
    DigitGroups            digits grouped by zeros
    FibonacciWordFractal   turns by Fibonacci word bits

    Flowsnake              self-similar hexagonal tile traversal
    FlowsnakeCentres         likewise but centres of hexagons
    GosperReplicate        self-similar hexagonal tiling
    GosperIslands          concentric island rings
    GosperSide             single side or radial

    QuintetCurve           self-similar "+" traversal
    QuintetCentres           likewise but centres of squares
    QuintetReplicate       self-similar "+" tiling

    DragonCurve            paper folding
    DragonRounded          paper folding rounded corners
    DragonMidpoint         paper folding segment midpoints
    AlternatePaper         alternating direction folding
    AlternatePaperMidpoint alternating direction folding, midpoints
    TerdragonCurve         ternary dragon
    TerdragonRounded       ternary dragon rounded corners
    TerdragonMidpoint      ternary dragon segment midpoints
    R5DragonCurve          radix-5 dragon curve
    R5DragonMidpoint       radix-5 dragon curve midpoints
    CCurve                 "C" curve
    ComplexPlus            base i+realpart
    ComplexMinus           base i-realpart, including twindragon
    ComplexRevolving       revolving base i+1

    SierpinskiCurve        self-similar right-triangles
    SierpinskiCurveStair   self-similar right-triangles, stair-step
    HIndexing              self-similar right-triangles, squared up

    KochCurve              replicating triangular notches
    KochPeaks              two replicating notches
    KochSnowflakes         concentric notched 3-sided rings
    KochSquareflakes       concentric notched 4-sided rings
    QuadricCurve           eight segment zig-zag
    QuadricIslands           rings of those zig-zags
    SierpinskiTriangle     self-similar triangle by rows
    SierpinskiArrowhead    self-similar triangle connectedly
    SierpinskiArrowheadCentres  likewise but centres of triangles

    Rows                   fixed-width rows
    Columns                fixed-height columns
    Diagonals              diagonals between X and Y axes
    DiagonalsAlternating   diagonals Y to X and back again
    DiagonalsOctant        diagonals between Y axis and X=Y centre
    Staircase              stairs down from the Y to X axes
    StaircaseAlternating   stairs Y to X and back again
    Corner                 expanding stripes around a corner
    PyramidRows            expanding stacked rows pyramid
    PyramidSides           along the sides of a 45-degree pyramid
    CellularRule           cellular automaton by rule number
    CellularRule54         cellular automaton rows pattern
    CellularRule57         cellular automaton (rule 99 mirror too)
    CellularRule190        cellular automaton (rule 246 mirror too)
    UlamWarburton          cellular automaton diamonds
    UlamWarburtonQuarter   cellular automaton quarter-plane

    DiagonalRationals      rationals X/Y by diagonals
    FactorRationals        rationals X/Y by prime factorization
    GcdRationals           rationals X/Y by rows with GCD integer
    RationalsTree          rationals X/Y by tree
    FractionsTree          fractions 0<X/Y<1 by tree
    ChanTree               rationals X/Y multi-child tree
    CfracDigits            continued fraction 0<X/Y<1 by digits
    CoprimeColumns         coprime X,Y
    DivisibleColumns       X divisible by Y
    WythoffArray           Fibonacci recurrences
    WythoffPreliminaryTriangle
    PowerArray             powers in rows
    File                   points from a disk file

=for my_pod list end

And in the separate Math-PlanePath-Toothpick distribution

    ToothpickTree          pattern of toothpicks
    ToothpickReplicate     same by replication rather than tree
    ToothpickUpist         toothpicks only growing upwards
    ToothpickSpiral        toothpicks around the origin

    LCornerTree            L-shape corner growth
    LCornerReplicate       same by replication rather than tree
    OneOfEight
    HTree                  H shapes replicated

The paths are object oriented to allow parameters, though many have none.
See C<examples/numbers.pl> in the Math-PlanePath sources for a sample
printout of numbers from selected paths or all paths.

=head2 Number Types

The C<$n> and C<$x,$y> parameters can be either integers or floating point.
The paths are meant to do something sensible with fractions but expect
rounding-off for big floating point exponents.

Floating point infinities (when available) give NaN or infinite returns of
some kind (some unspecified kind as yet).  C<n_to_xy()> on negative infinity
is an empty return, the same as other negative C<$n>.

Floating point NaNs (when available) give NaN, infinite, or empty/undef
returns, but again of some unspecified kind as yet.

Many of the classes can operate on overloaded number types as inputs and
give corresponding outputs.

    Math::BigInt        maybe perl 5.8 up for ** operator
    Math::BigRat
    Math::BigFloat
    Number::Fraction    1.14 or higher for abs()

A few classes might truncate a bignum or a fraction to a float as yet.  In
general the intention is to make the calculations generic enough to act on
any sensible number type.  Recent enough versions of the bignum modules
might be required, perhaps C<BigInt> of Perl 5.8 or higher for C<**>
exponentiation operator.

For reference, an C<undef> input as C<$n>, C<$x>, C<$y>, etc, is meant to
provoke an uninitialized value warning when warnings are enabled, but
currently it doesn't croak etc.  Perhaps that will change, but the warning
at least prevents bad inputs going unnoticed.

=head1 FUNCTIONS

In the following C<Foo> is one of the various subclasses, see the list above
and under L</SEE ALSO>.

=head2 Constructor

=over 4

=item C<$path = Math::PlanePath::Foo-E<gt>new (key=E<gt>value, ...)>

Create and return a new path object.  Optional key/value parameters may
control aspects of the object.

=back

=head2 Coordinate Methods

=over

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return X,Y coordinates of point C<$n> on the path.  If there's no point
C<$n> then the return is an empty list.  For example

    my ($x,$y) = $path->n_to_xy (-123)
      or next;   # no negatives in $path

Paths start from C<$path-E<gt>n_start()> below, though some will give a
position for N=0 or N=-0.5 too.

=item C<($dx,$dy) = $path-E<gt>n_to_dxdy ($n)>

Return the change in X and Y going from point C<$n> to point C<$n+1>, or for
paths with multiple arms from C<$n> to C<$n+$arms_count> (thus advancing one
point along the arm of C<$n>).

    +  $n+1 == $next_x,$next_y
    ^
    |
    |                    $dx = $next_x - $x
    +  $n == $x,$y       $dy = $next_y - $y

C<$n> can be fractional and in that case the dX,dY is from that fractional
C<$n> position to C<$n+1> (or C<$n+$arms>).

           frac $n+1 == $next_x,$next_y
                v
    integer *---+----
            |  /
            | /
            |/                 $dx = $next_x - $x
       frac +  $n == $x,$y     $dy = $next_y - $y
            |
    integer *

In both cases C<n_to_dxdy()> is the difference C<$dx=$next_x-$x,
$dy=$next_y-$y>.  Currently for most paths it's merely two C<n_to_xy()>
calls to calculate the two points, but some paths can calculate a dX,dY with
a little less work.

=item C<$rsquared = $path-E<gt>n_to_radius ($n)>

=item C<$rsquared = $path-E<gt>n_to_rsquared ($n)>

Return the radial distance R=sqrt(X^2+Y^2) of point C<$n>, or the radius
squared R^2=X^2+Y^2.  If there's no point C<$n> then the return is C<undef>.

For a few paths these might be calculated with less work than C<n_to_xy()>.
For example the C<SacksSpiral> is simply R^2=N, or the C<MultipleRings> path
with its default step=6 has an integer radius for integer C<$n> whereas
C<$x,$y> are fractional (and so inexact).

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the N point number at coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

    my $n = $path->xy_to_n(20,20);
    if (! defined $n) {
      next;   # nothing at this X,Y
    }

C<$x> and C<$y> can be fractional and the path classes will give an integer
C<$n> which contains C<$x,$y> within a unit square, circle, or intended
figure centred on the integer C<$n>.

For paths which completely fill the plane there's always an C<$n> to return,
but for the spread-out paths an C<$x,$y> position may fall in between (no
C<$n> close enough) and give C<undef>.

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers at coordinates C<$x,$y>.  If there's
nothing at C<$x,$y> then return an empty list.

    my @n_list = $path->xy_to_n(20,20);

Most paths have just a single N for a given X,Y but some such as
C<DragonCurve> and C<TerdragonCurve> have multiple N's and this method
returns all of them.

=item C<$bool = $path-E<gt>xy_is_visited ($x,$y)>

Return true if C<$x,$y> is visited.  This is equivalent to

    defined($path->xy_to_n($x,$y))

Some paths cover the plane and for them C<xy_is_visited()> is always true.
For others it might be less work to test a point than to calculate its
C<$n>.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

Return a range of N values covering or exceeding a rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>.  The range is inclusive.  For example,

     my ($n_lo, $n_hi) = $path->rect_to_n_range (-5,-5, 5,5);
     foreach my $n ($n_lo .. $n_hi) {
       my ($x, $y) = $path->n_to_xy($n) or next;
       print "$n  $x,$y";
     }

The return might be an over-estimate of the N range required to cover the
rectangle.  Even if the range is exact the nature of the path may mean many
points between C<$n_lo> and C<$n_hi> are outside the rectangle.  But the
range is at least a lower and upper bound on the N values which occur in the
rectangle.  Classes which can guarantee an exact lo/hi range say so in their
docs.

C<$n_hi> is usually no more than an extra partial row, revolution, or
self-similar level.  C<$n_lo> might be merely the starting
C<$path-E<gt>n_start()>, which is fine if the origin is in the desired
rectangle but away from the origin might actually start higher.

C<$x1>,C<$y1> and C<$x2>,C<$y2> can be fractional.  If they partly overlap
some N figures then those N's are included in the return.

If there's no points in the rectangle then the return can be a "crossed"
range like C<$n_lo=1>, C<$n_hi=0> (which makes a C<foreach> do no loops).
But C<rect_to_n_range()> may not always notice there's no points in the
rectangle and might instead return some over-estimate.

=back

=head2 Descriptive Methods

=over

=item C<$n = $path-E<gt>n_start()>

Return the first N in the path.  The start is usually either 0 or 1
according to what is most natural for the path.  Some paths have an
C<n_start> parameter to control the numbering.

Some classes have secret dubious undocumented support for N values below
this start (zero or negative), but C<n_start()> is the intended starting
point.

=item C<$f = $path-E<gt>n_frac_discontinuity()>

Return the fraction of N at which there may be discontinuities in the path.
For example if there's a jump in the coordinates between N=7.4999 and N=7.5
then the returned C<$f> is 0.5.  Or C<$f> is 0 if there's a discontinuity
between 6.999 and 7.0.

If there's no discontinuities in the path then the return is C<undef>.  That
means for example fractions between N=7 to N=8 give smooth continuous X,Y
values (of some kind).

This is mainly of interest for drawing line segments between N points.  If
there's discontinuities then the idea is to draw from say N=7.0 to N=7.499
and then another line from N=7.5 to N=8.

=item C<$arms = $path-E<gt>arms_count()>

Return the number of arms in a "multi-arm" path.

For example in C<SquareArms> this is 4 and each arm increments in turn, so
the first arm is N=1,5,9,13,etc starting from C<$path-E<gt>n_start()> and
incrementing by 4 each time.

=item C<$bool = $path-E<gt>x_negative()>

=item C<$bool = $path-E<gt>y_negative()>

Return true if the path extends into negative X coordinates and/or negative
Y coordinates respectively.

=item C<$bool = Math::PlanePath::Foo-E<gt>class_x_negative()>

=item C<$bool = Math::PlanePath::Foo-E<gt>class_y_negative()>

=item C<$bool = $path-E<gt>class_x_negative()>

=item C<$bool = $path-E<gt>class_y_negative()>

Return true if any paths made by this class extend into negative X
coordinates and/or negative Y coordinates, respectively.

For some classes the X or Y extent may depend on parameter values.

=item C<$n = $path-E<gt>x_negative_at_n()>

=item C<$n = $path-E<gt>y_negative_at_n()>

Return the integer N where X or Y respectively first goes negative, or
return C<undef> if it does not go negative (C<x_negative()> or
C<y_negative()> respectively is false).

=item C<$x = $path-E<gt>x_minimum()>

=item C<$y = $path-E<gt>y_minimum()>

=item C<$x = $path-E<gt>x_maximum()>

=item C<$y = $path-E<gt>y_maximum()>

Return the minimum or maximum of the X or Y coordinate reached by integer N
values in the path.  If there's no minimum or maximum then return C<undef>.

=item C<$dx = $path-E<gt>dx_minimum()>

=item C<$dx = $path-E<gt>dx_maximum()>

=item C<$dy = $path-E<gt>dy_minimum()>

=item C<$dy = $path-E<gt>dy_maximum()>

Return the minimum or maximum change dX, dY occurring in the path for
integer N to N+1.  For a multi-arm path the change is N to N+arms so it's
the change along the same arm.

Various paths which go by rows have non-decreasing Y.  For them
C<dy_minimum()> is 0.

=cut

# =item C<@dxdy_list = $path-E<gt>dxdy_list()>
# 
# If C<$path> has a finite set of dX,dY steps then return them as a list.
# If C<$path> has an infinite set of dX,dY steps then return an empty list.
# 
#     $dx1,$dy1, $dx2,$dy2, $dx3,$dy3, ...
# 
# The points are returned in order of angle around starting from East
# (dXE<gt>0,dY=0), and by increasing length among those of the same angle.  If
# dX=0,dY=0 occurs (which it doesn't in any current path) then that would be
# first in the return list.

=pod

=item C<$adx = $path-E<gt>absdx_minimum()>

=item C<$adx = $path-E<gt>absdx_maximum()>

=item C<$ady = $path-E<gt>absdy_minimum()>

=item C<$ady = $path-E<gt>absdy_maximum()>

Return the minimum or maximum change abs(dX) or abs(dY) occurring in the
path for integer N to N+1.  For a multi-arm path the change is N to N+arms
so it's the change along the same arm.

C<absdx_maximum()> is simply max(dXmax,-dXmin), the biggest change either
positive or negative.  C<absdy_maximum()> similarly.

C<absdx_minimum()> is 0 if dX=0 occurs anywhere in the path, which means any
vertical step.  If X always changes then C<absdx_minimum()> will be
something bigger than 0.  C<absdy_minimum()> likewise 0 if any horizontal
dY=0, or bigger if Y always changes.

=item C<$sum = $path-E<gt>sumxy_minimum()>

=item C<$sum = $path-E<gt>sumxy_maximum()>

Return the minimum or maximum values taken by coordinate sum X+Y reached by
integer N values in the path.  If there's no minimum or maximum then return
C<undef>.

S=X+Y is an anti-diagonal.  A path which is always right and above some
anti-diagonal has a minimum.  Some paths might be entirely left and below
and so have a maximum, though that's unusual.

                          \        Path always above
                           \ |     has minimum S=X+Y
                            \|
                          ---o----
      Path always below      |\
      has maximum S=X+Y      | \
                                \  S=X+Y


=item C<$sum = $path-E<gt>sumabsxy_minimum()>

=item C<$sum = $path-E<gt>sumabsxy_maximum()>

Return the minimum or maximum values taken by coordinate sum abs(X)+abs(Y)
reached by integer N values in the path.  A minimum always exists but if
there's no maximum then return C<undef>.

SumAbs=abs(X)+abs(Y) is sometimes called the "taxi-cab" or "Manhatten"
distance, being how far to travel through a square-grid city to get to X,Y.
C<sumabsxy_minimum()> is then how close to the origin the path extends.

SumAbs can also be interpreted geometrically as numbering the anti-diagonals
of the quadrant containing X,Y, which is equivalent to asking which diamond
shape X,Y falls on.  C<sumabsxy_minimum()> is then the smallest such diamond
reached by the path.

         |
        /|\       SumAbs = which diamond X,Y falls on
       / | \
      /  |  \
    -----o-----
      \  |  /
       \ | /
        \|/
         |

=item C<$diffxy = $path-E<gt>diffxy_minimum()>

=item C<$diffxy = $path-E<gt>diffxy_maximum()>

Return the minimum or maximum values taken by coordinate difference X-Y
reached by integer N values in the path.  If there's no minimum or maximum
then return C<undef>.

D=X-Y is a leading diagonal.  A path which is always right and below such a
diagonal has a minimum, for example C<HypotOctant>.  A path which is always
left and above some diagonal has a maximum D=X-Y.  For example various
wedge-like paths such as C<PyramidRows> in its default step=2, and "upper
octant" paths have a maximum.

                                 /   D=X-Y
        Path always below     | /
        has maximum D=X-Y     |/
                           ---o----
                             /|
                            / |      Path always above
                           /         has minimum D=X-Y

=item C<$absdiffxy = $path-E<gt>absdiffxy_minimum()>

=item C<$absdiffxy = $path-E<gt>absdiffxy_maximum()>

Return the minimum or maximum values taken by abs(X-Y) for integer N in the
path.  The minimum is 0 or more.  If there's maximum then return C<undef>.

abs(X-Y) can be interpreted geometrically as the distance away from the X=Y
diagonal and measured at right-angles to that line.

     d=abs(X-Y)  X=Y line
           ^    /
            \  /
             \/
             /\
            /  \
           /    \
          o      v
         /         d=abs(X-Y)

Paths which visit the X=Y line (or approach it as an infimum) have
C<absdiffxy_minimum() = 0>.  Otherwise C<absdiffxy_minimum()> is how close
they come to the line.

If the path is entirely below the X=Y line so XE<gt>=Y then X-Y>=0 and
C<absdiffxy_minimum()> is the same as C<diffxy_minimum()>.  If the path is
entirely below the X=Y line then C<absdiffxy_minimum()> is
S<C<- diffxy_maximum()>>.

=item C<$dsumxy = $path-E<gt>dsumxy_minimum()>

=item C<$dsumxy = $path-E<gt>dsumxy_maximum()>

=item C<$ddiffxy = $path-E<gt>ddiffxy_minimum()>

=item C<$ddiffxy = $path-E<gt>ddiffxy_maximum()>

Return the minimum or maximum change dSum or dDiffXY occurring in the path
for integer N to N+1.  For a multi-arm path the change is N to N+arms so
it's the change along the same arm.

=item C<$rsquared = $path-E<gt>rsquared_minimum()>

=item C<$rsquared = $path-E<gt>rsquared_maximum()>

Return the minimum or maximum Rsquared = X^2+Y^2 reached by integer N values
in the path.  If there's no minimum or maximum then return C<undef>.

Rsquared is always E<gt>= 0 so it always has a minimum.  The minimum will be
more than 0 for paths which don't include the origin X=0,Y=0.

RSquared generally has no maximum since the paths usually extend infinitely
in some direction.  C<rsquared_maximum()> returns C<undef> in that case.

=cut

# =item C<$gcd = $path-E<gt>gcdxy_minimum()>
#
# =item C<$gcd = $path-E<gt>gcdxy_maximum()>
#
# Return the minimum or maximum GCD(X,Y) reached by integer N values in the
# path.  If there's no minimum or maximum then return C<undef>.
#
# C<gcdxy_minimum()> is always 0 or more since the sign of X and Y is ignored
# for taking the GCD.  GCD(0,0)=0 is the only GCD=0.  X!=0 or Y!=0 gives
# GCD(X,Y)E<gt>0.  So the minimum is 0 if X=0,Y=0 is visited and E<gt>0 if
# not.
#
# C<gcdxy_maximum()> is usually C<undef> since there's no limit to the GCD.
# Paths such as C<CoprimeColumns> where X,Y have no common factor have
# C<gcdxy_maximum()> returning 1.

=pod

=item C<($dx,$dy) = $path-E<gt>dir_minimum_dxdy()>

=item C<($dx,$dy) = $path-E<gt>dir_maximum_dxdy()>

Return a vector which is the minimum or maximum angle taken by a step
integer N to N+1, or for a multi-arm path N to N+arms so it's the change
along the same arm.  Directions are reckoned anti-clockwise around from the
X axis.

                  |  *  dX=2,dY=2
    dX=-1,dY=1  * | /
                 \|/
            ------+----*  dX=1,dY=0
                  |
                  |
                  * dX=0,dY=-1

A path which is always goes N,S,E,W such as the C<SquareSpiral> has minimum
East dX=1,dY=0 and maximum South dX=0,dY=-1.

Paths which go diagonally may have different limits.  For example the
C<KnightSpiral> goes in 2x1 steps and so has minimum East-North-East
dX=2,dY=1 and maximum East-South-East dX=2,dY=-1.

If the path has directions approaching 360 degrees then
C<dir_maximum_dxdy()> is 0,0 which should be taken to mean a full circle as
a supremum.  For example C<MultipleRings>.

If the path only ever goes East then the maximum is East dX=1,dY=0, and the
minimum the same.  This isn't particularly interesting, but arises for
example in the C<Columns> path height=0.

=item C<$str = $path-E<gt>figure()>

Return a string name of the figure (shape) intended to be drawn at each
C<$n> position.  This is currently either

    "square"     side 1 centred on $x,$y
    "circle"     diameter 1 centred on $x,$y

Of course this is only a suggestion since PlanePath doesn't draw anything
itself.  A figure like a diamond for instance can look good too.

=back

=head2 Tree Methods

Some paths are structured like a tree where each N has a parent and possibly
some children.

                 123
                / | \
             456 999 458
            /        / \
          1000    1001 1005

The N numbering and any relation to X,Y positions varies among the paths.
Some are numbered by rows in breadth-first style and some have children with
X,Y positions adjacent to their parent, but that shouldn't be assumed, only
that there's a parent-child relation down from some set of root nodes.

=over

=item C<$bool = $path-E<gt>is_tree()>

Return true if C<$path> is a tree.

The various tree methods have empty or C<undef> returns on non-tree paths.
Often it's enough to check for that from a desired method rather than a
separate C<is_tree()> check.

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return a list of N values which are the child nodes of C<$n>, or return an
empty list if C<$n> has no children.

There could be no children either because C<$path> is not a tree or because
there's no children at a particular C<$n>.

=item C<$num = $path-E<gt>tree_n_num_children($n)>

Return the number of children of C<$n>, or 0 if C<$n> has no children, or
C<undef> if S<C<$n E<lt> n_start()>> (ie. before the start of the path).

If the tree is considered as a directed graph then this is the "out-degree"
of C<$n>.

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if it has no parent.

There is no parent at the root node of the tree, or one of multiple roots,
or if C<$path> is not a tree.

=item C<$n_root = $path-E<gt>tree_n_root ($n)>

Return the N which is the root node of C<$n>.  This is the top of the tree
as would be found by following C<tree_n_parent()> repeatedly.

The return is C<undef> if there's no C<$n> point or if C<$path> is not a
tree.

=item C<$depth = $path-E<gt>tree_n_to_depth($n)>

Return the depth of node C<$n>, or C<undef> if there's no point C<$n>.  The
top of the tree is depth=0, then its children are depth=1, etc.

The depth is a count of how many parent, grandparent, etc, levels are above
C<$n>, ie. until reaching C<tree_n_to_parent()> returning C<undef>.  For
non-tree paths C<tree_n_to_parent()> is always C<undef> and
C<tree_n_to_depth()> is always 0.

=item C<$n_lo = $path-E<gt>tree_depth_to_n($depth)>

=item C<$n_hi = $path-E<gt>tree_depth_to_n_end($depth)>

=item C<($n_lo, $n_hi) = $path-E<gt>tree_depth_to_n_range ($depth)>

Return the first or last N, or both those N, for tree level C<$depth> in the
path.  If there's no such C<$depth> or if C<$path> is not a tree then return
C<undef>, or for C<tree_depth_to_n_range()> return an empty list.

The points C<$n_lo> through C<$n_hi> might not necessarily all be at
C<$depth>.  It's possible for depths to be interleaved or intermixed in the
point numbering.  But many paths are breadth-wise successive rows and for
them C<$n_lo> to C<$n_hi> inclusive is all C<$depth>.

C<$n_hi> can only exist if the row has a finite number of points.  That's
true of all current paths, but perhaps allowance ought to be made for
C<$n_hi> as C<undef> or some such if there is no maximum N for some row.

=item C<$num = $path-E<gt>tree_depth_to_width ($depth)>

Return the number of points at C<$depth> in the tree.  If there's no such
C<$depth> or C<$path> is not a tree then return C<undef>.

=item C<$height = $path-E<gt>tree_n_to_subheight($n)>

Return the height of the sub-tree starting at C<$n>, or C<undef> if
infinite.  The height of a tree is the longest distance down to a leaf node.
For example,

    ...                      N     subheight
      \                     ---    ---------
       6    7   8            0       undef
        \    \ /             1       undef
         3    4   5          2         2
          \    \ /           3       undef
           1    2            4         1
            \  /             5         0
              0             ...

At N=0 and all of the left side the tree continues infinitely so the
sub-height there is C<undef> for infinite.  For N=2 the sub-height is 2
because the longest path down is 2 levels (to N=7 or N=8).  For a leaf node
such as N=5 the sub-height is 0.

=back

=head2 Tree Descriptive Methods

=over

=item C<$num = $path-E<gt>tree_num_roots()>

Return the number of root nodes in C<$path>.  If C<$path> is not a tree then
return 0.  Many tree paths have a single root and for them the return is 1.

=item C<@n_list = $path-E<gt>tree_root_n_list()>

Return a list of the N values which are the root nodes in C<$path>.  If
C<$path> is not a tree then this is an empty list.  There are
C<tree_num_roots()> many return values.

=item C<$num = $path-E<gt>tree_num_children_minimum()>

=item C<$num = $path-E<gt>tree_num_children_maximum()>

=item C<@nums = $path-E<gt>tree_num_children_list()>

Return the possible number of children of the nodes of C<$path>, either the
minimum, the maximum, or a list of all possible numbers of children.

For C<tree_num_children_list()> the list of values is in increasing order,
so the first value is C<tree_num_children_minimum()> and the last is
C<tree_num_children_maximum()>.

=item C<$bool = $path-E<gt>tree_any_leaf()>

Return true if there are any leaf nodes in the tree, meaning any N for which
C<tree_n_num_children()> is 0.

This is the same as C<tree_num_children_minimum()==0> since if NumChildren=0
occurs then there are leaf nodes.

Some trees may have no leaf nodes, for example in the complete binary tree
of C<RationalsTree> every node always has 2 children.

=back

=head2 Level Methods

=over

=item C<level = $path-E<gt>n_to_level($n)>

Return the replication level containing C<$n>.  The first level is 0.

=item C<($n_lo,$n_hi) = $path-E<gt>level_to_n_range($level)>

Return the range of N values, inclusive, which comprise a self-similar
replication level in C<$path>.  If C<$path> has no notion of such levels
then return an empty list.

    my ($n_lo, $n_hi) = $path->level_to_n_range(6)
      or print "no levels in this path";

For example the C<DragonCurve> has levels running C<0> to C<2**$level>, or
the C<HilbertCurve> is C<0> to C<4**$level - 1>.  Most levels are powers
like this.  A power C<2**$level> is a "vertex" style whereas C<2**$level -
1> is a "centre" style.  The difference is generally whether the X,Y points
represent vertices of the object's segments as opposed to centres or
midpoints.

=back

=head2 Parameter Methods

=over

=item C<$aref = Math::PlanePath::Foo-E<gt>parameter_info_array()>

=item C<@list = Math::PlanePath::Foo-E<gt>parameter_info_list()>

Return an arrayref of list describing the parameters taken by a given class.
This meant to help making widgets etc for user interaction in a GUI.  Each
element is a hashref

    {
      name        =>    parameter key arg for new()
      share_key   =>    string, or undef
      description =>    human readable string
      type        =>    string "integer","boolean","enum" etc
      default     =>    value
      minimum     =>    number, or undef
      maximum     =>    number, or undef
      width       =>    integer, suggested display size
      choices     =>    for enum, an arrayref
    }

C<type> is a string, one of

    "integer"
    "enum"
    "boolean"
    "string"
    "filename"

"filename" is separate from "string" since it might require subtly different
handling to reach Perl as a byte string, whereas a "string" type might in
principle take Perl wide chars.

For "enum" the C<choices> field is the possible values, such as

    { name => "flavour",
      type => "enum",
      choices => ["strawberry","chocolate"],
    }

C<minimum> and/or C<maximum> are omitted if there's no hard limit on the
parameter.

C<share_key> is designed to indicate when parameters from different
C<PlanePath> classes can done by a single control widget in a GUI etc.
Normally the C<name> is enough, but when the same name has slightly
different meanings in different classes a C<share_key> allows the same
meanings to be matched up.

=item C<$hashref = Math::PlanePath::Foo-E<gt>parameter_info_hash()>

Return a hashref mapping parameter names C<$info-E<gt>{'name'}> to their
C<$info> records.

    { wider => { name => "wider",
                 type => "integer",
                 ...
               },
    }

=back

=head1 GENERAL CHARACTERISTICS

The classes are mostly based on integer C<$n> positions and those designed
for a square grid turn an integer C<$n> into integer C<$x,$y>.  Usually they
give in-between positions for fractional C<$n> too.  Classes not on a square
grid but instead giving fractional X,Y such as C<SacksSpiral> and
C<VogelFloret> are designed for a unit circle at each C<$n> but they too can
give in-between positions on request.

All X,Y positions are calculated by separate C<n_to_xy()> calls.  To follow
a path use successive C<$n> values starting from C<$path-E<gt>n_start()>.

    foreach my $n ($path->n_start .. 100) {
      my ($x,$y) = $path->n_to_xy($n);
      print "$n  $x,$y\n";
    }

The separate C<n_to_xy()> calls were motivated by plotting just some N
points of a path, such as just the primes or the perfect squares.
Successive positions in paths could perhaps be done more efficiently in an
iterator style.  Paths with a quadratic "step" are not much worse than a
C<sqrt()> to break N into a segment and offset, but the self-similar paths
which chop N into digits of some radix could increment instead of
recalculate.

If interested only in a particular rectangle or similar region then
iterating has the disadvantage that it may stray outside the target region
for a long time, making an iterator much less useful than it seems.  For
wild paths it can be better to apply C<xy_to_n()> by rows or similar across
the desired region.

L<Math::NumSeq::PlanePathCoord> etc offer the PlanePath coordinates,
directions, turns, etc as sequences.  The iterator forms there simply make
repeated calls to C<n_to_xy()> etc.

=head2 Scaling and Orientation

The paths generally make a first move to the right and go anti-clockwise
around from the X axis, unless there's some more natural orientation.
Anti-clockwise is the usual direction for mathematical spirals.

There's no parameters for scaling, offset or reflection as those things are
thought better left to a general coordinate transformer, for example to
expand or invert for display.  Some easy transformations can be had just
from the X,Y with

    -X,Y        flip horizontally (mirror image)
    X,-Y        flip vertically (across the X axis)

    -Y,X        rotate +90 degrees  (anti-clockwise)
    Y,-X        rotate -90 degrees  (clockwise)
    -X,-Y       rotate 180 degrees

Flip vertically makes spirals go clockwise instead of anti-clockwise, or a
flip horizontally the same but starting on the left at the negative X axis.
See L</Triangular Lattice> below for 60 degree rotations of the triangular
grid paths too.

The Rows and Columns paths are exceptions to the rule of not having rotated
versions of paths.  They began as ways to pass in width and height as
generic parameters and let the path use the one or the other.

For scaling and shifting see for example L<Transform::Canvas>, and to rotate
as well see L<Geometry::AffineTransform>.

=head2 Loop Step

The paths can be characterized by how much longer each loop or repetition is
than the preceding one.  For example each cycle around the C<SquareSpiral>
is 8 more N points than the preceding.

=for my_pod step begin

      Step        Path
      ----        ----
        0       Rows, Columns (fixed widths)
        1       Diagonals
       2/2      DiagonalsOctant (2 rows for +2)
        2       SacksSpiral, PyramidSides, Corner, PyramidRows (default)
        4       DiamondSpiral, AztecDiamondRings, Staircase
       4/2      CellularRule54, CellularRule57,
                  DiagonalsAlternating (2 rows for +4)
        5       PentSpiral, PentSpiralSkewed
       5.65     PixelRings (average about 4*sqrt(2))
        6       HexSpiral, HexSpiralSkewed, MPeaks,
                  MultipleRings (default)
       6/2      CellularRule190 (2 rows for +6)
       6.28     ArchimedeanChords (approaching 2*pi),
                  FilledRings (average 2*pi)
        7       HeptSpiralSkewed
        8       SquareSpiral, PyramidSpiral
      16/2      StaircaseAlternating (up and back for +16)
        9       TriangleSpiral, TriangleSpiralSkewed
       12       AnvilSpiral
       16       OctagramSpiral, ToothpickSpiral
      19.74     TheodorusSpiral (approaching 2*pi^2)
      32/4      KnightSpiral (4 loops 2-wide for +32)
       64       DiamondArms (each arm)
       72       GreekKeySpiral
      128       SquareArms (each arm)
     128/4      CretanLabyrinth (4 loops for +128)
      216       HexArms (each arm)

    totient     CoprimeColumns, DiagonalRationals
    numdivisors DivisibleColumns
    various     CellularRule

    parameter   MultipleRings, PyramidRows

=for my_pod step end

The step determines which quadratic number sequences make straight lines.
For example the gap between successive perfect squares increases by 2 each
time (4 to 9 is +5, 9 to 16 is +7, 16 to 25 is +9, etc), so the perfect
squares make a straight line in the paths of step 2.

In general straight lines on stepped paths are quadratics

   N = a*k^2 + b*k + c    where a=step/2

The polygonal numbers are like this, with the (step+2)-gonal numbers making
a straight line on a "step" path.  For example the 7-gonals (heptagonals)
are 5/2*k^2-3/2*k and make a straight line on the step=5 C<PentSpiral>.  Or
the 8-gonal octagonal numbers 6/2*k^2-4/2*k on the step=6 C<HexSpiral>.

There are various interesting properties of primes in quadratic
progressions.  Some quadratics seem to have more primes than others.  For
example see L<Math::PlanePath::PyramidSides/Lucky Numbers of Euler>.  Many
quadratics have no primes at all, or none above a certain point, either
trivially if always a multiple of 2 etc, or by a more sophisticated
reasoning.  See L<Math::PlanePath::PyramidRows/Step 3 Pentagonals> for a
factorization on the roots making a no-primes gap.

A 4*step path splits a straight line in two, so for example the perfect
squares are a straight line on the step=2 "Corner" path, and then on the
step=8 C<SquareSpiral> they instead fall on two lines (lower left and upper
right).  In the bigger step there's one line of the even squares (2k)^2 ==
4*k^2 and another of the odd squares (2k+1)^2.  The gap between successive
even squares increases by 8 each time and likewise between odd squares.

=head2 Self-Similar Powers

The self-similar patterns such as C<PeanoCurve> generally have a base
pattern which repeats at powers N=base^level or squares N=(base*base)^level.
Or some multiple or relationship to such a power for things like
C<KochPeaks> and C<GosperIslands>.

=for my_pod base begin

    Base          Path
    ----          ----
      2         HilbertCurve, HilbertSpiral, ZOrderCurve (default),
                  GrayCode (default), BetaOmega, AR2W2Curve,
                  SierpinskiCurve, HIndexing, SierpinskiCurveStair,
                  ImaginaryBase (default), ImaginaryHalf (default),
                  CubicBase (default) CornerReplicate,
                  ComplexMinus (default), ComplexPlus (default),
                  ComplexRevolving, DragonCurve, DragonRounded,
                  DragonMidpoint, AlternatePaper, AlternatePaperMidpoint,
                  CCurve, DigitGroups (default), PowerArray (default)
      3         PeanoCurve (default), WunderlichSerpentine (default),
                  WunderlichMeander, KochelCurve,
                  GosperIslands, GosperSide
                  SierpinskiTriangle, SierpinskiArrowhead,
                  SierpinskiArrowheadCentres,
                  TerdragonCurve, TerdragonRounded, TerdragonMidpoint,
                  UlamWarburton, UlamWarburtonQuarter (each level)
      4         KochCurve, KochPeaks, KochSnowflakes, KochSquareflakes,
                  LTiling,
      5         QuintetCurve, QuintetCentres, QuintetReplicate,
                  DekkingCurve, DekkingCentres, CincoCurve,
                  R5DragonCurve, R5DragonMidpoint
      7         Flowsnake, FlowsnakeCentres, GosperReplicate
      8         QuadricCurve, QuadricIslands
      9         SquareReplicate
    Fibonacci   FibonacciWordFractal, WythoffArray
    parameter   PeanoCurve, WunderlichSerpentine, ZOrderCurve, GrayCode,
                  ImaginaryBase, ImaginaryHalf, CubicBase, ComplexPlus,
                  ComplexMinus, DigitGroups, PowerArray

=for my_pod base end

Many number sequences plotted on these self-similar paths tend to be fairly
random, or merely show the tiling or path layout rather than much about the
number sequence.  Sequences related to the base can make holes or patterns
picking out parts of the path.  For example numbers without a particular
digit (or digits) in the relevant base show up as holes.  See for example
L<Math::PlanePath::ZOrderCurve/Power of 2 Values>.

=head2 Triangular Lattice

Some paths are on triangular or "A2" lattice points like

      *---*---*---*---*---*
     / \ / \ / \ / \ / \ /
    *---*---*---*---*---*
     \ / \ / \ / \ / \ / \
      *---*---*---*---*---*
     / \ / \ / \ / \ / \ /
    *---*---*---*---*---*
     \ / \ / \ / \ / \ / \
      *---*---*---*---*---*
     / \ / \ / \ / \ / \ /
    *---*---*---*---*---*

This is done in integer X,Y on a square grid by using every second square
and offsetting alternate rows.  This means sum X+Y even, ie. X,Y either both
even or both odd, not of opposite parity.

    . * . * . * . * . * . *
    * . * . * . * . * . * .
    . * . * . * . * . * . *
    * . * . * . * . * . * .
    . * . * . * . * . * . *
    * . * . * . * . * . * .

The X axis the and diagonals X=Y and X=-Y divide the plane into six equal
parts in this grid.

       X=-Y     X=Y
         \     /
          \   /
           \ /
    ----------------- X=0
           / \
          /   \
         /     \

The diagonal X=3*Y is the middle of the first sixth, representing a twelfth
of the plane.

The resulting triangles are flatter than they should be.  The triangle base
is width=2 and top is height=1, whereas it would be height=sqrt(3) for an
equilateral triangle.  That sqrt(3) factor can be applied if desired,

    X, Y*sqrt(3)          side length 2

    X/2, Y*sqrt(3)/2      side length 1

Integer Y values have the advantage of fitting pixels on the usual kind of
raster computer screen, and not losing precision in floating point results.

If doing a general-purpose coordinate rotation then be sure to apply the
sqrt(3) scale factor before rotating or the result will be skewed.  60
degree rotations can be made within the integer X,Y coordinates directly as
follows, all giving integer X,Y results.

    (X-3Y)/2, (Y+X)/2       rotate +60   (anti-clockwise)
    (X+3Y)/2, (Y-X)/2       rotate -60   (clockwise)
    -(X+3Y)/2, (X-Y)/2      rotate +120
    (3Y-X)/2, -(X+Y)/2      rotate -120
    -X,-Y                   rotate 180

    (X+3Y)/2, (X-Y)/2       mirror across the X=3*Y twelfth line

The sqrt(3) factor can be worked into a hypotenuse radial distance
calculation as follows if comparing distances from the origin.

    hypot = sqrt(X*X + 3*Y*Y)

See for instance C<TriangularHypot> which is triangular points ordered by
this radial distance.

=head1 FORMULAS

The formulas section in the POD of each class describes some of the
calculations.  This might be of interest even if the code is not.

=head2 Triangular Calculations

For a triangular lattice the rotation formulas above allow calculations to
be done in the rectangular X,Y coordinates which are the inputs and outputs
of the PlanePath functions.  Another way is to number vertically on a 60
degree angle with coordinates i,j,

          ...
          *   *   *      2
        *   *   *       1
      *   *   *      j=0
    i=0  1   2

These coordinates are sometimes used for hexagonal grids in board games etc.
Using this internally can simplify rotations a little,

    -j, i+j         rotate +60   (anti-clockwise)
    i+j, -i         rotate -60   (clockwise)
    -i-j, i         rotate +120
    j, -i-j         rotate -120
    -i, -j          rotate 180

Conversions between i,j and the rectangular X,Y are

    X = 2*i + j         i = (X-Y)/2
    Y = j               j = Y

A third coordinate k at a +120 degrees angle can be used too,

     k=0  k=1 k=2
        *   *   *
          *   *   *
            *   *   *
             0   1   2

This is redundant in that it doesn't number anything i,j alone can't
already, but it has the advantage of turning rotations into just sign
changes and swaps,

    -k, i, j        rotate +60
    j, k, -i        rotate -60
    -j, -k, i       rotate +120
    k, -i, -j       rotate -120
    -i, -j, -k      rotate 180

The conversions between i,j,k and the rectangular X,Y are like the i,j above
but with k worked in too.

    X = 2i + j - k        i = (X-Y)/2        i = (X+Y)/2
    Y = j + k             j = Y         or   j = 0
                          k = 0              k = Y

=head2 N to dX,dY -- Fractional

C<n_to_dxdy()> is the change from N to N+1, and is designed both for integer
N and fractional N.  For fractional N it can be convenient to calculate a
dX,dY at floor(N) and at floor(N)+1 and then combine the two in proportion
to frac(N).

                     int+2
                      |
                      |
                      N+1    \
                     /|       |
                    / |       |
                   /  |       | frac
                  /   |       |
                 /    |       |
                /     |      /
       int-----N------int+1
    this_dX  dX,dY     next_dX
    this_dY            next_dY

       |-------|------|
         frac   1-frac


    int = int(N)
    frac = N - int    0 <= frac < 1

    this_dX,this_dY  at int
    next_dX,next_dY  at int+1

    at fractional N
      dX = this_dX * (1-frac) + next_dX * frac
      dY = this_dY * (1-frac) + next_dY * frac

This is combination of this_dX,this_dY and next_dX,next_dY in proportion to
the distances from positions N to int+1 and from int+1 to N+1.

The formulas can be rearranged to

    dX = this_dX + frac*(next_dX - this_dX)
    dY = this_dY + frac*(next_dY - this_dY)

which is like dX,dY at the integer position plus fractional part of a turn
or change to the next dX,dY.

=head2 N to dX,dY -- Self-Similar

For most of the self-similar paths such as C<HilbertCurve> the change dX,dY
is determined by following the state table transitions down through either
all digits of N, or to the last non-9 digit, ie. drop any low digits equal
to radix-1.

Generally paths which are the edges of some tiling use all digits, and those
which are the centres of a tiling stop at the lowest non-9.  This can be
seen for example in the C<DekkingCurve> using all digits, whereas its
C<DekkingCentres> variant stops at the lowest non-24.

Perhaps this all-digits vs low-non-9 even characterizes path style as edges
or centres of a tiling, when a path is specified in some way that a tiling
is not quite obvious.

=head1 SUBCLASSING

The mandatory methods for a PlanePath subclass are

    n_to_xy()
    xy_to_n()
    xy_to_n_list()     if multiple N's map to an X,Y
    rect_to_n_range()

It sometimes happens that one of C<n_to_xy()> or C<xy_to_n()> is easier than
the other but both should be implemented.

C<n_to_xy()> should do something sensible on fractional N.  The suggestion
is to make it an X,Y proportionally between integer N positions.  It can be
along a straight line or an arc as best suits the path.  A straight line can
be done simply by two calculations of the surrounding integer points, until
it's clear how to work the fraction into the code directly.

C<xy_to_n_list()> has a base implementation calling plain C<xy_to_n()> to
give a single N at X,Y.  If a path has multiple Ns at an X,Y
(eg. C<DragonCurve>) then it should implement C<xy_to_n_list()> to return
all those Ns and also implement a plain C<xy_to_n()> returning the first of
them.

C<rect_to_n_range()> can initially be any convenient over-estimate.  It
should give N big enough that from there onwards all points are sure to be
beyond the given X,Y rectangle.

The following descriptive methods have base implementations

    n_start()           1
    class_x_negative()  \ 1, so whole plane
    class_y_negative()  /
    x_negative()        calls class_x_negative()
    y_negative()        calls class_x_negative()
    x_negative_at_n()   undef \ as for no negatives
    y_negative_at_n()   undef /

The base C<n_start()> starts at N=1.  Paths which treat N as digits of some
radix or where there's self-similar replication are often best started from
N=0 instead since doing so puts nice powers-of-2 etc on the axes or
diagonals.

    use constant n_start => 0;    # digit or replication style

Paths which use only parts of the plane should define C<class_x_negative()>
and/or C<class_y_negative()> to false.  For example if only the first
quadrant XE<gt>=0,YE<gt>=0 then

    use constant class_x_negative => 0;
    use constant class_y_negative => 0;

If negativeness varies with path parameters then C<x_negative()> and/or
C<y_negative()> follow those parameters and the C<class_()> forms are
whether any set of parameters ever gives negative.

The following methods have base implementations calling C<n_to_xy()>.
A subclass can implement them directly if they can be done more efficiently.

    n_to_dxdy()           calls n_to_xy() twice
    n_to_rsquared()       calls n_to_xy()
    n_to_radius()         sqrt of n_to_rsquared()

C<SacksSpiral> is an example of an easy C<n_to_rsquared()>.
C<TheodorusSpiral> is only slightly trickier.  Unless a path has some sort
of easy X^2+Y^2 then it might as well let the base implementation call
C<n_to_xy()>.

The way C<n_to_dxdy()> supports fractional N can be a little tricky.  One
way is to calculate dX,dY on the integer N below and above and combine as
described in L</N to dX,dY -- Fractional>.  For some paths the calculation
of turn or direction at ceil(N) can be worked into a calculation of the
direction at floor(N) so not much more work.

The following method has a base implementation calling C<xy_to_n()>.
A subclass can implement is directly if it can be done more efficiently.

    xy_is_visited()     defined(xy_to_n($x,$y))

Paths such as C<SquareSpiral> which fill the plane have C<xy_is_visited()>
always true, so for them

    use constant xy_is_visited => 1;

For a tree path the following methods are mandatory

    tree_n_parent()
    tree_n_children()
    tree_n_to_depth()
    tree_depth_to_n()
    tree_num_children_list()
    tree_n_to_subheight()

The other tree methods have base implementations,

=over

=item C<is_tree()>

Checks for C<n_start()> having non-zero C<tree_n_to_num_children()>.
Usually this suffices, expecting C<n_start()> to be a root node and to have
some children.

=item C<tree_n_num_children()>

Calls C<tree_n_children()> and counts the number of return values.  Many
trees can count the children with less work than calculating outright, for
example C<RationalsTree> is simply always 2 for NE<gt>=Nstart.

=item C<tree_depth_to_n_end()>

Calls C<tree_depth_to_n($depth+1)-1>.  This assumes that the depth level
ends where the next begins.  This is true for the various breadth-wise tree
traversals, but anything interleaved etc will need its own implementation.

=item C<tree_depth_to_n_range()>

Calls C<tree_depth_to_n()> and C<tree_depth_to_n_end()>.  For some paths the
row start and end, or start and width, might be calculated together more
efficiently.

=item C<tree_depth_to_width()>

Returns C<tree_depth_to_n_end() - tree_depth_to_n() + 1>.  This suits
breadth-wise style paths where all points at C<$depth> are in a contiguous
block.  Any path not like that will need its own C<tree_depth_to_width()>.

=item C<tree_num_children_minimum()>, C<tree_num_children_maximum()>

Return the first and last values of C<tree_num_children_list()> as the
minimum and maximum.

=item C<tree_any_leaf()>

Calls C<tree_num_children_minimum()>.  If the minimum C<num_children> is 0
then there's leaf nodes.

=back

=head1 SEE ALSO

=for my_pod see_also begin

L<Math::PlanePath::SquareSpiral>,
L<Math::PlanePath::PyramidSpiral>,
L<Math::PlanePath::TriangleSpiral>,
L<Math::PlanePath::TriangleSpiralSkewed>,
L<Math::PlanePath::DiamondSpiral>,
L<Math::PlanePath::PentSpiral>,
L<Math::PlanePath::PentSpiralSkewed>,
L<Math::PlanePath::HexSpiral>,
L<Math::PlanePath::HexSpiralSkewed>,
L<Math::PlanePath::HeptSpiralSkewed>,
L<Math::PlanePath::AnvilSpiral>,
L<Math::PlanePath::OctagramSpiral>,
L<Math::PlanePath::KnightSpiral>,
L<Math::PlanePath::CretanLabyrinth>

L<Math::PlanePath::HexArms>,
L<Math::PlanePath::SquareArms>,
L<Math::PlanePath::DiamondArms>,
L<Math::PlanePath::AztecDiamondRings>,
L<Math::PlanePath::GreekKeySpiral>,
L<Math::PlanePath::MPeaks>

L<Math::PlanePath::SacksSpiral>,
L<Math::PlanePath::VogelFloret>,
L<Math::PlanePath::TheodorusSpiral>,
L<Math::PlanePath::ArchimedeanChords>,
L<Math::PlanePath::MultipleRings>,
L<Math::PlanePath::PixelRings>,
L<Math::PlanePath::FilledRings>,
L<Math::PlanePath::Hypot>,
L<Math::PlanePath::HypotOctant>,
L<Math::PlanePath::TriangularHypot>,
L<Math::PlanePath::PythagoreanTree>

L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::WunderlichSerpentine>,
L<Math::PlanePath::WunderlichMeander>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::HilbertSpiral>,
L<Math::PlanePath::ZOrderCurve>,
L<Math::PlanePath::GrayCode>,
L<Math::PlanePath::AR2W2Curve>,
L<Math::PlanePath::BetaOmega>,
L<Math::PlanePath::KochelCurve>,
L<Math::PlanePath::DekkingCurve>,
L<Math::PlanePath::DekkingCentres>,
L<Math::PlanePath::CincoCurve>

L<Math::PlanePath::ImaginaryBase>,
L<Math::PlanePath::ImaginaryHalf>,
L<Math::PlanePath::CubicBase>,
L<Math::PlanePath::SquareReplicate>,
L<Math::PlanePath::CornerReplicate>,
L<Math::PlanePath::LTiling>,
L<Math::PlanePath::DigitGroups>,
L<Math::PlanePath::FibonacciWordFractal>

L<Math::PlanePath::Flowsnake>,
L<Math::PlanePath::FlowsnakeCentres>,
L<Math::PlanePath::GosperReplicate>,
L<Math::PlanePath::GosperIslands>,
L<Math::PlanePath::GosperSide>

L<Math::PlanePath::QuintetCurve>,
L<Math::PlanePath::QuintetCentres>,
L<Math::PlanePath::QuintetReplicate>

L<Math::PlanePath::KochCurve>,
L<Math::PlanePath::KochPeaks>,
L<Math::PlanePath::KochSnowflakes>,
L<Math::PlanePath::KochSquareflakes>

L<Math::PlanePath::QuadricCurve>,
L<Math::PlanePath::QuadricIslands>

L<Math::PlanePath::SierpinskiCurve>,
L<Math::PlanePath::SierpinskiCurveStair>,
L<Math::PlanePath::HIndexing>

L<Math::PlanePath::SierpinskiTriangle>,
L<Math::PlanePath::SierpinskiArrowhead>,
L<Math::PlanePath::SierpinskiArrowheadCentres>

L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::DragonRounded>,
L<Math::PlanePath::DragonMidpoint>,
L<Math::PlanePath::AlternatePaper>,
L<Math::PlanePath::AlternatePaperMidpoint>,
L<Math::PlanePath::TerdragonCurve>,
L<Math::PlanePath::TerdragonRounded>,
L<Math::PlanePath::TerdragonMidpoint>,
L<Math::PlanePath::R5DragonCurve>,
L<Math::PlanePath::R5DragonMidpoint>,
L<Math::PlanePath::CCurve>

L<Math::PlanePath::ComplexPlus>,
L<Math::PlanePath::ComplexMinus>,
L<Math::PlanePath::ComplexRevolving>

L<Math::PlanePath::Rows>,
L<Math::PlanePath::Columns>,
L<Math::PlanePath::Diagonals>,
L<Math::PlanePath::DiagonalsAlternating>,
L<Math::PlanePath::DiagonalsOctant>,
L<Math::PlanePath::Staircase>,
L<Math::PlanePath::StaircaseAlternating>,
L<Math::PlanePath::Corner>

L<Math::PlanePath::PyramidRows>,
L<Math::PlanePath::PyramidSides>,
L<Math::PlanePath::CellularRule>,
L<Math::PlanePath::CellularRule54>,
L<Math::PlanePath::CellularRule57>,
L<Math::PlanePath::CellularRule190>,
L<Math::PlanePath::UlamWarburton>,
L<Math::PlanePath::UlamWarburtonQuarter>

L<Math::PlanePath::DiagonalRationals>,
L<Math::PlanePath::FactorRationals>,
L<Math::PlanePath::GcdRationals>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::FractionsTree>,
L<Math::PlanePath::ChanTree>,
L<Math::PlanePath::CfracDigits>,
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::DivisibleColumns>,
L<Math::PlanePath::WythoffArray>,
L<Math::PlanePath::WythoffPreliminaryTriangle>,
L<Math::PlanePath::PowerArray>,
L<Math::PlanePath::File>

=for my_pod see_also end

L<Math::PlanePath::LCornerTree>,
L<Math::PlanePath::LCornerReplicate>,
L<Math::PlanePath::ToothpickTree>,
L<Math::PlanePath::ToothpickReplicate>,
L<Math::PlanePath::ToothpickUpist>,
L<Math::PlanePath::ToothpickSpiral>,
L<Math::PlanePath::OneOfEight>,
L<Math::PlanePath::HTree>

L<Math::NumSeq::PlanePathCoord>,
L<Math::NumSeq::PlanePathDelta>,
L<Math::NumSeq::PlanePathTurn>,
L<Math::NumSeq::PlanePathN>

L<math-image>, displaying various sequences on these paths.

F<examples/numbers.pl> in the Math-PlanePath source code, to print all the
paths.

=head2 Other Ways To Do It

L<Math::Fractal::Curve>,
L<Math::Curve::Hilbert>,
L<Algorithm::SpatialIndex::Strategy::QuadTree>

PerlMagick (module L<Image::Magick>) demo scripts F<lsys.pl> and F<tree.pl>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

L<http://user42.tuxfamily.org/math-planepath/gallery.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut

#------------------------------------------------------------------------------
# Maybe:
#
# $bool = $path->xyxy_is_traversed($x1,$y1, $x2,$y2);
#
# Return true if some path segment C<$n> to C<$n+1> goes between C<$x1,$y1>
# and C<$x2,$y2>.  For multi-arm paths this is C<$n> to C<$n+$arms>, so a
# segment within the arm.
#
# The C<$x1,$y1> and C<$x2,$y2> endpoints can be either way around.

# $n = $path->xyxy_to_n($x1,$y1, $x2,$y2);
#
# Return C<$n> which traverses C<$x1,$y1> to C<$x2,$y2>, or return C<undef>
# if no segment traverses those points.
#
# The C<$x1,$y1> and C<$x2,$y2> endpoints can be either way around.  The
# returned C<$n> is one of the two and C<$n+1> is the other.  For a
# multi-arm path C<$n+$arms> is the other.


#------------------------------------------------------------------------------
# ($x,$y) = $path->xy_start()   x,y at n_start

# ($depth,$offset) = $path->tree_n_to_depth_and_offset
#
# $bool = $path->rect_to_n_range_is_always_exact()
# $bool = $path->tree_n_to_subheight_is_infinite()
#    identifying the infinite spines only
#
# tree_n_ordered_children() $n and undefs
#   SierpinskiTree,ToothpickTree left and right
#   OneOfEight 3 from horiz, 5 from diag
#
# gcdxy_minimum
# gcdxy_maximum
# productxy_minimum
# trsquared_minimum
# trsquared_minimum
#
# ring_to_n_range()   2^(k-1) to 2^k-1  koch peaks
# ($x1,$y1, $x2,$y2) = n_to_rect($n)     integer points
# ($s1,$s1, $d2,$d2) = n_to_diamond($n)     integer points
#      cf fractional part Diagonals outside integer area
# n_to_figure_boundary
# n_to_hull_boundary
# n_to_hull_area
# n_to_enclosed_area
# n_to_enclosed_boundary
# n_to_right_enclosed_boundary
# n_to_left_enclosed_boundary

# $path->xy_integer() if X,Y both all integer
# $path->x_integer()  if X all integer
# $path->y_integer()  if Y all integer
# $path->xy_integer_n_start
#
# xy_all_coprime() xy_coprime()   gcd(X,Y)=1 always
# xy_all_divisible()   X divisible by Y
# xy_any_even
# xy_any_odd
# xy_all_even
# xy_all_odd
# xy_parity_minimum() X+Y mod 2
# xy_parity_maximum() X+Y mod 2
# xy_parity "even" "odd" "both"
# xy_hexlattice_type "centred" "side_horiz"
# xy_triangular_lattice "", "even", "odd
#
# lattice_type square,triangular,triangular_odd,pentagonal,fractional
# $path->xy_any_odd()   xy_odd()   xy_all_odd()
# $path->xy_any_even()  xy_even()  xy_all_even()
#
# $path->turn_any_left
# $path->turn_any_right
# $path->turn_any_straight
# $path->n_to_turn_lsr
# $path->n_to_dir4
# $path->n_to_turn4
# $path->n_to_turn6
# $path->n_to_turn8
# $path->n_to_ddist
# $path->n_to_drsquared
# $path->xy_to_dir4_list
# $path->xy_to_dxdy_list
# $path->xy_to_n_list_maxcount
# $path->xy_to_n_list_maxnum
# $path->xy_to_n_list_maximum
# $path->xy_next_in_rect($x,$y, $x1,$y1,$x2,$y2)
#    return ($x,$y) or empty
# $path->xy_to_dxdy() or xy_to_dxdy_list() if multiple

#------------------------------------------------------------------------------
# xy_unique_n_start
# figures_disjoint
# figures_disjoint_n_start
#         separate
#         unoverlapped

#------------------------------------------------------------------------------
# Math::PlanePath::Base::Generic
#   divrem
#   divrem_mutate
#