This file is indexed.

/usr/share/perl5/Math/PlanePath/AnvilSpiral.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=AnvilSpiral --all --output=numbers_dash
# math-image --path=AnvilSpiral,wider=3 --all --output=numbers_dash

package Math::PlanePath::AnvilSpiral;
use 5.004;
use strict;
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';


# pentagonal N = (3k-1)*k/2
# preceding
# Np = (3k-1)*k/2 - 1
#    = (3k^2 - k - 2)/2
#    = (3k+2)(k-1)/2
#


# parameters "wider","n_start"
use Math::PlanePath::SquareSpiral;
*parameter_info_array
  = \&Math::PlanePath::SquareSpiral::parameter_info_array;
use constant xy_is_visited => 1;

use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant _UNDOCUMENTED__dxdy_list => (1,0,   # E       # no N,S
                           1,1,   # NE
                           -1,1,  # NW
                           -1,0,  # W
                           -1,-1, # SW
                           1,-1); # SE
# last NW at lower right
#     2w+4 ------- w+1
#       \          /
#        *  0---- w  *
#       /             \
#     2w+6 ---------- 3w+10    w=3; 1+3*w+10=20
#
sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + ($self->{'wider'} ? 0 : 3);
}
sub y_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 2*$self->{'wider'} + 6;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
  my ($self) = @_;
  return $self->n_start + 3*$self->{'wider'} + 10;
}

use constant absdx_minimum => 1;  # abs(dX)=1 always
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);

  # parameters
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  $self->{'wider'} ||= 0;  # default

  return $self;
}

# [1,2,3,4],[1,12,35,70]   # horizontal
# N = (6 d^2 - 7 d + 2)
#   = (6*$d**2 - 7*$d + 2)
#   = ((6*$d - 7)*$d + 2)
# d = 7/12 + sqrt(1/6 * $n + 1/144)
#   = (7 + 12*sqrt(1/6 * $n + 1/144))/12
#   = (7 + sqrt(144/6*$n + 1))/12
#   = (7 + sqrt(24*$n + 1))/12
#
# wider=1
# [1,2,3,4],[1+1,12+1+2,35+1+2+2,70+1+2+2+2]
# N = (6 d^2 - 5 d + 1)
# d = 5/12 + sqrt(1/6 * $n + 1/144)
#
# wider=2
# [1,2,3,4],[1+2,12+2+4,35+2+4+4,70+2+4+4+4]
# N = (6 d^2 - 3 d)
# d = 3/12 + sqrt(1/6 * $n + 9/144)
#
# wider=3
# [1,2,3,4],[1+3,12+3+6,35+3+6+6,70+3+6+6+6]
# N = (6 d^2 - d - 1)
# d = 1/12 + sqrt(1/6 * $n + 25/144)
#
# wider=4
# [1,2,3,4],[1+4,12+4+8,35+4+8+8,70+4+8+8+8]
# N = (6 d^2 + d - 2)
# d = -1/12 + sqrt(1/6 * $n + 49/144)         # 49=7*7=(2w-1)*(2w-1)
#
# in general
# N = (6 d^2 - (7-2w) d + 2-w)
#   = (6d - (7-2w)) d + 2-w
#   = (6d - 7 + 2w))*d + 2-w
# d = (7-2w)/12 + sqrt(1/6 * $n + (w-1)^2/144)
#   = [ 7-2w + 12*sqrt(1/6 * $n + (w-1)^2/144) ] / 12
#   = [ 7-2w + sqrt(144/6*$n + (w-1)^2) ] / 12
#   = [ 7-2w + sqrt(24*$n + (w-1)^2) ] / 12



sub n_to_xy {
  my ($self, $n) = @_;
  ### AnvilSpiral n_to_xy(): $n

  $n = $n - $self->{'n_start'};  # to N=0 basis, warning if $n==undef
  if ($n < 0) { return; }
  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;
  ### $w
  ### $w_left
  ### $w_right

  if ($n <= $w) {
    ### centre horizontal
    return ($n - $w_left,  # N=0 at $w_left
            0);
  }

  my $d = int((sqrt(int(24*($n+1)) + (2*$w-1)**2) + 7-2*$w) / 12);
  ### ($n+1)
  ### $d
  ### d frac: ((sqrt(int(24*($n+1)) + (2*$w-1)**2) + 7-2*$w) / 12)
  ### d sqrt add: ($w-1)*($w-1)
  ### d const part: 7-2*$w

  $n -= (6*$d - 7 + 2*$w)*$d + 2-$w;
  ### base: (6*$d - 7 + 2*$w)*$d + 2-$w
  ### remainder: $n

  if ($n <= 5*$d+$w-2) {
    if ($n+1 <= $d) {
      ### upper right slope ...
      return ($n + $d + $w_right,
              $n+1);
    } else {
      ### top ...
      return (-$n + 3*$d + $w_right - 2,
              $d);
    }
  }

  $n -= 7*$d + $w - 2;
  if ($n <= 0) {
    ### left slopes: $n
    return (-abs($n+$d) - $d - $w_left,
            -$n - $d);
  }

  $n -= 4*$d + $w;
  if ($n < 0) {
    ### bottom ...
    return ($n + 2*$d + $w_right,
            -$d);
  } else {
    ### right lower ...
    return (-$n + 2*$d + $w_right,
            $n - $d);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### AnvilSpiral xy_to_1 n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;
  ### $w
  ### $w_left
  ### $w_right

  my $abs_y = abs($y);
  if ($x-$w_right >= 2*$abs_y) {
    ### right slopes: "d=".($x-$w_right - $abs_y)
    my $d = $x-$w_right - $abs_y;  # zero based
    return ((6*$d + 5 + 2*$w)*$d + $w
            + $y
            + $self->{'n_start'});
  }

  if ($x+$w_left < -2*$abs_y) {
    ### left slopes: "d=".($x+$w_left + $abs_y)
    my $d = $x+$w_left + $abs_y;  # negative, and zero based
    return ((6*$d + 1 - 2*$w)*$d
            - $y
            + $self->{'n_start'});
  }

  if ($y > 0) {
    ### top horizontal ...
    return ((6*$y - 4 + 2*$w)*$y - $w
            + $w_right-$x
            + $self->{'n_start'});
  } else {
    ### bottom horizontal ...
    # y negative
    return ((6*$y - 2 - 2*$w)*$y
            + $x+$w_left
            + $self->{'n_start'});
  }
}

# uncomment this to run the ### lines
#use Smart::Comments;

#      ...-78-77-76-75-74
#                     /
# 43-42-41-40-39-38 73
#               /  /
# 17-16-15-14 37 72
#         /  /  /
# -3--2 13 36 71
#   /  /  /  /
#  1 12 35 70
#
# column X=2, dmin decreasing until Y=1=floor(x/2)
# column X=3, dmin decreasing until Y=2=ceil(x/2)
# so x1 - min(y2,int((x1+1)/2))
#
#
# column Xmax=2, dmax increasing down until x2-y1
#
# horizontal Y>=0 N increases left and right of X=Y*3/2
#    so candidate max at top-left x1,y2 or top-right x2,y2
#
# horizontal Y<0 N increases left and right of X=-Y*3/2
#    so candidate max at bottom-left x1,y1 or bottom-right x2,y1
#
# vertical Y>=0 N increases above and below Y=ceil(X/2)
#    so candidate max at top-right or bottom-right, or Y=0
#
# vertical Y<0 N increases above and below Y=ceil(X/2)
#    so candidate max at top-right or bottom-right, or Y=0
#
  # int(($y2+1)/2), $y2
  # int(($y1+1)/2), $y1
  # 
  # my @corners = ($self->xy_to_n($x1,$y1),
  #                $self->xy_to_n($x2,$y1),
  #                $self->xy_to_n($x1,$y2),
  #                $self->xy_to_n($x2,$y2));
  # return (($x_zero && $y_zero ? 1 : min (@corners)),
  #         max (@corners,
  #               ($y_zero ? ($self->xy_to_n($x1,0),
  #                           $self->xy_to_n($x2,0)) : ())));




# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### AnvilSpiral rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;

  $x1 = round_nearest($x1);
  $x2 = round_nearest($x2);
  $y1 = round_nearest($y1);
  $y2 = round_nearest($y2);

  my $x_zero = (($x1<0) != ($x2<0));
  my $y_zero = (($y1<0) != ($y2<0));
  ### $x_zero
  ### $y_zero

  $x1 += $w_left;
  $x2 += $w_left;

  if ($x1 < 0) { $x1 = $w-$x1; }
  if ($x2 < 0) { $x2 = $w-$x2; }
  $y1 = abs($y1);
  $y2 = abs($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  if ($x_zero) { $x1 = 0; }
  if ($y_zero) { $y1 = 0; }

  ### abs: "$x1,$y1  $x2,$y2"
  ### d1 slope max y: int(($x1+1)/2)
  ### d1 slope: $x1 - min($y2,int(($x1+1)/2))

  #   --------*
  #          /
  #         /
  #        *   <-y=0
  # x=0....w
  #
  # d=x-w-y on the slope
  # d=y     on the top horizontal
  #
  my $d1 = min ($x1-$w - min($y2,int(($x1-$w+1)/2)) - 1,
                $y2);
  my $d2 = 1 + max ($x2-$w - $y1,
                    $y2);
  ### $d1
  ### $d2
  ### d2 right slope would be: $x2-$w_right - $y2

  # d1==0 is the centre horizontal
  #

  return ($d1 <= 0
          ? $self->{'n_start'}
          : (6*$d1 - 7 + 2*$w)*$d1 + 1-$w + $self->{'n_start'},

          (6*$d2 - 6 + 2*$w)*$d2 - $w + $self->{'n_start'});
}

1;
__END__

=for stopwords Ryde Math-PlanePath pentagonals OEIS

=head1 NAME

Math::PlanePath::AnvilSpiral -- integer points around an "anvil" shape

=head1 SYNOPSIS

 use Math::PlanePath::AnvilSpiral;
 my $path = Math::PlanePath::AnvilSpiral->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes a spiral around an anvil style shape,

                           ...-78-77-76-75-74       4
                                          /
    49-48-47-46-45-44-43-42-41-40-39-38 73          3
      \                             /  /
       50 21-20-19-18-17-16-15-14 37 72             2
         \  \                 /  /  /
          51 22  5--4--3--2 13 36 71                1
            \  \  \     /  /  /  /
             52 23  6  1 12 35 70              <- Y=0
            /  /  /        \  \  \
          53 24  7--8--9-10-11 34 69               -1
         /  /                    \  \
       54 25-26-27-28-29-30-31-32-33 68            -2
      /                                \
    55-56-57-58-59-60-61-62-63-64-65-66-67         -3

                       ^
    -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7

The pentagonal numbers 1,5,12,22,etc, P(k) = (3k-1)*k/2 fall alternately on
the X axis XE<gt>0, and on the Y=1 horizontal XE<lt>0.

Those pentagonals are always composites, from the factorization shown, and
as noted in L<Math::PlanePath::PyramidRows/Step 3 Pentagonals>, the
immediately preceding P(k)-1 and P(k)-2 are also composites.  So plotting
the primes on the spiral has a 3-high horizontal blank line at Y=0,-1,-2 for
positive X, and Y=1,2,3 for negative X (after the first few values).

Each loop around the spiral is 12 longer than the preceding.  This is 4*
more than the step=3 C<PyramidRows> so straight lines on a C<PyramidRows>
like these pentagonals are also straight lines here, but split into two
parts.

The outward diagonal excursions are similar to the C<OctagramSpiral>, but
there's just 4 of them here where the C<OctagramSpiral> has 8.  This is
reflected in the loop step.  The basic C<SquareSpiral> is step 8, but by
taking 4 excursions here increases that to 12, and in the C<OctagramSpiral>
8 excursions adds 8 to make step 16.

=head2 Wider

An optional C<wider> parameter makes the path wider by starting with a
horizontal section of given width.  For example

    $path = Math::PlanePath::SquareSpiral->new (wider => 3);

gives

=cut

# math-image --path=AnvilSpiral,wider=3 --all --output=numbers_dash --size=60x12
# but 2 chars per cell

=pod

    33-32-31-30-29-28-27-26-25-24-23 ...            2
      \                          /  /                
       34 11-10--9--8--7--6--5 22 51                1
         \  \              /  /  /                   
          35 12  1--2--3--4 21 50              <- Y=0
         /  /                 \  \                   
       36 13-14-15-16-17-18-19-20 49               -1
      /                             \                
    37-38-39-40-41-42-43-44-45-46-47-48            -2

                       ^
    -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5

The starting point 1 is shifted to the left by ceil(wider/2) places to keep
the spiral centred on the origin X=0,Y=0.  This is the same starting offset
as the C<SquareSpiral> C<wider>.

Widening doesn't change the nature of the straight lines which arise, it
just rotates them around.  Each loop is still 12 longer than the previous,
since the widening is essentially a constant amount in each loop.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start with the same shape.  For example to
start at 0,

=cut

# math-image --path=AnvilSpiral,n_start=0 --all --output=numbers_dash --size=37x12

=pod

    n_start => 0

    20-19-18-17-16-15-14-13 ...
      \                 /  /
       21  4--3--2--1 12 35
         \  \     /  /  /
          22  5  0 11 34
         /  /        \  \
       23  6--7--8--9-10 33
      /                    \ 
    24-25-26-27-28-29-30-31-32

The only effect is to push the N values around by a constant amount.  It
might help match coordinates with something else zero-based.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::AnvilSpiral-E<gt>new ()>

=item C<$path = Math::PlanePath::AnvilSpiral-E<gt>new (wider =E<gt> $integer, n_start =E<gt> $n)>

Create and return a new anvil spiral object.  An optional C<wider> parameter
widens the spiral path, it defaults to 0 which is no widening.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include

=over

L<http://oeis.org/A033581> (etc)

=back

    default wider=0, n_start=1
      A033570    N on X axis, alternate pentagonals (2n+1)*(3n+1)
      A126587    N on Y axis
      A136392    N on Y negative (n=-Y+1)
      A033568    N on X=Y diagonal, alternate second pents (2*n-1)*(3*n-1)
      A085473    N on south-east diagonal

    wider=0, n_start=0
      A211014    N on X axis, 14-gonal numbers of the second kind
      A139267    N on Y axis, 2*octagonal
      A049452    N on X negative, alternate pentagonals
      A033580    N on Y negative, 4*pentagonals
      A051866    N on X=Y diagonal, 14-gonal numbers
      A094159    N on north-west diagonal, 3*hexagonals
      A049453    N on south-west diagonal, alternate second pentagonal
      A195319    N on south-east diagonal, 3*second hexagonals

    wider=1, n_start=0
      A051866    N on X axis, 14-gonal numbers
      A049453    N on Y negative, alternate second pentagonal
      A033569    N on north-west diagonal
      A085473    N on south-west diagonal
      A080859    N on Y negative
      A033570    N on south-east diagonal
                   alternate pentagonals (2n+1)*(3n+1)

    wider=2, n_start=1
      A033581    N on Y axis (6*n^2) except for initial N=2

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SquareSpiral>,
L<Math::PlanePath::OctagramSpiral>,
L<Math::PlanePath::HexSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut