/usr/share/perl5/Math/PlanePath/BetaOmega.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=BetaOmega --lines --scale=20
#
# math-image --path=BetaOmega --all --output=numbers_dash
# http://www.upb.de/pc2/papers/files/pdfps399main.toappear.ps # gone
# http://www.uni-paderborn.de/pc2/papers/files/pdfps399main.toappear.ps
# http://wwwcs.upb.de/pc2/papers/files/399.ps # gone
#
# copy ?
# http://www.cs.uleth.ca/~wismath/cccg/papers/27l.ps
package Math::PlanePath::BetaOmega;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'bit_split_lowtohigh',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant y_negative_at_n => 4;
*xy_is_visited = \&Math::PlanePath::Base::Generic::_xy_is_visited_x_positive;
use constant _UNDOCUMENTED__dxdy_list_at_n => 4;
#------------------------------------------------------------------------------
# tables generated by tools/beta-omega-table.pl
#
my @next_state = (28, 8,36,88, 8,28,32,76, 4,16,44,64, 16, 4,40,84,
12,24,52,72, 24,12,48,92, 20, 0,60,80, 0,20,56,68,
68, 4,40,60, 64, 0,60,40, 76,12,48,36, 72, 8,36,48,
84,20,56,44, 80,16,44,56, 92,28,32,52, 88,24,52,32,
28, 8,36,48, 8,28,32,52, 4,16,44,56, 16, 4,40,60,
12,24,52,32, 24,12,48,36, 20, 0,60,40, 0,20,56,44);
my @digit_to_x = (0,0,1,1, 0,1,1,0, 1,0,0,1, 1,1,0,0,
1,1,0,0, 1,0,0,1, 0,1,1,0, 0,0,1,1,
1,1,0,0, 0,1,1,0, 1,0,0,1, 0,0,1,1,
0,0,1,1, 1,0,0,1, 0,1,1,0, 1,1,0,0,
0,0,1,1, 0,1,1,0, 1,0,0,1, 1,1,0,0,
1,1,0,0, 1,0,0,1, 0,1,1,0, 0,0,1,1);
my @digit_to_y = (0,1,1,0, 0,0,1,1, 0,0,1,1, 0,1,1,0,
1,0,0,1, 1,1,0,0, 1,1,0,0, 1,0,0,1,
0,1,1,0, 1,1,0,0, 1,1,0,0, 0,1,1,0,
1,0,0,1, 0,0,1,1, 0,0,1,1, 1,0,0,1,
0,1,1,0, 0,0,1,1, 0,0,1,1, 0,1,1,0,
1,0,0,1, 1,1,0,0, 1,1,0,0, 1,0,0,1);
my @xy_to_digit = (0,1,3,2, 0,3,1,2, 1,2,0,3, 3,2,0,1,
2,3,1,0, 2,1,3,0, 3,0,2,1, 1,0,2,3,
3,2,0,1, 3,0,2,1, 2,1,3,0, 0,1,3,2,
1,0,2,3, 1,2,0,3, 0,3,1,2, 2,3,1,0,
0,1,3,2, 0,3,1,2, 1,2,0,3, 3,2,0,1,
2,3,1,0, 2,1,3,0, 3,0,2,1, 1,0,2,3);
my @min_digit = (0,0,3,0, 0,2,1,1, 2,undef,undef,undef,
0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
1,0,0,1, 0,0,2,2, 3,undef,undef,undef,
3,0,0,2, 0,0,2,1, 1,undef,undef,undef,
2,1,1,2, 0,0,3,0, 0,undef,undef,undef,
2,2,3,1, 0,0,1,0, 0,undef,undef,undef,
3,2,2,0, 0,1,0,0, 1,undef,undef,undef,
1,1,2,0, 0,2,0,0, 3,undef,undef,undef,
3,0,0,2, 0,0,2,1, 1,undef,undef,undef,
3,2,2,0, 0,1,0,0, 1,undef,undef,undef,
2,2,3,1, 0,0,1,0, 0,undef,undef,undef,
0,0,3,0, 0,2,1,1, 2,undef,undef,undef,
1,1,2,0, 0,2,0,0, 3,undef,undef,undef,
1,0,0,1, 0,0,2,2, 3,undef,undef,undef,
0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
2,1,1,2, 0,0,3,0, 0,undef,undef,undef,
0,0,3,0, 0,2,1,1, 2,undef,undef,undef,
0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
1,0,0,1, 0,0,2,2, 3,undef,undef,undef,
3,0,0,2, 0,0,2,1, 1,undef,undef,undef,
2,1,1,2, 0,0,3,0, 0,undef,undef,undef,
2,2,3,1, 0,0,1,0, 0,undef,undef,undef,
3,2,2,0, 0,1,0,0, 1,undef,undef,undef,
1,1,2,0, 0,2,0,0, 3);
my @max_digit = (0,3,3,1, 3,3,1,2, 2,undef,undef,undef,
0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
1,1,0,2, 3,3,2,3, 3,undef,undef,undef,
3,3,0,3, 3,1,2,2, 1,undef,undef,undef,
2,2,1,3, 3,1,3,3, 0,undef,undef,undef,
2,3,3,2, 3,3,1,1, 0,undef,undef,undef,
3,3,2,3, 3,2,0,1, 1,undef,undef,undef,
1,2,2,1, 3,3,0,3, 3,undef,undef,undef,
3,3,0,3, 3,1,2,2, 1,undef,undef,undef,
3,3,2,3, 3,2,0,1, 1,undef,undef,undef,
2,3,3,2, 3,3,1,1, 0,undef,undef,undef,
0,3,3,1, 3,3,1,2, 2,undef,undef,undef,
1,2,2,1, 3,3,0,3, 3,undef,undef,undef,
1,1,0,2, 3,3,2,3, 3,undef,undef,undef,
0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
2,2,1,3, 3,1,3,3, 0,undef,undef,undef,
0,3,3,1, 3,3,1,2, 2,undef,undef,undef,
0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
1,1,0,2, 3,3,2,3, 3,undef,undef,undef,
3,3,0,3, 3,1,2,2, 1,undef,undef,undef,
2,2,1,3, 3,1,3,3, 0,undef,undef,undef,
2,3,3,2, 3,3,1,1, 0,undef,undef,undef,
3,3,2,3, 3,2,0,1, 1,undef,undef,undef,
1,2,2,1, 3,3,0,3, 3);
sub n_to_xy {
my ($self, $n) = @_;
### BetaOmega n_to_xy(): $n
### hex: sprintf "%#X", $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $int = int($n);
$n -= $int; # remaining fraction, preserve possible BigFloat/BigRat
my $zero = $int * 0; # inherit bignum
my @ndigits = digit_split_lowtohigh($int,4);
### ndigits: join(', ',@ndigits)." count ".scalar(@ndigits)
my $state = ($#ndigits & 1 ? 28 : 0);
my $dirstate = ($#ndigits & 1 ? 0 : 28); # default if all $ndigit==3
my @xbits;
my @ybits;
foreach my $i (reverse 0 .. $#ndigits) {
my $ndigit = $ndigits[$i]; # high to low
$state += $ndigit;
if ($ndigit != 3) {
$dirstate = $state; # lowest non-3 digit
}
### $ndigit
### $state
### $dirstate
### digit_to_x: $digit_to_x[$state]
### digit_to_y: $digit_to_y[$state]
### next_state: $next_state[$state]
$xbits[$i] = $digit_to_x[$state];
$ybits[$i] = $digit_to_y[$state];
$state = $next_state[$state];
}
### $dirstate
### frac: $n
### Ymin: - (((4+$zero)**int($#ndigits/2) - 1) * 2 / 3)
# with $n fractional part
return ($n * ($digit_to_x[$dirstate+1] - $digit_to_x[$dirstate])
+ digit_join_lowtohigh(\@xbits, 2, $zero),
$n * ($digit_to_y[$dirstate+1] - $digit_to_y[$dirstate])
+ (digit_join_lowtohigh(\@ybits, 2, $zero)
# Ymin = - (4^floor(level/2) - 1) * 2 / 3
- (((4+$zero)**int(scalar(@ndigits)/2) - 1) * 2 / 3)));
}
# ($len,$level) rounded down for $y ...
sub _y_round_down_len_level {
my ($y) = @_;
my $pos;
if ($pos = ($y >= 0)) {
# eg. 1 becomes 3, or 5 becomes 15, 2^k-1
$y = 3 * $y;
} else {
# eg. -2 becomes 7, or -10 becomes 31, 2^k-1
$y = 1 - 3*$y;
}
my ($len, $level) = round_down_pow($y,2);
# Make positive y give even level, and negative y give odd level.
# If positive and odd then reduce, or if negative and even then reduce.
if (($level & 1) == $pos) {
$level--;
$len /= 2;
}
return ($len, $level);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### BetaOmega xy_to_n(): "$x, $y"
$x = round_nearest ($x);
if ($x < 0) {
return undef;
}
if (is_infinite($x)) {
return $x;
}
my @xbits = bit_split_lowtohigh($x);
$y = round_nearest ($y);
my $zero = ($x * 0 * $y);
my ($len, $level) = _y_round_down_len_level ($y);
### y: "len=$len level=$level"
if ($#xbits > $level) {
### increase level to xbits ...
$level = $#xbits;
$len = (2+$zero) ** $level;
}
### $len
### $level
$y += (($level&1 ? 4 : 2) * $len - 2) / 3;
### offset y to: $y
if (is_infinite($y)) {
return $y;
}
my @ybits = bit_split_lowtohigh($y);
my $state = ($level & 1 ? 28 : 0);
my @ndigits;
foreach my $i (reverse 0 .. $level) { # high to low
### at: "i=$i state=$state xbit=".($xbits[$i]||0)." ybit=".($ybits[$i]||0)
my $ndigit = $xy_to_digit[$state + 2*($xbits[$i]||0) + ($ybits[$i]||0)];
$ndigits[$i] = $ndigit;
$state = $next_state[$state+$ndigit];
}
return digit_join_lowtohigh(\@ndigits, 4, $zero);
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### BetaOmega rect_to_n_range(): "$x1,$y1, $x2,$y2"
$x1 = round_nearest ($x1);
$x2 = round_nearest ($x2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
if ($x2 < 0) {
return (1, 0);
}
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
my ($len, $level) = round_down_pow ($x2, 2);
### x len/level: "$len $level"
# If y1/y2 both positive or both negative then only look at the bigger of
# the two. If y1 negative and y2 positive then consider both.
foreach my $y (($y2 > 0 ? ($y2) : ()),
($y1 < 0 ? ($y1) : ())) {
my ($ylen, $ylevel) = _y_round_down_len_level ($y);
### y len/level: "$ylen $ylevel"
if ($ylevel > $level) {
$level = $ylevel;
$len = $ylen;
}
}
if (is_infinite($len)) {
return (0, $len);
}
my $n_min = my $n_max = 0;
my $y_min = my $y_max = - (4**int(($level+1)/2) - 1) * 2 / 3;
my $x_min = my $x_max = 0;
my $min_state = my $max_state = ($level & 1 ? 28 : 0);
### $x_min
### $y_min
while ($level >= 0) {
### $level
### $len
{
my $x_cmp = $x_min + $len;
my $y_cmp = $y_min + $len;
my $digit = $min_digit[3*$min_state
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0)
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)];
# my $xr = ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0);
# my $yr = ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0);
# my $key = 3*$min_state + ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0);
# ### min at: "min_state=$min_state $x_min,$y_min cmp $x_cmp,$y_cmp"
# ### min_state: state_string($min_state)
# ### $xr
# ### $yr
# ### $key
# ### min digit: $digit
# ### min key: $key
# ### y offset: $digit_to_y[$max_state+$digit]
$n_min = 4*$n_min + $digit;
$min_state += $digit;
if ($digit_to_x[$min_state]) { $x_min += $len; }
$y_min += $len * $digit_to_y[$min_state];
$min_state = $next_state[$min_state];
}
{
my $x_cmp = $x_max + $len;
my $y_cmp = $y_max + $len;
my $digit = $max_digit[3*$max_state
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0)
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)];
# my $xr = ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0);
# my $yr = ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0);
# my $key = 3*$min_state + ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0);
# ### max at: "max_state=$max_state $x_max,$y_max cmp $x_cmp,$y_cmp"
# ### $x_cmp
# ### $y_cmp
# ### $xr
# ### $yr
# ### $key
# ### max digit: $digit
# ### x offset: $digit_to_x[$max_state+$digit]
# ### y offset: $digit_to_y[$max_state+$digit]
# ### y digit offset: $digit_to_y[$max_state+$digit]
# ### y min shift part: - ($level&1)
$n_max = 4*$n_max + $digit;
$max_state += $digit;
if ($digit_to_x[$max_state]) { $x_max += $len; }
$y_max += $len * $digit_to_y[$max_state];
$max_state = $next_state[$max_state];
}
$len = int($len/2);
$level--;
}
return ($n_min, $n_max);
}
#------------------------------------------------------------------------------
# levels
use Math::PlanePath::HilbertCurve;
*level_to_n_range = \&Math::PlanePath::HilbertCurve::level_to_n_range;
*n_to_level = \&Math::PlanePath::HilbertCurve::n_to_level;
#------------------------------------------------------------------------------
1;
__END__
# |
# 5 25--26 29--30 33--34 37--38 249-250 255-254 233-232-231-230
# | | | | | | | | | | | | |
# 4 24 27--28 31--32 35--36 39 248 251-252-253 234-235 228-229
# | | | | |
# 3 23 20--19--18 45--44--43 40 247 244-243 240-239 236 227-226
# | | | | | | | | | | | | |
# 2 22--21 16--17 46--47 42--41 246-245 242-241 238-237 224-225
# | | |
# 1 1-- 2 15--14 49--48 53--54 201-202 205-206 209-210 223-222
# | | | | | | | | | | | | |
# Y=0-> 0 3 12--13 50--51--52 55 200 203-204 207-208 211 220-221
# | | | | | |
# -1 5-- 4 11--10 61--60--59 56 199 196-195-194 213-212 219-218
# | | | | | | | | | |
# -2 6-- 7-- 8-- 9 62--63 58--57 198-197 192-193 214-215-216-217
# | |
# -3 89--88--87--86 65--64 69--70 185-186 191-190 169-168-167-166
# | | | | | | | | | |
# -4 90--91 84--85 66--67--68 71 184 187-188-189 170-171 164-165
# | | | | | |
# -5 93--92 83 80--79 76--75 72 183 180-179 176-175 172 163-162
# | | | | | | | | | | | | | |
# -6 94--95 82--81 78--77 74--73 182-181 178-177 174-173 160-161
# | |
# -7 97--96 109-110 113-114 125-126 129-130 141-142 145-146 159-158
# | | | | | | | | | | | | | |
# -8 98--99 108 111-112 115 124 127-128 131 140 143-144 147 156-157
# | | | | | | | |
# -9 101-100 107-106 117-116 123-122 133-132 139-138 149-148 155-154
# | | | | | | | |
# -10 102-103-104-105 118-119-120-121 134-135-136-137 150-151-152-153
#
# ^
# X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
=for stopwords eg Ryde OEIS ie bignums prepending Math-PlanePath Jens-Michael Wierum Ymin Ymax Wierum's Paderborn CCCG'02 MERCHANTABILITY 14th ybit
=head1 NAME
Math::PlanePath::BetaOmega -- 2x2 half-plane traversal
=head1 SYNOPSIS
use Math::PlanePath::BetaOmega;
my $path = Math::PlanePath::BetaOmega->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Wierum, Jens-Michael>This is an integer version of the Beta-Omega curve by
Jens-Michael Wierum. It makes a 2x2 self-similar traversal of a half plane
XE<gt>=0.
5 25--26 29--30 33--34 37--38
| | | | | | | |
4 24 27--28 31--32 35--36 39
| |
3 23 20--19--18 45--44--43 40
| | | | | |
2 22--21 16--17 46--47 42--41
| |
1 1-- 2 15--14 49--48 53--54
| | | | | |
Y=0-> 0 3 12--13 50--51--52 55
| | |
-1 5-- 4 11--10 61--60--59 56
| | | | |
-2 6-- 7-- 8-- 9 62--63 58--57
|
-3 ...
X=0 1 2 3 4 5 6 7
Each level extends square parts 2^level x 2^level alternately up or down.
The initial N=0 to N=3 extends upwards from Y=0 and exits the block
downwards at N=3. N=4 extends downwards and goes around back upwards to
exit N=15. N=16 then extends upwards through to N=63 which exits downwards,
etc.
The curve is named for the two base shapes
Beta Omega
*---* *---*
| | | |
--* * --* *--
|
The beta is made from three betas and an omega sub-parts. The omega is made
from four betas. In each case the sub-parts are suitably rotated,
transposed or reversed, so expanding to
Beta = 3*Beta+Omega Omega = 4*Beta
*---*---*---* *---*---*---*
| | | |
*---* *---* *---* *---*
| | | |
--* * *---* --* * * *--
| | | | | | |
*---* *---* *---* *---*
|
The sub-parts represent successive ever-smaller substitutions. They have
the effect of making the start a beta going alternately up or down. For
this integer version the start direction is kept fixed as a beta going
upwards and the higher levels then alternate up and down from there.
=head2 Level Ranges
Reckoning the initial N=0 to N=3 as level 1, a replication level extends to
Nlevel = 4^level - 1
Xmin = 0
Xmax = 2^level - 1
Ymin = - (4^floor(level/2) - 1) * 2 / 3
= binary 1010...10
Ymax = (4^ceil(level/2) - 1) / 3
= binary 10101...01
height = Ymax - Ymin = 2^level - 1
The Y range increases alternately above and below by a power of 2, so the
result for Ymin and Ymax is a 1 bit going alternately to Ymax and Ymin,
starting with Ymax for level 1.
level Ymin binary Ymax binary
----- -------------- -------------
0 0 0
1 0 0 1 = 1
2 -2 = -10 1 = 01
3 -2 = -010 5 = 101
4 -10 = -1010 5 = 0101
5 -10 = -01010 21 = 10101
6 -42 = -101010 21 = 010101
7 -42 = -0101010 85 = 1010101
The power of 4 divided by 3 formulas above for Ymin/Ymax have the effect of
producing alternating bit patterns like this.
For odd levels -Ymin/height approaches 1/3 and Ymax/height approaches 2/3,
ie. the start point is about 1/3 up the total extent. For even levels it's
the other way around, with -Ymin/height approaching 2/3 and Ymax/height
approaching 1/3.
=head2 Closed Curve
Wierum's idea for the curve is a closed square made from four betas,
*---* *---*
| | | |
* *-- --* *
| |
| |
* *-- --* *
| | | |
*---* *---*
And at the next expansion level
*---*---*---* *---*---*---*
| | | |
*---* *---* *---* *---*
| | | |
*---* * *-- --* * *---*
| | | | | |
*---* *---* *---* *---*
| |
| |
*---* *---* *---* *---*
| | | | | |
*---* * *-- --* * *---*
| | | |
*---* *---* *---* *---*
| | | |
*---*---*---* *---*---*---*
The code here could be used for that by choosing a level and applying four
copies of the path suitably mirrored and offset in X and Y.
For an odd level, the path N=0 to N=4^level-1 here is the top-right quarter,
entering on the left and exiting downwards. For an even level it's the
bottom-right shape instead, exiting upwards. The difference arises because
when taking successively greater detail sub-parts the initial direction
alternates up or down, but in the code here it's kept fixed (as noted
above).
The start point here is also fixed at Y=0, so an offset Ymin must be applied
if say the centre of the sections is to be Y=0 instead of the side entry
point.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::BetaOmega-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 4**$level - 1)>.
=back
=head1 FORMULAS
=head2 N to X,Y
Each 2 bits of N become a bit each for X and Y in a "U" arrangement, but
which way around is determined by sub-part orientation and beta/omega type
per above,
beta rotation 4 of
transpose 2 of
reverse 2 of
omega rotation 4 of
transpose 2 of
----
total states 24 = 4*2*2 + 4*2
The omega pattern is symmetrical so its reverse is the same, hence only
rotate and transpose forms for it. Omitting omega reverse reduces the
states from 32 to 24, saving a little space in a table driven approach. But
if using separate variables for rotate, transpose and reverse then the
reverse can be kept for both beta and omega without worrying that it makes
no difference in the omega.
Adding bits to Y produces a positive value measured up from Ymin(level),
where level is the number of base 4 digits in N. That Ymin can be
incorporated by adding -(2^level) for each even level. A table driven
calculation can work that in as for example
digit = N base 4 digits from high to low
xbit = digit_to_x[state,digit]
ybit = digit_to_y[state,digit]
state = next_state[state,digit]
X += 2^level * xbit
Y += 2^level * (ybit - !(level&1))
The (ybit-!(level&1)) means either 0,1 or -1,0. Another possibility there
would be to have -!(level&1) in the digit_to_y[] table, doubling the states
so as to track the odd/even level within the state and having the
digit_to_y[] as -1,0 in the even and 0,1 in the odd.
=head2 N to X,Y Fraction
If N includes a fractional part, it can be put on a line towards the next
integer point by taking the direction as at the least significant non-3
digit.
If the least significant base 4 digit is 3 then the direction along the
curve is determined by the curve part above. For example at N=7 (13 base 4)
it's rightwards as per the inverted beta which is the N=4 towards N=8 part
of the surrounding pattern. Or likewise N=11 (23 base 4) in the N=8 to N=12
direction.
| 0 12--
5---4 | |
| | |
6---7-- ... 4-----8
If all digits are 3 base 4, which is N=3, N=15, N=63, etc, then the
direction is down for an odd number of digits, up for an even number. So
N=3 downwards, N=15 upwards, N=63 downwards, etc.
This curve direction calculation might be of interest in its own right, not
merely to apply a fractional N as done in the code here. There's nothing
offered for that in the C<PlanePath> modules as such. For it the X,Y values
can be ignored just follow the state or orientations changes using the base
4 digits of N.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::PeanoCurve>
Jens-Michael Wierum "Definition of a New Circular Space-Filling Curve:
Beta-Omega-Indexing", Technical Report TR-001-02, Paderborn Center for
Parallel Computing, March 2002.
=over
L<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.3487> (cached
copy)
=back
Jens-Michael Wierum, "Logarithmic Path-Length in Space-Filling Curves", 14th
Canadian Conference on Computational Geometry (CCCG'02), 2002.
=over
L<http://www.cccg.ca/proceedings/2002/>
L<http://www.cccg.ca/proceedings/2002/27.ps> (shorter),
L<http://www.cccg.ca/proceedings/2002/27l.ps> (longer)
=back
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|