This file is indexed.

/usr/share/perl5/Math/PlanePath/AlternatePaperMidpoint.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=AlternatePaperMidpoint,arms=8 --all --output=numbers_dash
# math-image --path=AlternatePaperMidpoint --lines --scale=20


package Math::PlanePath::AlternatePaperMidpoint;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::AlternatePaper;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant parameter_info_array => [ { name      => 'arms',
                                         share_key => 'arms_8',
                                         display   => 'Arms',
                                         type      => 'integer',
                                         minimum   => 1,
                                         maximum   => 8,
                                         default   => 1,
                                         width     => 1,
                                         description => 'Arms',
                                       } ];

use constant n_start => 0;

sub x_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 3);
}
sub y_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 5);
}
{
  my @x_negative_at_n = (undef,
                         undef,undef,11,3,
                         3,3,3,3);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef,
                                        undef,undef,undef,undef,
                                        24,11,12,7);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}

sub sumxy_minimum {
  my ($self) = @_;
  return ($self->arms_count <= 3
          ? 0        # 1,2,3 arms above X=-Y diagonal
          : undef);
}
sub diffxy_minimum {
  my ($self) = @_;
  return ($self->arms_count == 1
          ? 0        # 1 arms right of X=Y diagonal
          : undef);
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(8, $self->{'arms'} || 1));
  return $self;
}

#    +-----------+      states
#    |\  -------/|
#    | \ \ 4   / |
#    |^ \ \   /  |
#    ||  \ v / /||
#    ||   \ / / ||
#    ||8 / * /12||
#    || / / \   ||
#    ||/ / ^ \  ||
#    |  /   \ \ v|
#    | /   0 \ \ |
#    |/ ------  \|
#    +-----------+
#
#           +           state=0 digits
#          /|\
#         / | \
#        /  |  \
#       /\ 1|3 /\
#      /  \ | /  \
#     /  0 \|/  2 \
#    +------+------+

my @next_state = (0, 12, 0,  8,   # 0 forward
                  4,  8, 4, 12,   # 4 forward NW
                  4,  8, 0,  8,   # 8 reverse
                  0, 12, 4, 12,   # 12 reverse NE
                 );
my @digit_to_x = (0,0,1,1,
                  1,1,0,0,
                  0,0,0,0,
                  1,1,1,1,
                 );
my @digit_to_y = (0,0,0,0,
                  1,1,1,1,
                  0,0,1,1,
                  1,1,0,0,
                 );

sub n_to_xy {
  my ($self, $n) = @_;
  ### AlternatePaperMidpoint n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  {
    my $int = int($n);
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int; # BigFloat int() gives BigInt, use that
  }

  my $zero = ($n * 0);  # inherit bignum 0
  my $arm = _divrem_mutate ($n, $self->{'arms'});
  ### $arm
  ### $n

  my @digits = digit_split_lowtohigh($n,4);
  my $state = my $dirstate = 0;

  my @x;
  my @y;
  foreach my $i (reverse 1 .. scalar(@digits)) {
    my $digit = $digits[$i-1];   # high to low, all digits
    $state += $digit;
    if ($digit != 3) {
      $dirstate = $state;
    }
    $x[$i] = $digit_to_x[$state];  # high to low, leaving one lowest
    $y[$i] = $digit_to_y[$state];
    $state = $next_state[$state];
  }

  $x[0] = $digit_to_x[$state];      # state=4,12 increment
  $y[0] = $digit_to_y[$state + 3];  # state=4,8 increment

  my $x = digit_join_lowtohigh(\@x,2,$zero);
  my $y = digit_join_lowtohigh(\@y,2,$zero);

  ### final: "x=$x,y=$y state=$state"

  if ($arm & 1) {
    ($x,$y) = ($y+1,$x+1);  # transpose and offset
  }
  if ($arm & 2) {
    ($x,$y) = (-$y,$x+1);   # rotate +90 and offset
  }
  if ($arm & 4) {
    $x = -1 - $x;           # rotate 180 and offset
    $y = 1 - $y;
  }

  # ### rotated return: "$x,$y"
  return ($x,$y);
}

  #                                   |           |
  #                         64-65-66 71-72-73-74 95
  #                          |                    |
  #                         63             98-97-96
  #                          |              |
  #                   20-21 62             99
  #                    |  |  |
  #                   19 22 61-60-59
  #                    |  |        |
  #             16-17-18 23 56-57-58
  #              |        |  |
  #             15 26-25-24 55 50-49-48-47
  #              |  |        |  |        |
  #        4--5 14 27-28-29 54 51 36-37 46
  #        |  |  |        |  |  |  |  |  |
  #        3  6 13-12-11 30 53-52 35 38 45-44-43
  #        |  |        |  |        |  |        |
  #  0--1--2  7--8--9-10 31-32-33-34 39-40-41-42
  #
  #  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16

#          43-35 42-50-58 57-49-41
#           |  |  |              |
# 91-99    51 27 34-26-18 17-25-33
#  |        |  |        |  |
# 83-75-67-59 19-11--3 10  9 32-40
#                       |  |  |  |
# 84-76-68-60 20-12--4  2  1 24 48    96-88
#  |        |  |              |  |        |
# 92       52 28  5  6  0--8-16 56-64-72-80
#           |  |  |  |
#          44-36 13 14  7-15-23 63-71-79-87
#                 |  |        |  |        |
#          37-29-21 22-30-38 31 55       95
#           |              |  |  |
#          45-53-61 62-54-46 39-47
#                 |  |
#                69 70

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### AlternatePaperMidpoint xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  if (is_infinite($x)) {
    return $x;  # infinity
  }
  if (is_infinite($y)) {
    return $y;  # infinity
  }

  # arm in various octants, rotate/transpose to first
  my $arm;
  if ($y >= ($x>=0?0:2)) {   # Y>=0 when X positive, Y>=2 when X negative
    $arm = 0;
  } else {
    # lower arms 4,5,6,7 ...
    $arm = 4;
    $x = -1 - $x;   # rotate 180, offset
    $y = 1 - $y;
  }
  if ($x < ($y>0?1:0)) {
    ### second quad arms 2,3 ...
    ($x,$y) = ($y-1,-$x);  # rotate -90, offset
    $arm += 2;
  }
  if ($y > $x-($x%2)) {
    ### above diagonal, arm 1 ...
    ($x,$y) = ($y-1,$x-1);   # offset and transpose
    $arm++;
  }
  ### assert: $x >= 0
  ### assert: $y >= 0
  ### assert: $y <= $x - ($x%2)

  if ($arm >= $self->{'arms'}) {
    return undef;
  }

  my ($len, $level) = round_down_pow ($x, 2);
  if (is_infinite($level)) {
    return ($level);
  }

  #           +           state=0 digits
  #          /|\
  #         / | \
  #        /  |  \
  #       /\ 1|3 /\
  #      /  \ | /  \
  #     /  0 \|/  2 \
  #    +------+------+

  #           +           state=0 digits
  #          /|\
  #         / | \
  #        /  |  \
  #       /\ 2|0 /\
  #      /  \ | /  \
  #     /  3 \|/  1 \
  #    +------+------+

  my $n = ($x * 0 * $y); # inherit bignum 0
  my $rev = 0;

  $len *= 2;
  while ($level-- >= 0) {
    ### at: "xy=$x,$y  rev=$rev  len=$len  n=".sprintf('%#x',$n)

    ### assert: $x >= 0
    ### assert: $y >= 0
    ### assert: $y <= $x - ($x%2)
    ### assert: $x+$y+($x%2) < 2*$len

    my $digit;
    if ($x < $len) {
      ### diagonal: $x+$y+($x%2), $len
      if ($x+$y+($x%2) < $len) {
        ### part 0 ...
        $digit = 0;
      } else {
        ### part 1 ...
        ($x,$y) = ($y,$len-1-$x); # shift, rotate -90
        $rev ^= 3;
        $digit = 2;  # becoming digit=1 with reverse
      }
    } else {
      $x -= $len;
      ### 2,3 ycmp: $y, $x-($x%2)
      if ($y <= $x-($x%2)) {
        ### part 2 ...
        $digit = 2;
      } else {
        ### part 3 ...
        ($x,$y) = ($len-1-$y,$x); # shift, rotate +90
        $rev ^= 3;
        $digit = 0;  # becoming digit=3 with reverse
      }
    }
    ### $digit

    $digit ^= $rev;   # $digit = 3-$digit if reverse
    ### reversed digit: $digit

    $n *= 4;
    $n += $digit;
    $len /= 2;
  }
  ### final: "xy=$x,$y rev=$rev"

  ### assert: $x == 0
  ### assert: $y == 0

  return $n*$self->{'arms'} + $arm;
}


# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### AlternatePaperMidpoint rect_to_n_range(): "$x1,$y1  $x2,$y2  arms=$self->{'arms'}"

  $x1 = round_nearest($x1);
  $x2 = round_nearest($x2);
  $y1 = round_nearest($y1);
  $y2 = round_nearest($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  my $arms = $self->{'arms'};
  if (($arms == 1 && $y1 > $x2)       # x2,y1 bottom right corner
      || ($arms <= 2 && $x2 < 0)
      || ($arms <= 4 && $y2 < 0)) {
    ### outside ...
    return (1,0);
  }

  my ($len) = round_down_pow (max ($x2,
                                   ($arms >= 2 ? $y2-1  : ()),
                                   ($arms >= 4 ? -1-$x1 : ()),
                                   ($arms >= 6 ? -$y1   : ())),
                              2);
  return (0, 2*$arms*$len*$len-1);
}

#------------------------------------------------------------------------------
# levels

use Math::PlanePath::DragonMidpoint;
*level_to_n_range = \&Math::PlanePath::DragonMidpoint::level_to_n_range;
*n_to_level       = \&Math::PlanePath::DragonMidpoint::n_to_level;

#------------------------------------------------------------------------------
1;
__END__

=for stopwords Math-PlanePath eg Ryde OEIS

=head1 NAME

Math::PlanePath::AlternatePaperMidpoint -- alternate paper folding midpoints

=head1 SYNOPSIS

 use Math::PlanePath::AlternatePaperMidpoint;
 my $path = Math::PlanePath::AlternatePaperMidpoint->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is the midpoints of each alternate paper folding curve
(L<Math::PlanePath::AlternatePaper>).

     8  |                        64-65-...
        |                         |
     7  |                        63
        |                         |
     6  |                  20-21 62
        |                   |  |  |
     5  |                  19 22 61-60-59
        |                   |  |        |
     4  |            16-17-18 23 56-57-58
        |             |        |  |
     3  |            15 26-25-24 55 50-49-48-47
        |             |  |        |  |        |
     2  |       4--5 14 27-28-29 54 51 36-37 46
        |       |  |  |        |  |  |  |  |  |
     1  |       3  6 13-12-11 30 53-52 35 38 45-44-43
        |       |  |        |  |        |  |        |
    Y=0 | 0--1--2  7--8--9-10 31-32-33-34 39-40-41-42
        +----------------------------------------------
        X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

The C<AlternatePaper> curve begins as follows and the midpoints are numbered
from 0,

                      |
                      9
                      |
                 --8--
                |     |
                7     |
                |     |
           --2-- --6--
          |     |     |
          1     3     5
          |     |     |
    *--0--       --4--

These midpoints are on fractions X=0.5,Y=0, X=1,Y=0.5, etc.  For this
C<AlternatePaperMidpoint> they're turned 45 degrees and mirrored so the
0,1,2 upward diagonal becomes horizontal along the X axis, and the 2,3,4
downward diagonal becomes a vertical at X=2, extending to X=2,Y=2 at N=4.

The midpoints are distinct X,Y positions because the alternate paper curve
traverses each edge only once.

The curve is self-similar in 2^level sections due to its unfolding.  This
can be seen in the midpoints as for example N=0 to N=16 above is the same
shape as N=16 to N=32, but the latter rotated +90 degrees and numbered in
reverse.

=head2 Arms

The midpoints fill an eighth of the plane and eight copies can mesh together
perfectly when mirrored and rotated by 90, 180 and 270 degrees.  The C<arms>
parameter can choose 1 to 8 curve arms successively advancing.

For example C<arms =E<gt> 8> begins as follows.  N=0,8,16,24,etc is the
first arm, the same as the plain curve above.  N=1,9,17,25 is the second,
N=2,10,18,26 the third, etc.

                      90-82 81-89                       7
    arms => 8          |  |  |  |
                     ... 74 73 ...                      6
                          |  |
                         66 65                          5
                          |  |
             43-35 42-50-58 57-49-41                    4
              |  |  |              |
    91-..    51 27 34-26-18 17-25-33                    3
     |        |  |        |  |
    83-75-67-59 19-11--3 10  9 32-40                    2
                          |  |  |  |
    84-76-68-60 20-12--4  2  1 24 48    ..-88           1
     |        |  |              |  |        |
    92-..    52 28  5  6  0--8-16 56-64-72-80      <- Y=0
              |  |  |  |
             44-36 13 14  7-15-23 63-71-79-87          -1
                    |  |        |  |        |
             37-29-21 22-30-38 31 55    ..-95          -2
              |              |  |  |
             45-53-61 62-54-46 39-47                   -3
                    |  |
                   69 70                               -4
                    |  |
               ... 77 78 ...                           -5
                 |  |  |  |
                93-85 86-94                            -6

     ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
    -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

With eight arms like this every X,Y point is visited exactly once, because
the 8-arm C<AlternatePaper> traverses every edge exactly once
(L<Math::PlanePath::AlternatePaper/Arms>).

The arm numbering doesn't correspond to the C<AlternatePaper>, due to the
rotate and reflect of the first arm.  It ends up arms 0 and 1 of the
C<AlternatePaper> corresponding to arms 7 and 0 of the midpoints here, those
two being a pair going horizontally corresponding to a pair in the
C<AlternatePaper> going diagonally into a quadrant.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::AlternatePaperMidpoint-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2**$level - 1)>, or for multiple arms return C<(0, $arms *
(2**$level - 1)*$arms)>.  This is the same as the C<DragonMidpoint>.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::AlternatePaper>

L<Math::PlanePath::DragonMidpoint>,
L<Math::PlanePath::R5DragonMidpoint>,
L<Math::PlanePath::TerdragonMidpoint>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013, 2014 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut