/usr/share/perl5/Math/PlanePath/AnvilSpiral.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=AnvilSpiral --all --output=numbers_dash
# math-image --path=AnvilSpiral,wider=3 --all --output=numbers_dash
package Math::PlanePath::AnvilSpiral;
use 5.004;
use strict;
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest';
# pentagonal N = (3k-1)*k/2
# preceding
# Np = (3k-1)*k/2 - 1
# = (3k^2 - k - 2)/2
# = (3k+2)(k-1)/2
#
# parameters "wider","n_start"
use Math::PlanePath::SquareSpiral;
*parameter_info_array
= \&Math::PlanePath::SquareSpiral::parameter_info_array;
use constant xy_is_visited => 1;
use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant _UNDOCUMENTED__dxdy_list => (1,0, # E # no N,S
1,1, # NE
-1,1, # NW
-1,0, # W
-1,-1, # SW
1,-1); # SE
# last NW at lower right
# 2w+4 ------- w+1
# \ /
# * 0---- w *
# / \
# 2w+6 ---------- 3w+10 w=3; 1+3*w+10=20
#
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + ($self->{'wider'} ? 0 : 3);
}
sub y_negative_at_n {
my ($self) = @_;
return $self->n_start + 2*$self->{'wider'} + 6;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $self->n_start + 3*$self->{'wider'} + 10;
}
use constant absdx_minimum => 1; # abs(dX)=1 always
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
# parameters
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
$self->{'wider'} ||= 0; # default
return $self;
}
# [1,2,3,4],[1,12,35,70] # horizontal
# N = (6 d^2 - 7 d + 2)
# = (6*$d**2 - 7*$d + 2)
# = ((6*$d - 7)*$d + 2)
# d = 7/12 + sqrt(1/6 * $n + 1/144)
# = (7 + 12*sqrt(1/6 * $n + 1/144))/12
# = (7 + sqrt(144/6*$n + 1))/12
# = (7 + sqrt(24*$n + 1))/12
#
# wider=1
# [1,2,3,4],[1+1,12+1+2,35+1+2+2,70+1+2+2+2]
# N = (6 d^2 - 5 d + 1)
# d = 5/12 + sqrt(1/6 * $n + 1/144)
#
# wider=2
# [1,2,3,4],[1+2,12+2+4,35+2+4+4,70+2+4+4+4]
# N = (6 d^2 - 3 d)
# d = 3/12 + sqrt(1/6 * $n + 9/144)
#
# wider=3
# [1,2,3,4],[1+3,12+3+6,35+3+6+6,70+3+6+6+6]
# N = (6 d^2 - d - 1)
# d = 1/12 + sqrt(1/6 * $n + 25/144)
#
# wider=4
# [1,2,3,4],[1+4,12+4+8,35+4+8+8,70+4+8+8+8]
# N = (6 d^2 + d - 2)
# d = -1/12 + sqrt(1/6 * $n + 49/144) # 49=7*7=(2w-1)*(2w-1)
#
# in general
# N = (6 d^2 - (7-2w) d + 2-w)
# = (6d - (7-2w)) d + 2-w
# = (6d - 7 + 2w))*d + 2-w
# d = (7-2w)/12 + sqrt(1/6 * $n + (w-1)^2/144)
# = [ 7-2w + 12*sqrt(1/6 * $n + (w-1)^2/144) ] / 12
# = [ 7-2w + sqrt(144/6*$n + (w-1)^2) ] / 12
# = [ 7-2w + sqrt(24*$n + (w-1)^2) ] / 12
sub n_to_xy {
my ($self, $n) = @_;
### AnvilSpiral n_to_xy(): $n
$n = $n - $self->{'n_start'}; # to N=0 basis, warning if $n==undef
if ($n < 0) { return; }
my $w = $self->{'wider'};
my $w_right = int($w/2);
my $w_left = $w - $w_right;
### $w
### $w_left
### $w_right
if ($n <= $w) {
### centre horizontal
return ($n - $w_left, # N=0 at $w_left
0);
}
my $d = int((sqrt(int(24*($n+1)) + (2*$w-1)**2) + 7-2*$w) / 12);
### ($n+1)
### $d
### d frac: ((sqrt(int(24*($n+1)) + (2*$w-1)**2) + 7-2*$w) / 12)
### d sqrt add: ($w-1)*($w-1)
### d const part: 7-2*$w
$n -= (6*$d - 7 + 2*$w)*$d + 2-$w;
### base: (6*$d - 7 + 2*$w)*$d + 2-$w
### remainder: $n
if ($n <= 5*$d+$w-2) {
if ($n+1 <= $d) {
### upper right slope ...
return ($n + $d + $w_right,
$n+1);
} else {
### top ...
return (-$n + 3*$d + $w_right - 2,
$d);
}
}
$n -= 7*$d + $w - 2;
if ($n <= 0) {
### left slopes: $n
return (-abs($n+$d) - $d - $w_left,
-$n - $d);
}
$n -= 4*$d + $w;
if ($n < 0) {
### bottom ...
return ($n + 2*$d + $w_right,
-$d);
} else {
### right lower ...
return (-$n + 2*$d + $w_right,
$n - $d);
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### AnvilSpiral xy_to_1 n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
my $w = $self->{'wider'};
my $w_right = int($w/2);
my $w_left = $w - $w_right;
### $w
### $w_left
### $w_right
my $abs_y = abs($y);
if ($x-$w_right >= 2*$abs_y) {
### right slopes: "d=".($x-$w_right - $abs_y)
my $d = $x-$w_right - $abs_y; # zero based
return ((6*$d + 5 + 2*$w)*$d + $w
+ $y
+ $self->{'n_start'});
}
if ($x+$w_left < -2*$abs_y) {
### left slopes: "d=".($x+$w_left + $abs_y)
my $d = $x+$w_left + $abs_y; # negative, and zero based
return ((6*$d + 1 - 2*$w)*$d
- $y
+ $self->{'n_start'});
}
if ($y > 0) {
### top horizontal ...
return ((6*$y - 4 + 2*$w)*$y - $w
+ $w_right-$x
+ $self->{'n_start'});
} else {
### bottom horizontal ...
# y negative
return ((6*$y - 2 - 2*$w)*$y
+ $x+$w_left
+ $self->{'n_start'});
}
}
# uncomment this to run the ### lines
#use Smart::Comments;
# ...-78-77-76-75-74
# /
# 43-42-41-40-39-38 73
# / /
# 17-16-15-14 37 72
# / / /
# -3--2 13 36 71
# / / / /
# 1 12 35 70
#
# column X=2, dmin decreasing until Y=1=floor(x/2)
# column X=3, dmin decreasing until Y=2=ceil(x/2)
# so x1 - min(y2,int((x1+1)/2))
#
#
# column Xmax=2, dmax increasing down until x2-y1
#
# horizontal Y>=0 N increases left and right of X=Y*3/2
# so candidate max at top-left x1,y2 or top-right x2,y2
#
# horizontal Y<0 N increases left and right of X=-Y*3/2
# so candidate max at bottom-left x1,y1 or bottom-right x2,y1
#
# vertical Y>=0 N increases above and below Y=ceil(X/2)
# so candidate max at top-right or bottom-right, or Y=0
#
# vertical Y<0 N increases above and below Y=ceil(X/2)
# so candidate max at top-right or bottom-right, or Y=0
#
# int(($y2+1)/2), $y2
# int(($y1+1)/2), $y1
#
# my @corners = ($self->xy_to_n($x1,$y1),
# $self->xy_to_n($x2,$y1),
# $self->xy_to_n($x1,$y2),
# $self->xy_to_n($x2,$y2));
# return (($x_zero && $y_zero ? 1 : min (@corners)),
# max (@corners,
# ($y_zero ? ($self->xy_to_n($x1,0),
# $self->xy_to_n($x2,0)) : ())));
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### AnvilSpiral rect_to_n_range(): "$x1,$y1 $x2,$y2"
my $w = $self->{'wider'};
my $w_right = int($w/2);
my $w_left = $w - $w_right;
$x1 = round_nearest($x1);
$x2 = round_nearest($x2);
$y1 = round_nearest($y1);
$y2 = round_nearest($y2);
my $x_zero = (($x1<0) != ($x2<0));
my $y_zero = (($y1<0) != ($y2<0));
### $x_zero
### $y_zero
$x1 += $w_left;
$x2 += $w_left;
if ($x1 < 0) { $x1 = $w-$x1; }
if ($x2 < 0) { $x2 = $w-$x2; }
$y1 = abs($y1);
$y2 = abs($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x_zero) { $x1 = 0; }
if ($y_zero) { $y1 = 0; }
### abs: "$x1,$y1 $x2,$y2"
### d1 slope max y: int(($x1+1)/2)
### d1 slope: $x1 - min($y2,int(($x1+1)/2))
# --------*
# /
# /
# * <-y=0
# x=0....w
#
# d=x-w-y on the slope
# d=y on the top horizontal
#
my $d1 = min ($x1-$w - min($y2,int(($x1-$w+1)/2)) - 1,
$y2);
my $d2 = 1 + max ($x2-$w - $y1,
$y2);
### $d1
### $d2
### d2 right slope would be: $x2-$w_right - $y2
# d1==0 is the centre horizontal
#
return ($d1 <= 0
? $self->{'n_start'}
: (6*$d1 - 7 + 2*$w)*$d1 + 1-$w + $self->{'n_start'},
(6*$d2 - 6 + 2*$w)*$d2 - $w + $self->{'n_start'});
}
1;
__END__
=for stopwords Ryde Math-PlanePath pentagonals OEIS
=head1 NAME
Math::PlanePath::AnvilSpiral -- integer points around an "anvil" shape
=head1 SYNOPSIS
use Math::PlanePath::AnvilSpiral;
my $path = Math::PlanePath::AnvilSpiral->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path makes a spiral around an anvil style shape,
...-78-77-76-75-74 4
/
49-48-47-46-45-44-43-42-41-40-39-38 73 3
\ / /
50 21-20-19-18-17-16-15-14 37 72 2
\ \ / / /
51 22 5--4--3--2 13 36 71 1
\ \ \ / / / /
52 23 6 1 12 35 70 <- Y=0
/ / / \ \ \
53 24 7--8--9-10-11 34 69 -1
/ / \ \
54 25-26-27-28-29-30-31-32-33 68 -2
/ \
55-56-57-58-59-60-61-62-63-64-65-66-67 -3
^
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7
The pentagonal numbers 1,5,12,22,etc, P(k) = (3k-1)*k/2 fall alternately on
the X axis XE<gt>0, and on the Y=1 horizontal XE<lt>0.
Those pentagonals are always composites, from the factorization shown, and
as noted in L<Math::PlanePath::PyramidRows/Step 3 Pentagonals>, the
immediately preceding P(k)-1 and P(k)-2 are also composites. So plotting
the primes on the spiral has a 3-high horizontal blank line at Y=0,-1,-2 for
positive X, and Y=1,2,3 for negative X (after the first few values).
Each loop around the spiral is 12 longer than the preceding. This is 4*
more than the step=3 C<PyramidRows> so straight lines on a C<PyramidRows>
like these pentagonals are also straight lines here, but split into two
parts.
The outward diagonal excursions are similar to the C<OctagramSpiral>, but
there's just 4 of them here where the C<OctagramSpiral> has 8. This is
reflected in the loop step. The basic C<SquareSpiral> is step 8, but by
taking 4 excursions here increases that to 12, and in the C<OctagramSpiral>
8 excursions adds 8 to make step 16.
=head2 Wider
An optional C<wider> parameter makes the path wider by starting with a
horizontal section of given width. For example
$path = Math::PlanePath::SquareSpiral->new (wider => 3);
gives
=cut
# math-image --path=AnvilSpiral,wider=3 --all --output=numbers_dash --size=60x12
# but 2 chars per cell
=pod
33-32-31-30-29-28-27-26-25-24-23 ... 2
\ / /
34 11-10--9--8--7--6--5 22 51 1
\ \ / / /
35 12 1--2--3--4 21 50 <- Y=0
/ / \ \
36 13-14-15-16-17-18-19-20 49 -1
/ \
37-38-39-40-41-42-43-44-45-46-47-48 -2
^
-6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5
The starting point 1 is shifted to the left by ceil(wider/2) places to keep
the spiral centred on the origin X=0,Y=0. This is the same starting offset
as the C<SquareSpiral> C<wider>.
Widening doesn't change the nature of the straight lines which arise, it
just rotates them around. Each loop is still 12 longer than the previous,
since the widening is essentially a constant amount in each loop.
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start with the same shape. For example to
start at 0,
=cut
# math-image --path=AnvilSpiral,n_start=0 --all --output=numbers_dash --size=37x12
=pod
n_start => 0
20-19-18-17-16-15-14-13 ...
\ / /
21 4--3--2--1 12 35
\ \ / / /
22 5 0 11 34
/ / \ \
23 6--7--8--9-10 33
/ \
24-25-26-27-28-29-30-31-32
The only effect is to push the N values around by a constant amount. It
might help match coordinates with something else zero-based.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::AnvilSpiral-E<gt>new ()>
=item C<$path = Math::PlanePath::AnvilSpiral-E<gt>new (wider =E<gt> $integer, n_start =E<gt> $n)>
Create and return a new anvil spiral object. An optional C<wider> parameter
widens the spiral path, it defaults to 0 which is no widening.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include
=over
L<http://oeis.org/A033581> (etc)
=back
default wider=0, n_start=1
A033570 N on X axis, alternate pentagonals (2n+1)*(3n+1)
A126587 N on Y axis
A136392 N on Y negative (n=-Y+1)
A033568 N on X=Y diagonal, alternate second pents (2*n-1)*(3*n-1)
A085473 N on south-east diagonal
wider=0, n_start=0
A211014 N on X axis, 14-gonal numbers of the second kind
A139267 N on Y axis, 2*octagonal
A049452 N on X negative, alternate pentagonals
A033580 N on Y negative, 4*pentagonals
A051866 N on X=Y diagonal, 14-gonal numbers
A094159 N on north-west diagonal, 3*hexagonals
A049453 N on south-west diagonal, alternate second pentagonal
A195319 N on south-east diagonal, 3*second hexagonals
wider=1, n_start=0
A051866 N on X axis, 14-gonal numbers
A049453 N on Y negative, alternate second pentagonal
A033569 N on north-west diagonal
A085473 N on south-west diagonal
A080859 N on Y negative
A033570 N on south-east diagonal
alternate pentagonals (2n+1)*(3n+1)
wider=2, n_start=1
A033581 N on Y axis (6*n^2) except for initial N=2
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::SquareSpiral>,
L<Math::PlanePath::OctagramSpiral>,
L<Math::PlanePath::HexSpiral>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|