/usr/share/perl5/Math/PlanePath/CCurve.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=CCurve --output=numbers_dash
#
# pos(2^et+r) = (i+1)^et + i*pos(r)
# N=2^e0+2^e1+...+2^e(t-1)+2^et e0 high bit
# pos = (i+1)^e0 + i*(i+1)^e1 + ... + i^(t-1)*(i+1)^e(t-1) + i^t*(i+1)^et
# Levy, "Plane or space curves and surfaces consisting of parts similar to
# the whole". In Edgar classics on fractals pp 181-239.
# "Les courbes planes ou gauches et les surfaces composée de parties semblales au tout,"
# Journal de l'École Polytechnique, 1938, 227-247,
# Agnes Benedek and Rafael Panzone, "Sobre Algunos Notables Conjuntos
# Planos, I. La Curva de Lévy", Anales Academia Nacional de Ciencias
# Exactas, Físicas y Naturales, volume 46, 1994
# # http://www.ancefn.org.ar/old/biblioteca/base_de_datos/tomo46.html
# # (table of contents only)
# cf maybe
# Agnes Benedek and Rafael Panzone
# "Tessellations associated with number systems",
# volume 53, 2001, pages 61-64
# Notas de Contenido:Trabajo presentado con motivo de la enrega del premio
# "Orlando Villamayor" en Matemática, a la Dra. Agnes I. Benedek, el día 10
# noviembre de 2000.
# # www.ancefn.org.ar/old/biblioteca/base_de_datos/tomo53.html
# # (table of contents)
# * Bailey, Kim, Strichartz, "Inside the Levy Dragon", American Mathematical
# Monthly, volume 109, 2002, pages 689-703
# http://www.jstor.org/stable/3072395
# http://www.mathlab.cornell.edu/twk6
# http://www.mathlab.cornell.edu/%7Etwk6/program.html
# * Alster, The finite number of interior, Discrete Comput Geom, volume 43,
# 2010,
# http://rd.springer.com/article/10.1007/s00454-009-9211-1 pay
# 6809 assembler, recursive
# http://www.retroprogramming.com/2013/08/zx-spectrum-koch-levy-c-curve.html
# https://archive.org/details/your-sinclair-92
# August 1983 pages 16-17 bytes poked into memory.
# V. E. Hoggatt, Jr. and G. L. Alexanderson, "Sums of Partition Sets in
# Generalized Pascal Triangles I", Fibonacci Quarterly, volume 14, number 2,
# April 1976, pages 117-125.
# http://fq.math.ca/14-2.html
# http://fq.math.ca/Scanned/14-2/hoggatt1.pdf 1.6mb
# Chr. Ramus, "Solution generale d'un probleme d'analyse combinatoire,"
# J. Reine Angew. Math. (Crelle's journal), volume 11, 1834, pages 353-355.
# <a href="http://gdz.sub.uni-goettingen.de/en/dms/load/toc/?PPN=PPN243919689_0011">goettingen</a>
# <a href="http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=C43AA7558C10AD9464E14AC5E86110F7?cid=5285697">citeseer</a>
#
# cf. E. Netto, Lehrbuch der Combinetorik, 2nd ed., Teubner, Berlin, 1927.
package Math::PlanePath::CCurve;
use 5.004;
use strict;
use List::Util 'min','max','sum';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'bit_split_lowtohigh',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::KochCurve;
*_digit_join_hightolow = \&Math::PlanePath::KochCurve::_digit_join_hightolow;
# uncomment this to run the ### lines
# use Smart::Comments;
# Not sure about this yet ... 2 or 4 ?
# use constant parameter_info_array => [ { name => 'arms',
# share_key => 'arms_2',
# display => 'Arms',
# type => 'integer',
# minimum => 1,
# maximum => 2,
# default => 1,
# width => 1,
# description => 'Arms',
# } ];
use constant n_start => 0;
use constant x_negative_at_n => 6;
use constant y_negative_at_n => 22;
use constant _UNDOCUMENTED__dxdy_list_at_n => 7;
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(2, $self->{'arms'} || 1));
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### CCurve n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n, $n); }
my $zero = ($n * 0); # inherit bignum 0
my $x = $zero;
my $y = $zero;
{
my $int = int($n);
$x = $n - $int; # inherit possible BigFloat
$n = $int; # BigFloat int() gives BigInt, use that
}
# initial rotation from arm number $n mod $arms
my $rot = _divrem_mutate ($n, $self->{'arms'});
my $len = $zero+1;
foreach my $digit (digit_split_lowtohigh($n,4)) {
### $digit
if ($digit == 0) {
($x,$y) = ($y,-$x); # rotate -90
} elsif ($digit == 1) {
$y -= $len; # at Y=-len
} elsif ($digit == 2) {
$x += $len; # at X=len,Y=-len
$y -= $len;
} else {
### assert: $digit == 3
($x,$y) = (2*$len - $y, # at X=2len,Y=-len and rotate +90
$x-$len);
}
$rot++; # to keep initial direction
$len *= 2;
}
if ($rot & 2) {
$x = -$x;
$y = -$y;
}
if ($rot & 1) {
($x,$y) = (-$y,$x);
}
### final: "$x,$y"
return ($x,$y);
}
# point N=2^(2k) at XorY=+/-2^k radius 2^k
# N=2^(2k-1) at X=Y=+/-2^(k-1) radius sqrt(2)*2^(k-1)
# radius = sqrt(2^level)
# R(l)-R(l-1) = sqrt(2^level) - sqrt(2^(level-1))
# = sqrt(2^level) * (1 - 1/sqrt(2))
# about 0.29289
# len=1 extent of lower level 0
# len=4 extent of lower level 2
# len=8 extent of lower level 4+1 = 5
# len=16 extent of lower level 8+3
# len/2 + len/4-1
my @digit_to_rot = (-1, 1, 0, 1);
my @dir4_to_dsdd = ([1,-1],[1,1],[-1,1],[-1,-1]);
sub xy_to_n {
return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
my ($self, $x, $y) = @_;
### CCurve xy_to_n(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
my $zero = $x*0*$y;
($x,$y) = ($x + $y, $y - $x); # sum and diff
if (is_infinite($x)) { return $x; }
if (is_infinite($y)) { return $y; }
my @n_list;
foreach my $dsdd (@dir4_to_dsdd) {
my ($ds,$dd) = @$dsdd;
### attempt: "ds=$ds dd=$dd"
my $s = $x; # sum X+Y
my $d = $y; # diff Y-X
my @nbits;
until ($s >= -1 && $s <= 1 && $d >= -1 && $d <= 1) {
### at: "s=$s, d=$d nbits=".join('',reverse @nbits)
my $bit = $s % 2;
push @nbits, $bit;
if ($bit) {
$s -= $ds;
$d -= $dd;
($ds,$dd) = ($dd,-$ds); # rotate -90
}
# divide 1/(1+i) = (1-i)/(1^2 - i^2)
# = (1-i)/2
# so multiply (s + i*d) * (1-i)/2
# s = (s + d)/2
# d = (d - s)/2
#
### assert: (($s+$d)%2)==0
# this form avoids overflow near DBL_MAX
my $odd = $s % 2;
$s -= $odd;
$d -= $odd;
$s /= 2;
$d /= 2;
($s,$d) = ($s+$d+$odd, $d-$s);
}
# five final positions
# . 0,1 . ds,dd
# |
# -1,0--0,0--1,0
# |
# . 0,-1 .
#
### end: "s=$s d=$d ds=$ds dd=$dd"
# last step must be East dx=1,dy=0
unless ($ds == 1 && $dd == -1) { next; }
if ($s == $ds && $d == $dd) {
push @nbits, 1;
} elsif ($s != 0 || $d != 0) {
next;
}
# ended s=0,d=0 or s=ds,d=dd, found an N
push @n_list, digit_join_lowtohigh(\@nbits, 2, $zero);
### found N: "$n_list[-1]"
}
### @n_list
return sort {$a<=>$b} @n_list;
}
# f = (1 - 1/sqrt(2) = .292
# 1/f = 3.41
# N = 2^level
# Rend = sqrt(2)^level
# Rmin = Rend / 2 maybe
# Rmin^2 = (2^level)/4
# N = 4 * Rmin^2
#
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### CCurve rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$x2 = round_nearest ($x2);
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
my ($len,$level) = _rect_to_k ($x1,$y1, $x2,$y2);
if (is_infinite($level)) {
return (0, $level);
}
return (0, 4*$len*$len*$self->{'arms'} - 1);
}
# N=16 is Y=4 away k=2
# N=64 is Y=-8+1=-7 away k=3
# N=256=4^4 is X=2^4=16-3=-7 away k=4
# dist = 2^k - (2^(k-2)-1)
# = 2^k - 2^(k-2) + 1
# = 4*2^(k-2) - 2^(k-2) + 1
# = 3*2^(k-2) + 1
# k=2 3*2^(2-2)+1=4 len=4^2=16
# k=3 3*2^(3-2)+1=7 len=4^3=64
# k=4 3*2^(4-2)+1=13
# 2^(k-2) = (dist-1)/3
# 2^k = (dist-1)*4/3
#
# up = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# left = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# down = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# m=2 4*(2-1)/3=4/3=1
# m=4 4*(4-1)/3=4
sub _rect_to_k {
my ($x1,$y1, $x2,$y2) = @_;
### _rect_to_k(): $x1,$y1
{
my $m = max(abs($x1),abs($y1),abs($x2),abs($y2));
if ($m < 2) {
return (2, 1);
}
if ($m < 4) {
return (4, 2);
}
### round_down: 4*($m-1)/3
my ($len, $k) = round_down_pow (4*($m-1)/3, 2);
return ($len, $k);
}
my $len;
my $k = 0;
my $offset = -1;
foreach my $m ($x2, $y2, -$x1, -$y1) {
$offset++;
### $offset
### $m
next if $m < 0;
my ($len1, $k1);
# if ($m < 2) {
# $len1 = 1;
# $k1 = 0;
# } else {
# }
($len1, $k1) = round_down_pow (($m-1)/3, 2);
next if $k1 < $offset;
my $sub = ($offset-$k1) % 4;
$k1 -= $sub; # round down to k1 == offset mod 4
if ($k1 > $k) {
$k = $k1;
$len = $len1 / 2**$sub;
}
}
### result: "k=$k len=$len"
return ($len, 2*$k);
}
my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);
sub n_to_dxdy {
my ($self, $n) = @_;
### n_to_dxdy(): $n
my $int = int($n);
$n -= $int; # $n fraction part
my @digits = bit_split_lowtohigh($int);
my $dir = (sum(@digits)||0) & 3; # count of 1-bits
my $dx = $dir4_to_dx[$dir];
my $dy = $dir4_to_dy[$dir];
if ($n) {
# apply fraction part $n
# count low 1-bits is right turn of N+1, apply as dir-(turn-1) so decr $dir
while (shift @digits) {
$dir--;
}
# this with turn=count-1 turn which is dir++ worked into swap and negate
# of dir4_to_dy parts
$dir &= 3;
$dx -= $n*($dir4_to_dy[$dir] + $dx); # with rot-90 instead of $dir+1
$dy += $n*($dir4_to_dx[$dir] - $dy);
# this the equivalent with explicit dir++ for turn=count-1
# $dir++;
# $dir &= 3;
# $dx += $n*($dir4_to_dx[$dir] - $dx);
# $dy += $n*($dir4_to_dy[$dir] - $dy);
}
### result: "$dx, $dy"
return ($dx,$dy);
}
#------------------------------------------------------------------------------
# k even
# S[h]
# ---------
# / \ Z[h-1]
# / \
# | | S[h-1]
# \ / Z[h-2]
# -- --
# Hb[k] = S[h] + 2*S[h-1] + S[h] + 2*(Z[h-1]/2 - Z[h-2]/2)
# + sqrt(2)*(2*Z[h-1]/2 + 2*Z[h-2]/2)
# = 2*S[h] + 2*S[h-1] + Z[h-1]-Z[h-2] + sqrt(2) * (Z[h-1] + Z[h-2])
# = 2*2^h + 2*2^(h-1) + 2*2^(h-1)-2 - (2*2^(h-2)-2) + sqrt(2) * (2*2^(h-1)-2 + 2*2^(h-2)-2)
# = 3*2^h + 2*2^(h-1)-2 - 2*2^(h-2) + 2 + sqrt(2) * (3*2^(h-1) - 4)
# = 3*2^h + 2^(h-1) + sqrt(2) * (3*2^(h-1) - 4)
# = 7*2^(h-1) + sqrt(2) * (3*2^(h-1) - 4)
# = 7*sqrt(2)^(2h-2) + sqrt(2) * (3*sqrt(2)^(2h-2) - 4)
# = 7*sqrt(2)^(k-2) + sqrt(2) * (3*sqrt(2)^(k-2) - 4)
# = 7*sqrt(2)^(k-2) + sqrt(2)*3*sqrt(2)^(k-2) - 4*sqrt(2)
# = 7*sqrt(2)^(k-2) + 3*sqrt(2)*sqrt(2)^(k-2) - 4*sqrt(2)
# = (7 + 3*sqrt(2))*sqrt(2)^(k-2) - 4*sqrt(2)
#
# S[2]=4
# 11--10--7,9--6---5 Z[1]=2 k=4 h=2
# | | |
# 13--12 8 4---3 4 + 2*2 + 4+(2-0) = 14
# | | S[1]=2 (2+0) = 2
# 14 2
# | |
# 15---16 0---1 Z[0] = 0
#
# k odd
# S[h]
# ----
# Z[h-1] / \ middle Z[h]
# S[h-1] | \
# \ \
# | S[h]
# |
# \ / Z[h-1]
# --
# S[h-1]
#
# Hb[k] = 2*S[h] + 2*S[h-1] + sqrt(2)*( Z[h]/2 + Z[h-1] + Z[h]/2 + S[h]-S[h-1] )
# = 2*S[h] + 2*S[h-1] + sqrt(2)*( Z[h] + Z[h-1] + S[h]-S[h-1] )
# = 2*2^h + 2*2^(h-1) + sqrt(2)*( 2*2^h-2 + 2*2^(h-1)-2 + 2^h - 2^(h-1) )
# = 3*2^h + sqrt(2)*( 3*2^h + 2^(h-1) - 4 )
# = 3*2^h + sqrt(2)*( 7*2^(h-1) - 4 )
sub _UNDOCUMENTED_level_to_hull_boundary {
my ($self, $level) = @_;
my ($a, $b) = $self->_UNDOCUMENTED_level_to_hull_boundary_sqrt2($level)
or return undef;
return $a + $b*sqrt(2);
}
sub _UNDOCUMENTED_level_to_hull_boundary_sqrt2 {
my ($self, $level) = @_;
if ($level <= 2) {
if ($level < 0) { return; }
if ($level == 2) { return (6,0); }
return (2, ($level == 0 ? 0 : 1));
}
my ($h, $rem) = _divrem($level, 2);
my $pow = 2**($h-1);
if ($rem) {
return (6*$pow, 7*$pow-4);
# return (2*S_formula($h) + 2*S_formula($h-1),
# Z_formula($h)/2 + Z_formula($h-1)
# + Z_formula($h)/2 + (S_formula($h)-S_formula($h-1)) );
} else {
return (7*$pow, 3*$pow-4);
# return (S_formula($h) + 2*S_formula($h-1) + S_formula($h)+(Z_formula($h-1)-Z_formula($h-2)),
# (Z_formula($h-1) + Z_formula($h-2)));
}
}
#------------------------------------------------------------------------------
{
my @_UNDOCUMENTED_level_to_hull_area = (0, 1/2, 2);
sub _UNDOCUMENTED_level_to_hull_area {
my ($self, $level) = @_;
if ($level < 3) {
if ($level < 0) { return undef; }
return $_UNDOCUMENTED_level_to_hull_area[$level];
}
my ($h, $rem) = _divrem($level, 2);
return 35*2**($level-4) - ($rem ? 13 : 10)*2**($h-1) + 2;
# if ($rem) {
# return 35*2**($level-4) - 13*$pow + 2;
#
# my $width = S_formula($h) + Z_formula($h)/2 + Z_formula($h-1)/2;
# my $ul = Z_formula($h-1)/2;
# my $ur = Z_formula($h)/2;
# my $bl = $width - Z_formula($h-1)/2 - S_formula($h-1);
# my $br = Z_formula($h-1)/2;
# return $width**2 - $ul**2/2 - $ur**2/2 - $bl**2/2 - $br**2/2;
#
# } else {
# return 35*2**($level-4) - 10*$pow + 2;
# return 0;
# return 35*2**($level-4) - 5*2**$h + 2;
#
# # my $width = S_formula($h) + Z_formula($h-1);
# # my $upper = Z_formula($h-1)/2;
# # my $lower = Z_formula($h-2)/2;
# # my $height = S_formula($h-1) + $upper + $lower;
# # return $width; # * $height - $upper*$upper - $lower*$lower;
# }
# }
}
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 2**$level);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
my ($pow, $exp) = round_down_pow ($n-1, 2);
return $exp + 1;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Math-PlanePath ie OEIS dX,dY dX combinatorial Ramus th zig zags stairstep Duvall Keesling vy Preprint
=head1 NAME
Math::PlanePath::CCurve -- Levy C curve
=head1 SYNOPSIS
use Math::PlanePath::CCurve;
my $path = Math::PlanePath::CCurve->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is an integer version of the Levy "C" curve.
11-----10-----9,7-----6------5 3
| | |
13-----12 8 4------3 2
| |
19---14,18----17 2 1
| | | |
21-----20 15-----16 0------1 <- Y=0
|
22 -1
|
25,23---24 -2
|
26 35-----34-----33 -3
| | |
27,37--28,36 32 -4
| | |
38 29-----30-----31 -5
|
39,41---40 -6
|
42 ... -7
| |
43-----44 49-----48 64-----63 -8
| | | |
45---46,50----47 62 -9
| |
51-----52 56 60-----61 -10
| | |
53-----54----55,57---58-----59 -11
^
-7 -6 -5 -4 -3 -2 -1 X=0 1
The initial segment N=0 to N=1 is repeated with a turn +90 degrees left to
give N=1 to N=2. Then N=0to2 is repeated likewise turned +90 degrees and
placed at N=2 to make N=2to4. And so on doubling each time.
4----3
| N=0to2
2 2 repeated
| | as N=2to4
0----1 0----1 0----1 with turn +90
The 90 degree rotation is the same at each repetition, so the segment at
N=2^k is always the initial N=0to1 turned +90 degrees. This means at
N=1,2,4,8,16,etc the direction is always upwards.
The X,Y position can be written in complex numbers as a recurrence
with N = 2^k + r high bit 2^k and remainder r<2^k
C(N) = C(2^k) + i*C(r)
= (1+i)^k + i*C(r)
The effect is a change from base 2 to base 1+i, but with a further power of
i on each term. Suppose the 1-bits in N are at positions k0, k1, k2, etc
(high to low), then
C(N) = b^k0 * i^0 N= 2^k0 + 2^(k1) + 2^(k2) + ... in binary
+ b^k1 * i^1 k0 > k1 > k2 > ...
+ b^k2 * i^2 base b=1+i
+ b^k3 * i^3
+ ...
Notice the i power is not the bit position k, but rather how many 1-bits are
above the position. This calculation is straightforward but the resulting
structure of overlaps and internal shapes has many different parts.
=head2 Level Ranges 4^k
The X,Y extents of the path through to Nlevel=2^k can be expressed as a
width and height measured relative to the endpoints.
*------------------* <-+
| | |
*--* *--* | height h[k]
| | |
* N=4^k N=0 * <-+
| | | | | below l[k]
*--*--* *--*--* <-+
^-----^ ^-----^
width 2^k width
w[k] w[k] Extents to N=4^k
<------------------------>
total width = 2^k + 2*w[k]
N=4^k is on either the X or Y axis and for the extents here it's taken
rotated as necessary to be horizontal. k=2 N=4^2=16 shown above is already
horizontal. The next level k=3 N=64=4^3 would be rotated -90 degrees to be
horizontal.
The width w[k] is measured from the N=0 and N=4^k endpoints. It doesn't
include the 2^k length between those endpoints. The two ends are symmetric
so the extent is the same at each end.
h[k] = 2^k - 1 0,1,3,7,15,31,etc
w[k] = / 0 for k=0
\ 2^(k-1) - 1 for k>=1 0,0,1,3,7,15,etc
l[k] = / 0 for k<=1
\ 2^(k-2) - 1 for k>=2 0,0,0,1,3,7,etc
The initial N=0 to N=64 shown above is k=3. h[3]=7 is the X=-7 horizontal.
l[3]=1 is the X=1 horizontal. w[3]=3 is the vertical Y=3, and also Y=-11
which is 3 below the endpoint N=64 at Y=8.
Expressed as a fraction of the 2^k distance between the endpoints the
extents approach total 2 wide by 1.25 high,
*------------------* <-+
| | | 1
*--* *--* | total
| | | height
* N=4^k N=0 * <-+ -> 1+1/4
| | | | | 1/4
*--*--* *--*--* <-+
^-----^ ^-----^
1/2 1 1/2 total width -> 2
The extent formulas can be found by considering the self-similar blocks.
The initial k=0 is a single line segment and all its extents are 0.
h[0] = 0
N=1 ----- N=0
l[0] = 0
w[0] = 0
Thereafter the replication overlap as
+-------+---+-------+
| | | |
+------+ | | +------+
| | D | | C | | B | | <-+
| +-------+---+-------+ | | 2^(k-1)
| | | | | previous
| | | | | level ends
| E | | A | <-+
+------+ +------+
^---------------^
2^k this level ends
w[k] = max (h[k-1], w[k-1]) # right of A,B
h[k] = 2^(k-1) + max (h[k-1], w[k-1]) # above B,C,D
l[k] = max w[k-1], l[k-1]-2^(k-1) # below A,E
Since h[k]=2^(k-1)+w[k] have S<h[k] E<gt> w[k]> for kE<gt>=1 and with the
initial h[0]=w[k]=0 have h[k]E<gt>=w[k] always. So the max of those two
is h.
h[k] = 2^(k-1) + h[k-1] giving h[k] = 2^k-1 for k>=1
w[k] = h[k-1] giving w[k] = 2^(k-1)-1 for k>=1
The max for l[k] is always w[k-1] as l[k] is never big enough that the parts
B-C and C-D can extend down past their 2^(k-1) vertical position.
(l[0]=w[0]=0 and thereafter by induction l[k]E<lt>=w[k].)
l[k] = w[k-1] giving l[k] = 2^(k-2)-1 for k>=2
=head2 Repeated Points
The curve crosses itself and can repeat X,Y positions up to 4 times. The
first doubled, tripled and quadrupled points are
visits X,Y N
------ ------- ----------------------
2 -2, 3 7, 9
3 18, -7 189, 279, 281
4 -32, 55 1727, 1813, 2283, 2369
=cut
# binary
# 2 -10, 11 111, 1001
# 3 2
# 3 10010, -111 10111101, 100010111, 100011001
# 6 5 4
# 4 -100000, 110111 11010111111, 11100010101,
# 100011101011, 100101000001
# 9, 6, 7, 4
=pod
Each line segment between integer points is traversed at most 2 times, once
forward and once backward. There's 4 lines reaching each integer point and
this line traversal means the points are visited at most 4 times.
As per L</Direction> below the direction of the curve is given by the count
of 1-bits in N. Since no line is repeated each of the N values at a given
X,Y have a different count-1-bits mod 4. For example N=7 is 3 1-bits and
N=9 is 2 1-bits. The full counts need not be consecutive, as for example
N=1727 is 9 1-bits and N=2369 is 4 1-bits.
The maximum of 2 line segment traversals can be seen from the way the curve
replicates. Suppose the entire plane had all line segments traversed
forward and backward.
v | v |
-- <-------- <-
[0,1] [1,1] [X,Y] = integer points
-> --------> -- each edge traversed
| ^ | ^ forward and backward
| | | |
| | | |
v | v |
-- <-------- <--
[0,0] [1,0]
-> --------> --
| ^ | ^
Then when each line segment expands on the right the result is the same
pattern of traversals -- viewed rotated by 45-degrees and scaled by factor
sqrt(2).
\ v / v \ v / v
[0,1] [1,1]
/ / ^ \ ^ / ^ \
/ / \ \ / / \ \
\ \ / /
\ v / v
[1/2,1/2]
^ / ^ \
/ / \ \
\ \ / / \ \ / /
\ v / v \ v / v
[0,0] 1,0
^ / ^ \ ^ / ^ \
The curve is a subset of this pattern. It begins as a single line segment
which has this pattern and thereafter the pattern preserves itself. Hence
at most 2 segment traversals in the curve.
=head2 Tiling
The segment traversal argument above can also be made by taking the line
segments as triangles which are a quarter of a unit square with peak
pointing to the right of the traversal direction.
to *
^\
| \
| \ triangle peak
| /
| /
|/ quarter of a unit square
from *
These triangles in the two directions tile the plane. On expansion each
splits into 2 halves in new positions. Those parts don't overlap and the
plane is still tiled. See for example
=over
Larry Riddle
L<http://ecademy.agnesscott.edu/~lriddle/ifs/levy/levy.htm>
L<http://ecademy.agnesscott.edu/~lriddle/ifs/levy/tiling.htm>
=back
For the integer version of the curve this kind of tiling can be used to
combine copies of the curve so that each every point is visited precisely 4
times. The h[k], w[k] and l[k] extents above are less than the 2^k endpoint
length, so a square of side 2^k can be fully tiled with copies of the curve
at each corner,
| ^ | ^
| | | | 24 copies of the curve
| | | | to visit all points of the
v | v | inside square ABCD
<------- <-------- <-------- precisely 4 times each
A B
--------> --------> --------> each part points
| ^ | ^ N=0 to N=4^k-1
| | | | rotated and shifted
| | | | suitably
v | v |
<-------- <-------- <--------
C D
-------- --------> -------->
| ^ | ^
| | | |
| | | |
v | v |
The four innermost copies of the curve cover most of the inside square, but
the other copies surrounding them loop into the square and fill in the
remainder to make 4 visits at every point.
=cut
# If doing this tiling note that only points N=0 to N=4^k-1 are used. If
# N=4^k was included then it would duplicate the N=0 at the "*" endpoints,
# resulting in 8 visits there rather than the intended 4.
=pod
It's interesting to note that a set of 8 curves at the origin only covers
the axes with 4-fold visits,
| ^ 8 arms at the origin
| | cover only X,Y axes
v | with 4-visits
<-------- <--------
0,0 away from the axes
-------- --------> some points < 4 visits
| ^
| |
v |
This means that if the path had some sort of "arms" of multiple curves
extending from the origin then it would visit all points on the axes X=0 Y=0
a full 4 times, but off the axes there would be points without full 4
visits.
=cut
# The S<"_ _ _"> line shown which is part of the 24-pattern above but omitted
# here. This line is at Y=2^k. The extents described above mean that it
# extends down to Y=2^k - h[k] = 2^k-(2^k-1)=1, so it visits some points in
# row Y=1 and higher. Omitting the curve means there are YE<gt>=1 not visited
# 4 times. Similarly YE<lt>=-1 and XE<lt>-1 and XE<gt>=+1.
=pod
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.
=over 4
=item C<$path = Math::PlanePath::CCurve-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. If there's nothing at
C<$x,$y> then return C<undef>. If C<$x,$y> is visited more than once then
return the smallest C<$n> which visits it.
=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>
Return a list of N point numbers at coordinates C<$x,$y>. If there's
nothing at C<$x,$y> then return an empty list.
A given C<$x,$y> is visited at most 4 times so the returned list is at most
4 values.
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 2**$level)>.
=back
=head1 FORMULAS
=head2 Direction
The direction or net turn of the curve is the count of 1 bits in N,
direction = count_1_bits(N) * 90degrees
For example N=11 is binary 1011 has three 1 bits, so direction 3*90=270
degrees, ie. to the south.
This bit count is because at each power-of-2 position the curve is a copy of
the lower bits but turned +90 degrees, so +90 for each 1-bit.
For powers-of-2 N=2,4,8,16, etc, there's only a single 1-bit so the
direction is always +90 degrees there, ie. always upwards.
=head2 Turn
At each point N the curve can turn in any direction: left, right, straight,
or 180 degrees back. The turn is given by the number of low 0-bits of N,
turn right = (count_low_0_bits(N) - 1) * 90degrees
For example N=8 is binary 0b100 which is 2 low 0-bits for turn=(2-1)*90=90
degrees to the right.
When N is odd there's no low zero bits and the turn is always (0-1)*90=-90
to the right, so every second turn is 90 degrees to the left.
=head2 Next Turn
The turn at the point following N, ie. at N+1, can be calculated by counting
the low 1-bits of N,
next turn right = (count_low_1_bits(N) - 1) * 90degrees
For example N=11 is binary 0b1011 which is 2 low one bits for
nextturn=(2-1)*90=90 degrees to the right at the following point, ie. at
N=12.
This works simply because low 1-bits like ..0111 increment to low 0-bits
..1000 to become N+1. The low 1-bits at N are thus the low 0-bits at N+1.
=head2 N to dX,dY
C<n_to_dxdy()> is implemented using the direction described above. For
integer N the count mod 4 gives the direction for dX,dY.
dir = count_1_bits(N) mod 4
dx = dir_to_dx[dir] # table 0 to 3
dy = dir_to_dy[dir]
For fractional N the direction at int(N)+1 can be obtained from the
direction at int(N) and the turn at int(N)+1, which is the low 1-bits of N
per L</Next Turn> above. Those two directions can then be combined as
described in L<Math::PlanePath/N to dX,dY -- Fractional>.
# apply turn to make direction at Nint+1
turn = count_low_1_bits(N) - 1 # N integer part
dir = (dir - turn) mod 4 # direction at N+1
# adjust dx,dy by fractional amount in this direction
dx += Nfrac * (dir_to_dx[dir] - dx)
dy += Nfrac * (dir_to_dy[dir] - dy)
A small optimization can be made by working the "-1" of the turn formula
into a +90 degree rotation of the C<dir_to_dx[]> and C<dir_to_dy[]> parts by
swap and sign change,
turn_plus_1 = count_low_1_bits(N) # on N integer part
dir = (dir - turn_plus_1) mod 4 # direction-1 at N+1
# adjustment including extra +90 degrees on dir
dx -= $n*(dir_to_dy[dir] + dx)
dy += $n*(dir_to_dx[dir] - dy)
=head2 X,Y to N
The N values at a given X,Y can be found by taking terms low to high from
the complex number formula (the same as given above)
X+iY = b^k N = 2^k + 2^(k1) + 2^(k2) + ... in binary
+ b^k1 * i base b=1+i
+ b^k2 * i^2
+ ...
If the lowest term is b^0 then X+iY has X+Y odd. If the lowest term is not
b^0 but instead some power b^n then X+iY has X+Y even. This is because a
multiple of b=1+i,
X+iY = (x+iy)*(1+i)
= (x-y) + (x+y)i
so X=x-y Y=x+y
sum X+Y = 2x is even if X+iY a multiple of 1+i
So the lowest bit of N is found by
bit = (X+Y) mod 2
If bit=1 then a power i^p is to be subtracted from X+iY. p is how many
1-bits are above that point, and this is not yet known. It represents a
direction to move X,Y to put it on an even position. It's also the
direction of the step N-2^l to N, where 2^l is the lowest 1-bit of N.
The reduction should be attempted with p commencing as each of the four
possible directions N,S,E,W. Some or all will lead to an N. For quadrupled
points (such as X=-32, Y=55 described above) all four will lead to an N.
for p 0 to 3
dX,dY = i^p # directions [1,0] [0,1] [-1,0] [0,-1]
loop until X,Y = [0,0] or [1,0] or [-1,0] or [0,1] or [0,-1]
{
bit = X+Y mod 2 # bits of N from low to high
if bit == 1 {
X -= dX # move to "even" X+Y == 0 mod 2
Y -= dY
(dX,dY) = (dY,-dX) # rotate -90 as for p-1
}
X,Y = (X+Y)/2, (Y-X)/2 # divide (X+iY)/(1+i)
}
if not (dX=1 and dY=0)
wrong final direction, try next p
if X=dX and Y=dY
further high 1-bit for N
found an N
if X=0 and Y=0
found an N
The "loop until" ends at one of the five points
0,1
|
-1,0 -- 0,0 -- 1,0
|
0,-1
It's not possible to wait for X=0,Y=0 to be reached because some dX,dY
directions will step infinitely among the four non-zeros. Only the case
X=dX,Y=dY is sure to reach 0,0.
The successive p decrements which rotate dX,dY by -90 degrees must end at p
== 0 mod 4 for highest term in the X+iY formula having i^0=1. This means
must end dX=1,dY=0 East. If this doesn't happen then there is no N for that
p direction.
The number of 1-bits in N is == p mod 4. So the order the N values are
obtained follows the order the p directions are attempted. In general the N
values will not be smallest to biggest N so a little sort is necessary if
that's desired.
It can be seen that sum X+Y is used for the bit calculation and then again
in the divide by 1+i. It's convenient to write the whole loop in terms of
sum S=X+Y and difference D=Y-X.
for dS = +1 or -1 # four directions
for dD = +1 or -1 #
S = X+Y
D = Y-X
loop until -1 <= S <= 1 and -1 <= D <= 1 {
bit = S mod 2 # bits of N from low to high
if bit == 1 {
S -= dS # move to "even" S+D == 0 mod 2
D -= dD
(dS,dD) = (dD,-dS) # rotate -90
}
(S,D) = (S+D)/2, (D-S)/2 # divide (S+iD)/(1+i)
}
if not (dS=1 and dD=-1)
wrong final direction, try next dS,dD direction
if S=dS and D=dD
further high 1-bit for N
found an N
if S=0 and D=0
found an N
The effect of S=X+Y, D=Y-D is to rotate by -45 degrees and use every second
point of the plane.
D= 2 X=0,Y=2 . rotate -45
D= 1 X=0,Y=1 . X=1,Y=2 .
D= 0 X=0,Y=0 . X=1,Y=1 . X=2,Y=2
D=-1 X=1,Y=0 . X=2,Y=1 .
D=-2 X=2,Y=0 .
S=0 S=1 S=2 S=3 S=4
The final five points described above are then in a 3x3 block at the origin.
The four in-between points S=0,D=1 etc don't occur so range tests
-1E<lt>=SE<lt>=1 and -1E<lt>=DE<lt>=1 can be used.
S=-1,D=1 . S=1,D=1
. S=0,D=0 .
S=-1,D=-1 . S=1,D=-1
=head2 Segments by Direction
In a level N=0 to N=2^k-1 inclusive, the number of segments in each
direction 0=East, 1=North, 2=West, 3=South are given by
k=0 for k >= 1
--- ----------
M0[k] = 1, 2^(k-2) + d(k+2)*2^(h-1)
M1[k] = 0, 2^(k-2) + d(k+0)*2^(h-1)
M2[k] = 0, 2^(k-2) + d(k-2)*2^(h-1)
M3[k] = 0, 2^(k-2) + d(k-4)*2^(h-1)
where h = floor(k/2)
and d(m) = 0 1 1 1 0 -1 -1 -1
for m == 0 to 7 mod 8
M0[k] = 1, 1, 1, 1, 2, 6, 16, 36, 72, 136, 256, ...
M1[k] = 0, 1, 2, 3, 4, 6, 12, 28, 64, 136, 272, ...
M2[k] = 0, 0, 1, 3, 6, 10, 16, 28, 56, 120, 256, ...
M3[k] = 0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, ...
d(n) is a factor +1, -1 or 0 according to n mod 8. Each M goes as a power
2^(k-2), so roughly 1/4 each, but a half power 2^(h-1) possibly added or
subtracted in a k mod 8 pattern. In binary this is a 2^(k-2) high 1-bit
with another 1-bit in the middle added or subtracted.
The total is 2^k since there are a total 2^k points from N=0 to 2^k-1
inclusive.
M0[k] + M1[k] + M2[k] + M3[k] = 2^k
It can be seen that the d(n) parts sum to 0 so the 2^(h-1) parts cancel out
leaving 4*2^(k-2) = 2^k.
d(0) + d(2) + d(4) + d(6) = 0
d(1) + d(3) + d(5) + d(7) = 0
=for Test-Pari-DEFINE Mdir_vec = [0, 1, 1, 1, 0, -1, -1, -1]
=for Test-Pari-DEFINE Mdir(n) = Mdir_vec[(n%8)+1] /* +1 for vector start index 1 */
=for Test-Pari-DEFINE M0half(k) = local(h); h=floor(k/2); if(k==0,1, 2^(k-2) + Mdir(k+2)*2^(h-1))
=for Test-Pari-DEFINE M1half(k) = local(h); h=floor(k/2); if(k==0,0, 2^(k-2) + Mdir(k+0)*2^(h-1))
=for Test-Pari-DEFINE M2half(k) = local(h); h=floor(k/2); if(k==0,0, 2^(k-2) + Mdir(k-2)*2^(h-1))
=for Test-Pari-DEFINE M3half(k) = local(h); h=floor(k/2); if(k==0,0, 2^(k-2) + Mdir(k-4)*2^(h-1))
=for Test-Pari-DEFINE M0samples = [ 1, 1, 1, 1, 2, 6, 16, 36, 72, 136, 256 ]
=for Test-Pari-DEFINE M1samples = [ 0, 1, 2, 3, 4, 6, 12, 28, 64, 136, 272 ]
=for Test-Pari-DEFINE M2samples = [ 0, 0, 1, 3, 6, 10, 16, 28, 56, 120, 256 ]
=for Test-Pari-DEFINE M3samples = [ 0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240 ]
=for Test-Pari vector(length(M0samples),k,M0half(k-1)) == M0samples
=for Test-Pari vector(length(M1samples),k,M1half(k-1)) == M1samples
=for Test-Pari vector(length(M2samples),k,M2half(k-1)) == M2samples
=for Test-Pari vector(length(M3samples),k,M3half(k-1)) == M3samples
The counts can be calculated in two ways. Firstly they satisfy mutual
recurrences. Each adds the preceding rotated M.
M0[k+1] = M0[k] + M3[k] initially M0[0] = 1 (N=0 to N=1)
M1[k+1] = M1[k] + M0[k] M1[0] = 0
M2[k+1] = M2[k] + M1[k] M2[0] = 0
M3[k+1] = M3[k] + M2[k] M3[0] = 0
Geometrically this can be seen from the way each level extends by a copy of
the previous level rotated +90,
7---6---5 Easts in N=0 to 8
| | = Easts in N=0 to 4
8 4---3 + Wests in N=0 to 4
| since N=4 to N=8 is
2 the N=0 to N=4 rotated +90
|
0---1
For the bits in N, level k+1 introduces a new bit either 0 or 1. In M0[k+1]
the a 0-bit is count M0[k] the same direction, and when a 1-bit is M3[k]
since one less bit mod 4. Similarly the other counts.
Some substitutions give 3rd order recurrences
for k >= 4
M0[k] = 4*M0[k-1] - 6*M0[k-2] + 4*M0[k-3] initial 1,1,1,1
M1[k] = 4*M1[k-1] - 6*M1[k-2] + 4*M1[k-3] initial 0,1,2,3
M2[k] = 4*M2[k-1] - 6*M2[k-2] + 4*M2[k-3] initial 0,0,1,3
M3[k] = 4*M3[k-1] - 6*M3[k-2] + 4*M3[k-3] initial 0,0,0,1
=for Test-Pari-DEFINE M0rec(k) = if(k<4,1, 4*M0rec(k-1) - 6*M0rec(k-2) + 4*M0rec(k-3))
=for Test-Pari-DEFINE M1rec(k) = if(k<4,k, 4*M1rec(k-1) - 6*M1rec(k-2) + 4*M1rec(k-3))
=for Test-Pari-DEFINE M2rec(k) = if(k<2,0, if(k==2,1, if(k==3,3, 4*M2rec(k-1) - 6*M2rec(k-2) + 4*M2rec(k-3))))
=for Test-Pari-DEFINE M3rec(k) = if(k<3,0, if(k==3,1, 4*M3rec(k-1) - 6*M3rec(k-2) + 4*M3rec(k-3)))
=for Test-Pari vector(20,k,M0rec(k-1)) == vector(20,k,M0half(k-1))
=for Test-Pari vector(20,k,M1rec(k-1)) == vector(20,k,M1half(k-1))
=for Test-Pari vector(20,k,M2rec(k-1)) == vector(20,k,M2half(k-1))
=for Test-Pari vector(20,k,M3rec(k-1)) == vector(20,k,M3half(k-1))
The characteristic polynomial of these recurrences is
x^3 - 4x^2 + 6x - 4
= (x-2) * (x - (1-i)) * (x - (1+i))
=for Test-Pari x^3 - 4*x^2 + 6*x - 4 == (x-2)*(x^2 - 2*x + 2)
=for Test-Pari x^3 - 4*x^2 + 6*x - 4 == (x-2) * (x + (I-1)) * (x - (I+1))
So explicit formulas can be written in powers of the roots 2, 1-i and 1+i,
M0[k] = ( 2^k + (1-i)^k + (1+i)^k )/4 for k>=1
M1[k] = ( 2^k + i*(1-i)^k - i*(1+i)^k )/4
M2[k] = ( 2^k - (1-i)^k - (1+i)^k )/4
M3[k] = ( 2^k - i*(1-i)^k + i*(1+i)^k )/4
=for Test-Pari-DEFINE M0pow(k) = if(k==0,1, (1/4)*(2^k + (1-I)^k + (1+I)^k))
=for Test-Pari-DEFINE M1pow(k) = if(k==0,0, (1/4)*(2^k + I*(1-I)^k - I*(1+I)^k))
=for Test-Pari-DEFINE M2pow(k) = if(k==0,0, (1/4)*(2^k - (1-I)^k - (1+I)^k))
=for Test-Pari-DEFINE M3pow(k) = if(k==0,0, (1/4)*(2^k - I*(1-I)^k + I*(1+I)^k))
=for Test-Pari vector(50,k,M0pow(k-1)) == vector(50,k,M0half(k-1))
=for Test-Pari vector(50,k,M1pow(k-1)) == vector(50,k,M1half(k-1))
=for Test-Pari vector(50,k,M2pow(k-1)) == vector(50,k,M2half(k-1))
=for Test-Pari vector(50,k,M3pow(k-1)) == vector(50,k,M3half(k-1))
The complex numbers 1-i and 1+i are 45 degree lines clockwise and
anti-clockwise respectively. The powers turn them in opposite directions so
the imaginary parts always cancel out. The remaining real parts can be had
by a half power h=floor(k/2) which is the magnitude abs(1-i)=sqrt(2)
projected onto the real axis. The sign selector d(n) above is whether the
positive or negative part of the real axis, or zero when at the origin.
The second way to calculate is the combinatorial interpretation that per
L</Direction> above the direction is count_1_bits(N) mod 4 so East segments
are all N values with count_1_bits(N) == 0 mod 4, ie. N with 0, 4, 8, etc
many 1-bits. The number of ways to have those bit counts within total k
bits is k choose 0, 4, 8 etc.
M0[k] = /k\ + /k\ + ... + / k\ m = floor(k/4)
\0/ \4/ \4m/
M1[k] = /k\ + /k\ + ... + / k \ m = floor((k-1)/4)
\1/ \5/ \4m+1/
M2[k] = /k\ + /k\ + ... + / k \ m = floor((k-2)/4)
\2/ \6/ \4m+2/
M3[k] = /k\ + /k\ + ... + / k \ m = floor((k-3)/4)
\3/ \7/ \4m+3/
=for Test-Pari-DEFINE M0sum(k) = sum(i=0,floor(k/4), binomial(k, 4*i))
=for Test-Pari-DEFINE M1sum(k) = sum(i=0,floor(k/4), binomial(k, 4*i+1))
=for Test-Pari-DEFINE M2sum(k) = sum(i=0,floor(k/4), binomial(k, 4*i+2))
=for Test-Pari-DEFINE M3sum(k) = sum(i=0,floor(k/4), binomial(k, 4*i+3))
=for Test-Pari vector(length(M0samples),k,M0sum(k-1)) == M0samples
=for Test-Pari vector(length(M1samples),k,M1sum(k-1)) == M1samples
=for Test-Pari vector(length(M2samples),k,M2sum(k-1)) == M2samples
=for Test-Pari vector(length(M3samples),k,M3sum(k-1)) == M3samples
The power forms above are cases of the identity by Ramus for sums of
binomial coefficients in arithmetic progression like this. (See Knuth
volume 1 section 1.2.6 exercise 30 for a form with cosines resulting from
w=i+1 as 8th roots of unity.)
The total M0+M1+M2+M3=2^k is the total binomials across a row of Pascal's
triangle.
/k\ + /k\ + ... + /k\ = 2^k
\0/ \1/ \k/
It's interesting to note the M counts here are the same in the dragon curve
(L<Math::PlanePath::DragonCurve>). The shapes of the curves are different
since the segments are in a different order, but the total puts points N=2^k
at the same X,Y position.
=cut
# cf.
# J. Konvalina, Y.-H. Liu, Arithmetic progression sums of binomial
# coefficients, Appl. Math. Lett., 10(4), 11-13 (1997).
# ((1+I)^k + (1-I)^k)/2^floor(k/2) = [2, 2, 0, -2, -2, -2, 0, 2, ]
# M3[k] = M0[k+1] - M0[k]
# = 2^(k+1) - 2^k (1-i)^(k+1) - (1-i)^k (1+i)^(k+1) - (1+i)^k
# = 2^k (1-i - 1)*(1+i)^k (1+i - 1)*(1+i)^k
# = 2^k (-i)*(1+i)^k (i)*(1+i)^k
# M2[k] = M3[k+1] - M3[k]
# = 2^k (-i)*(-i)*(1+i)^k (i)*(i)*(1+i)^k
# = 2^k - (1+i)^k - (1+i)^k
# M2[k] = M3[k+1] - M3[k]
# = 2^k (-i)*(-i)*(-i)*(1+i)^k (i)*(i)*(i)*(1+i)^k
# = 2^k + i*(1+i)^k - i*(1+i)^k
# S[k] = a*2^k + (c+di)*(1-i)^k + (e+fi)*(1+i)^k
# a*2^0 + (c+di)*(1-i)^0 + (e+fi)*(1+i)^0 = 1
# a + (c+di) + (e+fi) = 1
# a + c + e = 1
# + d + f = 0
# a*2^1 + (c+di)*(1-i)^1 + (e+fi)*(1+i)^1 = 1
# a*2 + (c+di)*(1-i) + (e+fi)*(1+i) = 1
# 2a + d - f = 1
# - c + e = 0
# a*2^2 + (c+di)*(1-i)^2 + (e+fi)*(1+i)^2 = 1
# a*4 + (c+di)*-2i + (e+fi)*2i = 1
# 4a + 2d - 2f = 1
# 4b - 2c + 2e = 0
# matsolve([1,1,1; 2,1,1; 4,2,-2]; [1,1,1])
# a*2 + b*(1-i) + c*(1+i) = 1
# 2a + (1-i)b + (1+i)c = 1
# a*4 + b*-2i + c*2i = 1 4a + -2ib + 2ic = 1
# b=c a=1/4 b=c=3/8
=pod
=head2 Right Boundary
The length of the right-side boundary of the curve, which is the outside of
the "C", from N=0 to N=2^k is
R[k] = / 7*2^h - 2k - 6 if k even
\ 10*2^h - 2k - 6 if k odd
where h = floor(k/2)
= 1, 2, 4, 8, 14, 24, 38, 60, 90, 136, 198, 292, 418, ...
R[k] = (7/2 + 5/2 * sqrt(2)) * ( sqrt(2))^k
+ (7/2 - 5/2 * sqrt(2)) * (-sqrt(2))^k
- 2*k - 6
R[k] = 2*R[k-1] + R[k-2] - 4*R[k-3] + 2*R[k-4]
=for Test-Pari-DEFINE Rsamples = [1, 2, 4, 8, 14, 24, 38, 60, 90, 136, 198, 292, 418]
=for Test-Pari-DEFINE Rcases(k)=if(k%2,10,7)*2^floor(k/2) - 2*k - 6
=for Test-Pari vector(length(Rsamples), k, Rcases(k-1)) == Rsamples
=for Test-Pari-DEFINE Rrec(k)=if(k<4,Rsamples[k+1], 2*Rrec(k-1) + Rrec(k-2) - 4*Rrec(k-3) + 2*Rrec(k-4))
=for Test-Pari vector(length(Rsamples), k, Rrec(k-1)) == Rsamples
=for Test-Pari-DEFINE nearint(x)=if(abs(x-round(x)) < 0.000001, round(x), x)
=for Test-Pari-DEFINE Rpow(k)=nearint( (7/2 + 5/2 * sqrt(2))*( sqrt(2))^k + (7/2 - 5/2 * sqrt(2))*(-sqrt(2))^k ) - 2*k - 6
=for Test-Pari vector(length(Rsamples), k, Rpow(k-1)) == Rsamples
=cut
# R[2k] = (7/2 + 5/2 * sqrt(2))*( sqrt(2))^(2k)
# + (7/2 - 5/2 * sqrt(2))*(-sqrt(2))^(2k)
# = (7/2 + 5/2 * sqrt(2))*2^k
# + (7/2 - 5/2 * sqrt(2))*2^k
# = 2*7/2*2^k
# = 7*2^k
#
# R[2k+1] = (7/2 + 5/2 * sqrt(2))*( sqrt(2))^(2k)
# + (7/2 - 5/2 * sqrt(2))*(-sqrt(2))^(2k)
# = (7/2 + 5/2 * sqrt(2))*2^k*sqrt(2)
# + (7/2 - 5/2 * sqrt(2))*2^k*-sqrt(2)
# = (7/2*sqrt(2) + 5/2 * sqrt(2)*sqrt(2))*2^k
# + (7/2*-sqrt(2) - 5/2 * sqrt(2)*-sqrt(2))*2^k
# = (7/2*sqrt(2) + 5/2 * 2)*2^k
# + (7/2*-sqrt(2) + 5/2 * 2)*2^k
# = (5/2 * 2)*2^k * 2
# = 10*2^k
=pod
The length doubles until R[4]=14 which is points N=0 to N=2^4=16. At k=4
the points N=7,8,9 have turned inward and closed off some of the outside of
the curve so the boundary less than 2x.
11--10--9,7--6--5 right boundary
| | | around "outside"
13--12 8 4--3 N=0 to N=2^4=16
| |
14 2 R[4]=14
| |
15--16 0--1
The floor(k/2) and odd/even cases are eliminated by the +/-sqrt(2) powering
shown. Those powers are also per the characteristic equation of the
recurrence,
x^4 - 2*X^3 - x^2 + 4*x - 2
= (x - 1)^2 * (x + sqrt(2)) * (x - sqrt(2))
roots 1, sqrt(2), -sqrt(2)
The right boundary comprises runs of straight lines and zig-zags. When it
expands the straight lines become zig-zags and the zig-zags become straight
lines. The straight lines all point "forward", which is anti-clockwise.
c * a
/ ^ / ^ / ^
=> v \ v \ v \
D<----C<----B<----A D C B A
| ^ / ^
v | v \
straight S=3 zig-zag Z[k+1] = 2S[k]-2 = 4
The count Z here is both sides of each "V" shape from points "a" through to
"c". So Z counts the boundary length (rather than the number of "V"s).
Each S becomes an upward peak. The first and last side of those peaks
become part of the following "straight" section (at A and D), hence
Z[k+1]=2*S[k]-2.
The zigzags all point "forward" too. When they expand they close off the V
shape and become 2 straight lines for each V, which means 1 straight line
for each Z side. The segment immediately before and after contribute a
segment to the resulting straight run too, hence S[k+1]=Z[k]+2.
C B A *<---C<---*<---B<---*<---A<---*
/ ^ / ^ / ^ | | | |
v \ v \ v \ => | | | |
* * * * <--* * * *<--
/ ^
v \
zig-zag Z=4 segments straight S[k+1] = Z[k]+2 = 6
The initial N=0 to N=1 is a single straight segment S[0]=1 and from there
the runs grow. N=1 to N=3 is a straight section S[1]=2. Z[0]=0 represents
an empty zigzag at N=1. Z[1] is the first non-empty at N=3 to N=5.
h S[h] Z[h] Z[h] = 2*S[h]-2
-- ---- ---- S[h+1] = Z[h]+2
0 1 0
1 2 2 S[h+1] = 2*S[h]-2+2 = 2*S[h]
2 4 6 so
3 8 14 S[h] = 2^h
4 16 30 Z[h] = 2*2^h-2
5 32 62
5 64 126
The curve N=0 to N=2^k is symmetric at each end and is made up of runs S[0],
Z[0], S[1], Z[1], etc, of straight and zigzag alternately at each end. When
k is even there's a single copy of a middle S[k/2]. When k is odd there's a
single middle Z[(k-1)/2] (with an S[(k-1)/2] before and after). So
/ i=h-1 \ # where h = floor(k/2)
R[k] = 2 * | sum S[i]+Z[i] |
\ i=0 /
+ S[h]
+ / S[h]+Z[h] if k odd
\ 0 if k even
= 2*( 1+2+4+...+2^(h-1) # S[0] to S[h-1]
+ 2+4+8+...+2^h - 2*h) # Z[0] to Z[h-1]
+ 2^h # S[h]
+ if k odd (2^h + 2*2^h - 2) # possible S[h]+Z[h]
= 2*(2^h-1 + 2*2^h-2 - 2h) + 2^h + (k odd 3*2^h - 2)
= 7*2^h - 4h-6 + (if k odd then + 3*2^h - 2)
= 7*2^h - 2k-6 + (if k odd then + 3*2^h)
=head2 Convex Hull Boundary
A convex hull is the smallest convex polygon which contains a given set of
points. For the C curve the boundary length of the convex hull for points
N=0 to N=2^k inclusive is
hull boundary[k]
/ 2 if k=0
| 2+sqrt(2) if k=1
= | 6 if k=2
| 6*2^(h-1) + (7*2^(h-1) - 4)*sqrt(2) if k odd >=3
\ 7*2^(h-1) + (3*2^(h-1) - 4)*sqrt(2) if k even >=4
where h = floor(k/2)
k hull boundary
--- ----------------------------
0 2 + 0 * sqrt(2) = 2
1 2 + 1 * sqrt(2) = 3.41
2 6 + 0 * sqrt(2) = 6
3 6 + 3 * sqrt(2) = 10.24
4 14 + 2 * sqrt(2) = 16.82
5 12 + 10 * sqrt(2) = 26.14
6 28 + 8 * sqrt(2) = 39.31
7 24 + 24 * sqrt(2) = 57.94
8 56 + 20 * sqrt(2) = 84.28
9 48 + 52 * sqrt(2) = 121.53
The integer part is the straight sides of the hull and the sqrt(2) part is
the diagonal sides of the hull.
When k is even the hull has the following shape. The sides are as per the
right boundary above but after Z[h-2] the curl goes inwards and so parts
beyond Z[h-2] are not part of the hull. Each Z stair-step diagonal becomes
a sqrt(2) length for the hull. Z counts both vertical and horizontal of
each stairstep, hence sqrt(2)*Z/2 for the hull boundary.
S[h]
*--------* * Z=2
Z[h-1] / \ Z[h-1] | \ diagonal
/ \ | \ sqrt(2)*Z/2
* * *----* = sqrt(2)
S[h-1] | | S[h-1]
| |
* *
Z[h-2] \ / Z[h-2]
*-- --*
S[h] + Z[h-2]-Z[h-1]
k even
hull boundary[k] = S[h] + 2*S[h-1] + S[h+Z[h-2]-Z[h-1]
+ sqrt(2)*(2*Z[h-1] + 2*Z[h-2])/2
When k is odd the shape is similar but Z[h] in the middle.
S[h]
*----*
Z[h-1] / \ middle
* \ Z[h]
S[h-1] | \
* *
\ | S[h]
Z[h] |
+ 2*(S[h]-S[h-1]) *
\ / Z[h-1]
*---*
S[h-1]
k odd
hull boundary[k] = 2*S[h] + 2*S[h-1]
+ sqrt(2)*(Z[h]/2 + 2*Z[h-1]/2
+ Z[h]/2 + S[h]-S[h-1]
=head2 Convex Hull Area
The area of the convex hull for points N=0 to N=2^k inclusive is
/ 0 if k=0
| 1/2 if k=1
HA[k] = | 2 if k=2
| 35*2^(k-4) - 13*2^(h-1) + 2 if k odd >=3
\ 35*2^(k-4) - 10*2^(h-1) + 2 if k even >=4
where h = floor(k/2)
= 0, 1/2, 2, 13/2, 17, 46, 102, 230, 482, 1018, 2082, 4274, ...
HA[1] and HA[3] are fractions but all others are integers.
The area can be calculated from the shapes shown for the hull boundary
above. For k odd it can be noted the width and height are equal, then the
various corners are cut off.
=head2 Line Points
The number of points which fall on straight and diagonal lines from the
endpoints can be calculated by considering how the previous level duplicates
to make the next.
d d
c \ / c
b | + | b
\ | / \ | / curve endpoints
\ | / \ | / "S" start
\|/ \|/ "E" end
a------E---e---S------a
/|\ /|\
/ | \ / | \
/ | f f | \
h g g h
The curve is rotated to make the endpoints horizontal. Each "a" through "h"
is the number of points which fall on the respective line. The curve is
symmetric in left to right so the line counts are the same each side in
mirror image.
"S" start and "E" end points are not included in any of the counts. "e" is
the count in between S and E. The two "d" lines meet at point "+" and that
point is counted in d. That point is where two previous level curves meet
for kE<gt>=1. Points are visited up to 4 times (per L</Repeated Points>
above) and all those multiple visits are counted.
The following diagram shows how curve level k+1 is made from two level k
curves. One is from S to M and another M to E.
|\ /| curve level k copies
| \ / | S to M and M to E
| c+a c+a | making curve k+1 S to E
| \|/ |
\ | --M-- | /
\ | /|\ | c a[k+1] = b[k]
c d e+g e+g d / b[k+1] = c[k]
\ | / \ | / c[k+1] = d[k]
\|/ \|/ d[k+1] = a[k]+c[k] + e[k]+g[k] + 1
b-------E--f---f--S-------b e[k+1] = 2*f[k]
/|\ /|\ f[k+1] = g[k]
a | g g | a g[k+1] = h[k]
/ h \ / h \ h[k+1] = a[k]
/ | \ / | \
/ | | \
For example the line S to M is an e[k], but also the M to E contributes a
g[k] on that same line so e+g. Similarly c[k] and a[k] on the outer sides
of M. Point M itself is visited too so the grand total for d[k+1] is
a+c+e+g+1. The other lines are simpler, being just rotations except for the
middle line e[k+1] which is made of two f[k].
The successive g[k+1]=h[k]=a[k-1]=b[k-2]=c[k-3]=d[k-4] can be substituted
into the d to give a recurrence
d[k+1] = d[k-1] + d[k-3] + d[k-5] + 2*d[k-7] + 1
= 0,1,1,2,2,4,4,8,8,17,17,34,34,68,68,136,136,273,273,...
x + x^2
generating function -------------------
(1-2*x^2) * (1-x^8)
=for Test-Pari-DEFINE gd(x)=(x+x^2) / ( (1-2*x^2)*(1-x^8) )
=for Test-Pari gd(x) == (x+x^2) / ( (1-x^2)*(1+x^2)*(1-2*x^2)*(1+x^4) )
=for Test-Pari Vec(gd(x) - O(x^19)) == [1,1,2,2,4,4,8,8,17,17,34,34,68,68,136,136,273,273] /* sans initial 0s */
The recurrence begins with the single segment N=0 to N=1 and the two
endpoints are not included so initial all zeros a[0]=...=h[0]=0.
As an example, the N=0 to N=64 picture above is level k=6 and its "d" line
relative to those endpoints is the South-West diagonal down from N=0. The
points on that line are N=32,30,40,42 giving d[6]=4.
All the measures are relative to the endpoint direction. The points on the
fixed X or Y axis or diagonal can be found by taking the appropriate a
through h, or sum of two of them for both positive and negative of a
direction.
=head2 Triangle Areas in Regions
Consider a little right triangle with hypotenuse on each line segment (the
same as in L</Tiling> above) and the way it becomes two triangles on
replicating
* *
1 triangle 2 triangles / \ / \ 4 triangles
*---M---*
* *--M--* /| |\
/ \ => | / \ | => * | | *
/ \ |/ \| \| |/
E-----S E S E E
Consider the triangles which fall within the following regions a,b,c,...,i.
The line from start "S" to end "E" is rotated as necessary to be horizontal.
*-------*
/|\ a /|\
/ | \ / | \
/ | \ / | \
* b | c M c | b *
/ \ | / \ | / \ next c[2] = 1
/ \ | / \ | / \ b[2] = 1
/ d \|/ e \|/ d \
*-------E-------S-------* always
\ f /|\ g /|\ f /
\ / | \ / | \ /
\ / | \ / | \ /
* h | i * i | h *
\ | / \ | /
\ | / \ | /
\|/ \|/
* *
The curve is symmetric in horizontal mirror image so there are two "b"
regions, two "c" regions, etc, one on each side.
The initial triangle is e[0]=1. On expanding to S,M,E shown above there are
then 2 triangles, 1 in each of the two "c" regions, giving c[1]=1. The
third expansion keeps 2 triangles in "c" and pushes 2 triangles into "b" for
c[2]=1 and b[2]=1. In all cases the total is the power-of-2 doubling, hence
sum
a[k] + 2*b[k] + 2*c[k] + 2*d[k] + e[k]
+ 2*f[k] + g[k] + 2*h[k] + 2*i[k] = 2^k
Level k+1 can be calculated by considering two level k, one from S to M and
another from M to E. The following shows how those two previous levels fall
within the regions of the k+1 level,
left side, M to E right side, S to M
*---------* *---------*
/|\ | /|\ /|\ | /|\
/ | \b | d/ | \ / | \ d|b / | \
/ | \ / | \ / | \ / | \
/ a | c \ / f | \ / | f \ / c | a \
*--- | ---M-- | --* *--- | ---M-- | --*
/ \ c | e / \ h | / \ / \ | h / \ e | c / \
/ \ | / \ | / \ / \ | / \ | / \
/ |b \ | / g|i \ | / | \ / | \ | / i|g \ | / b| \
/ | \|/ | \|/ | \ / | \|/ | \|/ | \
*---------E---------S---------* *---------E---------S---------*
\ | /|\ | /|\ | / \ | /|\ | /|\ | /
\ |d / | \ i| / | \ | / \ | / | \ |i / | \ d| /
\ / | \ / | \ / \ / | \ / | \ /
\ / f | h \ / | \ / \ / | \ / h | f \ /
*-- | --*-- | --* *-- | --*-- | --*
\ | / \ | / \ | / \ | /
\ | / \ | / \ | / \ | /
\ | / \ | / \ | / \ | /
\|/ \|/ \|/ \|/
* * * *
For example the top-most "a" triangle gets b[k]+d[k] triangles from the M to
E on the left, plus d[k]+b[k] triangles from S to M on the right, for total
a[k+1] = 2*b[k] + 2*d[k]. The recurrences are
=cut
# It can be seen there is nothing in the outer half of the "d" and "f" regions
# and the lower halves of "h" and "i". That is per the level extents
=pod
starting
a[k+1] = 2*b[k] + 2*d[k] a[0] = 0
b[k+1] = a[k] + c[k] b[0] = 0
c[k+1] = c[k] + e[k] + f[k] + h[k] c[0] = 0
d[k+1] = b[k] d[0] = 0
e[k+1] = 2*g[k] + 2*i[k] e[0] = 1
f[k+1] = d[k] f[0] = 0
g[k+1] = 2*i[k] g[0] = 0
h[k+1] = f[k] h[0] = 0
i[k+1] = h[k] i[0] = 0
These equations are not independent since a[k+1] can be written in terms of
d[k+1] and f[k+1]
a[k+1] = 2*b[k] + 2*d[k]
a[k+1] = 2*d[k+1] + 2*f[k+1]
The initial values a[0]=0, d[0]=0 and f[0]=0 also satisfy this, so
a[k]=2*d[k]+2*f[k] for kE<gt>=0. Substituting into the equation for b[k+1]
eliminates a[k].
b[k+1] = c[k] + 2*d[k] + 2*f[k] k>=0
This leaves 8 equations in 8 unknowns and a little linear algebra gives 8th
order recurrences for each region individually. The centre e is
e[k+8] = e[k+7] + 2*e[k+6] - e[k+4] + e[k+3] + 2*e[k+1] + 4*e[k]
= 1,0,0,0, 0,0,0,2, 6, 10, 22, 40, 80, 156, 308, 622, 1242, ...
1 - x - 2*x^2 + x^4 - x^5
generating function -----------------------------------------
1 - x - 2*x^2 + x^4 - x^5 - 2*x^7 - 4*x^8
=for Test-Pari-DEFINE Etsamples = [1,0,0,0,0,0,0,2,6,10,22,40,80,156,308,622,1242,2494,4994,9988,19988,39952,79904,159786]
=for Test-Pari-DEFINE Et_rec(k) = if(k<8,Etsamples[k+1], Et_rec(k-1) + 2*Et_rec(k-2) - Et_rec(k-4) + Et_rec(k-5) + 2*Et_rec(k-7) + 4*Et_rec(k-8))
=for Test-Pari vector(length(Etsamples), k, Et_rec(k-1)) == Etsamples
=for Test-Pari-DEFINE gEt(x) = (1 - x - 2*x^2 + x^4 - x^5) / (1 - x - 2*x^2 + x^4 - x^5 - 2*x^7 - 4*x^8)
=for Test-Pari Vec(gEt(x) - O(x^24)) == Etsamples
The recurrence is the same form for each a through i, just different initial
values
initial values further values
----------------- --------------
a 0,0,0,2,4,8,16,30, 60,116,232,466,932,1872,3744,7494,
c 0,1,1,1,1,2, 4, 8, 18, 39, 79,159,315, 628,1250,2494,
e 1,0,0,0,0,0, 0, 2, 6, 10, 22, 40, 80, 156, 308, 622,
g 0,0,0,0,0,0, 0, 2, 2, 6, 10, 20, 40, 76, 156, 310,
b 0,0,1,1,3,5,10,20, 38,78,155,311,
d 0,0,0,1,1,3, 5,10, 20,38, 78,155,311,
f 0,0,0,0,1,1, 3, 5, 10,20, 38, 78,155,311,
h 0,0,0,0,0,1, 1, 3, 5,10, 20, 38, 78,155,311,
i 0,0,0,0,0,0, 1, 1, 3, 5, 10, 20, 38, 78,155,311
The values for b through i are the same, just starting one position later
each time. This is the spiralling out by 45 degrees each time and per the
successive equations above.
i[k+1] = h[k] = f[k-1] = d[k-2] = b[k-3]
=for Test-Pari-DEFINE Btsamples = [0,0,1,1,3,5,10,20, 38,78,155,311]
=for Test-Pari-DEFINE Bt_rec(k) = if(k<1,0, if(k==2, 1, Bt_rec(k-1) + 2*Bt_rec(k-2) - Bt_rec(k-4) + Bt_rec(k-5) + 2*Bt_rec(k-7) + 4*Bt_rec(k-8)))
=for Test-Pari vector(length(Btsamples), k, Bt_rec(k-1)) == Btsamples
=for Test-Pari-DEFINE gBt(x) = x^2 / (1 - x - 2*x^2 + x^4 - x^5 - 2*x^7 - 4*x^8)
=for Test-Pari Vec(gBt(x) - O(x^12)) == vecextract(Btsamples,"3..") /* no leading zeros from Vec() */
The recurrence for these can be started from a single initial "1" and
treating preceding values (including some negative indices) as "0". The
generating function for these have a single term in numerator. For example
the generating function for "b",
x^2
gb(x) = -----------------------------------------
1 - x - 2*x^2 + x^4 - x^5 - 2*x^7 - 4*x^8
=cut
/* b c d e f g h i */
m = \
[ 0, 1, 2, 0, 2, 0, 0, 0 ; \
0, 1, 0, 1, 1, 0, 1, 0 ; \
1, 0, 0, 0, 0, 0, 0, 0 ; \
0, 0, 0, 0, 0, 2, 0, 2 ; \
0, 0, 1, 0, 0, 0, 0, 0 ; \
0, 0, 0, 0, 0, 0, 0, 2 ; \
0, 0, 0, 0, 1, 0, 0, 0 ; \
0, 0, 0, 0, 0, 0, 1, 0 ]
matdet(m)
/* select a[k] */
A = [ 0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0; \
0,0,0,0,0,1,0,0 ]
/* shift upwards */
r = [ 0,1,0,0,0,0,0,0; \
0,0,1,0,0,0,0,0; \
0,0,0,1,0,0,0,0; \
0,0,0,0,1,0,0,0; \
0,0,0,0,0,1,0,0; \
0,0,0,0,0,0,1,0; \
0,0,0,0,0,0,0,1; \
0,0,0,0,0,0,0,0 ]
p = sum(i=0,7, r^i*A*m^i)
p*m*p^-1
b = [1 2 0 -1 1 0 2 4]
c = [1 2 0 -1 1 0 2 4]
d = [1 2 0 -1 1 0 2 4]
e = [1 2 0 -1 1 0 2 4]
g = [1 2 0 -1 1 0 2 4]
# i[1]=h[0]=f[-1]=d[-2]=b[-3]
#
/* a b c d e f g h i */
m = \
[ 0, 2, 0, 2, 0, 0, 0, 0, 0 ; \
1, 0, 1, 0, 0, 0, 0, 0, 0 ; \
0, 0, 1, 0, 1, 1, 0, 1, 0 ; \
0, 1, 0, 0, 0, 0, 0, 0, 0 ; \
0, 0, 0, 0, 0, 0, 2, 0, 2 ; \
0, 0, 0, 1, 0, 0, 0, 0, 0 ; \
0, 0, 0, 0, 0, 0, 0, 0, 2 ; \
0, 0, 0, 0, 0, 1, 0, 0, 0 ; \
0, 0, 0, 0, 0, 0, 0, 1, 0 ]
matdet(m) == 0
matdet(p)
p*m*p^-1
# (a[k+1];...;i[k+1]) = m*(a[k+1];...;i[k+1])
#
# (e[k];0;...;0) = E*(a[k+1];...;i[k+1])
# (0;e[k+1];0;...;0) = r*E*m*(a[k];...;i[k])
#
# (e[k];e[k+1];...;e[k+8]) = p*(a[k];...;i[k])
# (e[k+1];e[k+2];...;e[k+9]) = p*m*(a[k];...;i[k])
# (e[k+1];e[k+2];...;e[k+9]) = p*m*p^-1*(e[k];e[k+1];...;e[k+8])
# p*[0;0;0;0;1;0;0;0;0] = [1; 0; 0; 0; 0; 0; 0; 2; 6]
p*m*p^-1 = [0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]
[0 4 2 0 1 -1 0 2 1]
e[k+9] = + e[k+8] + 2*e[k+7] - e[k+5] + e[k+4] + 2*e[k+2] + 4*e[k+1]
e[k+8] = + e[k+7] + 2*e[k+6] - e[k+4] + e[k+3] + 2*e[k+1] + 4*e[k]
for(i=0;20;print1((p*m*p^-1)^i*[1;0;0;0;0;0;0;0;0],","))
B = [ 0,1,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0,0; \
0,0,0,0,0,0,0,0,0 ]
q = sum(i=0,8, r^i*B*m^i)
q*[0;0;0;0;1;0;0;0;0] = [0; 0; 1; 1; 3; 5; 10; 20; 38]
# b = 1,1,3,5,10,20,38,78,155,311,625
q*m*q^-1 =
# e[k+1] = 2*g[k] + 2*i[k]
# = 2*i[k-1] + 2*i[k]
# = 2*h[k-2] + 2*h[k-1]
# = 2*f[k-3] + 2*f[k-2]
# = 2*d[k-4] + 2*d[k-3]
# = 2*b[k-5] + 2*b[k-4]
# = 2*a[k-6] + 2*c[k-6] + 2*a[k-5]+ 2*c[k-5]
# e[1] = 2g[0] + 2i[0]
# = 4i[-1] + 2i[0]
# = 4b[-5] + 2b[-4]
# a[1] = 2d[0] + 2b[0]
# = 2b[-1] + 2b[0]
# b[1] = a[0] + c[0]
# = 2b[-2] + 2b[-1] + c[0]
# so c[0] = b[1] - 2b[-2] - 2b[-1]
# c[1] = c[0] + e[0] + f[0] + h[0]
# = c[0] + 4b[-6] + 2b[-5] + b[-2] + b[-3]
# b[2] - 2b[-1] - 2b[0] = b[1] - 2b[-2] - 2b[-1] + 4b[-6] + 2b[-5] + b[-2] + b[-3]
# b[2] = 2b[-1] + 2b[0] + b[1] - 2b[-2] - 2b[-1] + 4b[-6] + 2b[-5] + b[-2] + b[-3]
# b[2] = b[1] + 2b[0] + 0 - b[-2] + b[-3] + 0 + 2b[-5] + 4b[-6]
# b[0] = b[-1] + 2b[-2] + 0 - b[-4] + b[-5] + 0 + 2b[-7] + 4b[-8]
# for 625 upwards
# b = 1,1,3,5,10,20,38,78,155,311,625
# 4*1 + 2*3 + 0*5 + 10 - 20 + 0*38 + 2*78 + 155
# 4*3 + 2*5 + 0*10 + 20 - 38 + 0*78 + 2*155 + 311
# (-1)/(-1 + 1*x + 2*x^2 + 0*x^3 - x^4 + x^5 + 0*x^6 + 2*x^7 + 4*x^8)
=pod
=head2 Triangles in Parts as Fractal
For the curve as a fractal, the two sub-parts are two half size copies of
the whole, as if a[k]=a[k+1]/2 etc. This gives the following set of
equations,
a = 2*b/2 + 2*d/2
b = a/2 + c/2
c = c/2 + e/2 + f/2 + h/2
d = b/2
e = 2*g/2 + 2*i/2
f = d/2
g = 2*i/2
h = f/2
i = h/2
The total area is reckoned as 1,
a + 2*b + 2*c + 2*d + e + 2*f + g + 2*h + 2*i = 1
A little linear algebra gives the following solution,
a = 24/105 *-------*
b = 16/105 /|\ 24 /|\
c = 8/105 / | \ / | \
d = 8/105 / | \ / | \
e = 2/105 * 16| 8 * 8 |16 *
f = 4/105 / \ | / \ | / \
g = 1/105 / \ | / \ | / \
h = 2/105 / 8 \|/ 2 \|/ 8 \
i = 1/105 *-------E-------S-------*
----- \ 4 /|\ 1 /|\ 4 /
total 1 \ / | \ / | \ /
\ / | \ / | \ /
* 2 | 1 * 1 | 2 *
\ | / \ | /
\ | / \ | /
\|/ \|/
* *
This shows how much area of the fractal is in each respective region.
One use for this could be some gray-scale colouring at a limit of drawing
resolution. Replications to a desired level give triangles then those
triangles which are "on" can be drawn as gray spread out among its
neighbouring triangles in the pattern above. The total in a given triangle
would be all grays which go into that triangle. For square pixels the
triangles making up a square can be averaged (4 triangles at even
replication levels, 2 triangles at odd replication levels).
Triangles with total gray "1" are fully within the final fractal. The first
such does not arise until 14 expansions, as per Duvall and Keesling
reference below.
=cut
# det=0 unless the total a+...+i=1 equation is included
/* a b c d e f g h i */
m = \
[ 1, -2/2, 0, -2/2, 0, 0, 0, 0, 0 ; \
-1/2, 1, -1/2, 0, 0, 0, 0, 0, 0 ; \
0, 0, 1-1/2, 0, -1/2, -1/2, 0, -1/2, 0 ; \
0, -1/2, 0, 1, 0, 0, 0, 0, 0 ; \
0, 0, 0, 0, 1, 0, -2/2, 0, -2/2 ; \
0, 0, 0, -1/2, 0, 1, 0, 0, 0 ; \
0, 0, 0, 0, 0, 0, 1, 0, -2/2 ; \
0, 0, 0, 0, 0, -1/2, 0, 1, 0 ; \
0, 0, 0, 0, 0, 0, 0, -1/2, 1 ; \
1, 2, 2, 2, 1, 2, 1, 2, 2 ]
matsolve(m,[0;0;0;0;0;0;0;0;0;1])
# this one omitting i=h/2 line to make a square matrix
# the result i=1/105 and h=2/105 satisfies i=h/2
/* a b c d e f g h i */
m = \
[ 1, -2/2, 0, -2/2, 0, 0, 0, 0, 0 ; \
-1/2, 1, -1/2, 0, 0, 0, 0, 0, 0 ; \
0, 0, 1-1/2, 0, -1/2, -1/2, 0, -1/2, 0 ; \
0, -1/2, 0, 1, 0, 0, 0, 0, 0 ; \
0, 0, 0, 0, 1, 0, -2/2, 0, -2/2 ; \
0, 0, 0, -1/2, 0, 1, 0, 0, 0 ; \
0, 0, 0, 0, 0, 0, 1, 0, -2/2 ; \
0, 0, 0, 0, 0, -1/2, 0, 1, 0 ; \
1, 2, 2, 2, 1, 2, 1, 2, 2 ]
matsolve(m,[0;0;0;0;0;0;0;0;1])
=pod
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include
=over
L<http://oeis.org/A179868> (etc)
=back
A010059 abs(dX), count1bits(N) mod 2
A010060 abs(dY), count1bits(N)+1 mod 2, being Thue-Morse
A000120 direction, being total turn, count 1-bits
A179868 direction 0to3, count 1-bits mod 4
A035263 turn 0=straight or 180, 1=left or right,
being (count low 0-bits + 1) mod 2
A096268 next turn 1=straight or 180, 0=left or right,
being count low 1-bits mod 2
A007814 turn-1 to the right,
being count low 0-bits
A003159 N positions of left or right turn, ends even num 0 bits
A036554 N positions of straight or 180 turn, ends odd num 0 bits
A146559 X at N=2^k, being Re((i+1)^k)
A009545 Y at N=2^k, being Im((i+1)^k)
A131064 right boundary length to odd power N=2^(2k-1),
being 5*2^n-4n-4, skip initial 1
A027383 right boundary length differences
A038503 number of East segments in N=0 to N=2^k-1
A038504 number of North segments in N=0 to N=2^k-1
A038505 number of West segments in N=0 to N=2^k-1
A000749 number of South segments in N=0 to N=2^k-1
A191689 fractal dimension of the interior boundary
A191689 is the boundary of the fractal, which is not the same as the
boundary of the integer form here. When extended infinitely only some
points persist indefinitely when the expansion rule is applied repeatedly.
=over
P. Duvall and J. Keesling, "The Dimension of the Boundary of the
LE<233>vy Dragon", International Journal Math and Math Sci, volume 20,
number 4, 1997, pages 627-632. (Preprint "The Hausdorff Dimension of the
Boundary of the LE<233>vy Dragon" L<http://at.yorku.ca/p/a/a/h/08.htm>.)
=back
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::AlternatePaper>,
L<Math::PlanePath::KochCurve>
L<ccurve(6x)> back-end for L<xscreensaver(1)> which displays the C curve
(and various other dragon curve and Koch curves).
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|