This file is indexed.

/usr/share/perl5/Math/PlanePath/CCurve.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=CCurve --output=numbers_dash
#
# pos(2^et+r) = (i+1)^et + i*pos(r)
# N=2^e0+2^e1+...+2^e(t-1)+2^et  e0 high bit
# pos = (i+1)^e0 + i*(i+1)^e1 + ... + i^(t-1)*(i+1)^e(t-1) + i^t*(i+1)^et

# Levy, "Plane or space curves and surfaces consisting of parts similar to
# the whole".  In Edgar classics on fractals pp 181-239.
# "Les courbes planes ou gauches et les surfaces composée de parties semblales au tout,"
# Journal de l'École Polytechnique, 1938, 227-247,

# Agnes Benedek and Rafael Panzone, "Sobre Algunos Notables Conjuntos
# Planos, I. La Curva de Lévy", Anales Academia Nacional de Ciencias
# Exactas, Físicas y Naturales, volume 46, 1994
# # http://www.ancefn.org.ar/old/biblioteca/base_de_datos/tomo46.html
# # (table of contents only)

# cf maybe
# Agnes Benedek and Rafael Panzone
# "Tessellations associated with number systems",
# volume 53, 2001, pages 61-64
# Notas de Contenido:Trabajo presentado con motivo de la enrega del premio
# "Orlando Villamayor" en Matemática, a la Dra. Agnes I. Benedek, el día 10
# noviembre de 2000.
# # www.ancefn.org.ar/old/biblioteca/base_de_datos/tomo53.html
# # (table of contents)

# * Bailey, Kim, Strichartz, "Inside the Levy Dragon", American Mathematical
#   Monthly, volume 109, 2002, pages 689-703
#   http://www.jstor.org/stable/3072395
#   http://www.mathlab.cornell.edu/twk6
#   http://www.mathlab.cornell.edu/%7Etwk6/program.html

# * Alster, The finite number of interior, Discrete Comput Geom, volume 43,
#   2010,
#   http://rd.springer.com/article/10.1007/s00454-009-9211-1 pay

# 6809 assembler, recursive
# http://www.retroprogramming.com/2013/08/zx-spectrum-koch-levy-c-curve.html
# https://archive.org/details/your-sinclair-92
# August 1983 pages 16-17 bytes poked into memory.

# V. E. Hoggatt, Jr. and G. L. Alexanderson, "Sums of Partition Sets in
# Generalized Pascal Triangles I", Fibonacci Quarterly, volume 14, number 2,
# April 1976, pages 117-125.
# http://fq.math.ca/14-2.html
# http://fq.math.ca/Scanned/14-2/hoggatt1.pdf  1.6mb

# Chr. Ramus, "Solution generale d'un probleme d'analyse combinatoire,"
# J. Reine Angew. Math. (Crelle's journal), volume 11, 1834, pages 353-355.
# <a href="http://gdz.sub.uni-goettingen.de/en/dms/load/toc/?PPN=PPN243919689_0011">goettingen</a>
# <a href="http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=C43AA7558C10AD9464E14AC5E86110F7?cid=5285697">citeseer</a>
#
# cf. E. Netto, Lehrbuch der Combinetorik, 2nd ed., Teubner, Berlin, 1927.


package Math::PlanePath::CCurve;
use 5.004;
use strict;
use List::Util 'min','max','sum';

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'bit_split_lowtohigh',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::KochCurve;
*_digit_join_hightolow = \&Math::PlanePath::KochCurve::_digit_join_hightolow;

# uncomment this to run the ### lines
# use Smart::Comments;


# Not sure about this yet ... 2 or 4 ?
# use constant parameter_info_array => [ { name      => 'arms',
#                                          share_key => 'arms_2',
#                                          display   => 'Arms',
#                                          type      => 'integer',
#                                          minimum   => 1,
#                                          maximum   => 2,
#                                          default   => 1,
#                                          width     => 1,
#                                          description => 'Arms',
#                                        } ];

use constant n_start => 0;
use constant x_negative_at_n => 6;
use constant y_negative_at_n => 22;
use constant _UNDOCUMENTED__dxdy_list_at_n => 7;


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(2, $self->{'arms'} || 1));
  return $self;
}


sub n_to_xy {
  my ($self, $n) = @_;
  ### CCurve n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $zero = ($n * 0);  # inherit bignum 0
  my $x = $zero;
  my $y = $zero;
  {
    my $int = int($n);
    $x = $n - $int;  # inherit possible BigFloat
    $n = $int;        # BigFloat int() gives BigInt, use that
  }

  # initial rotation from arm number $n mod $arms
  my $rot = _divrem_mutate ($n, $self->{'arms'});

  my $len = $zero+1;
  foreach my $digit (digit_split_lowtohigh($n,4)) {
    ### $digit

    if ($digit == 0) {
      ($x,$y) = ($y,-$x);    # rotate -90
    } elsif ($digit == 1) {
      $y -= $len;            # at Y=-len
    } elsif ($digit == 2) {
      $x += $len;            # at X=len,Y=-len
      $y -= $len;
    } else {
      ### assert: $digit == 3
      ($x,$y) = (2*$len - $y,  # at X=2len,Y=-len and rotate +90
                 $x-$len);
    }
    $rot++; # to keep initial direction
    $len *= 2;
  }

  if ($rot & 2) {
    $x = -$x;
    $y = -$y;
  }
  if ($rot & 1) {
    ($x,$y) = (-$y,$x);
  }

  ### final: "$x,$y"
  return ($x,$y);
}

# point N=2^(2k) at XorY=+/-2^k  radius 2^k
#       N=2^(2k-1) at X=Y=+/-2^(k-1) radius sqrt(2)*2^(k-1)
# radius = sqrt(2^level)
# R(l)-R(l-1) = sqrt(2^level) - sqrt(2^(level-1))
#             = sqrt(2^level) * (1 - 1/sqrt(2))
# about 0.29289

# len=1 extent of lower level 0
# len=4 extent of lower level 2
# len=8 extent of lower level 4+1 = 5
# len=16 extent of lower level 8+3
# len/2 + len/4-1

my @digit_to_rot = (-1, 1, 0, 1);
my @dir4_to_dsdd = ([1,-1],[1,1],[-1,1],[-1,-1]);

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### CCurve xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);
  my $zero = $x*0*$y;

  ($x,$y) = ($x + $y, $y - $x);  # sum and diff
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }

  my @n_list;
  foreach my $dsdd (@dir4_to_dsdd) {
    my ($ds,$dd) = @$dsdd;
    ### attempt: "ds=$ds  dd=$dd"
    my $s = $x;  # sum X+Y
    my $d = $y;  # diff Y-X
    my @nbits;

    until ($s >= -1 && $s <= 1 && $d >= -1 && $d <= 1) {
      ### at: "s=$s, d=$d   nbits=".join('',reverse @nbits)
      my $bit = $s % 2;
      push @nbits, $bit;
      if ($bit) {
        $s -= $ds;
        $d -= $dd;
        ($ds,$dd) = ($dd,-$ds); # rotate -90
      }

      # divide 1/(1+i) = (1-i)/(1^2 - i^2)
      #                = (1-i)/2
      # so multiply (s + i*d) * (1-i)/2
      #   s = (s + d)/2
      #   d = (d - s)/2
      #
      ### assert: (($s+$d)%2)==0

      # this form avoids overflow near DBL_MAX
      my $odd = $s % 2;
      $s -= $odd;
      $d -= $odd;
      $s /= 2;
      $d /= 2;
      ($s,$d) = ($s+$d+$odd, $d-$s);
    }

    # five final positions
    #      .   0,1   .       ds,dd
    #           |
    #    -1,0--0,0--1,0
    #           |
    #      .   0,-1  .
    #
    ### end: "s=$s d=$d  ds=$ds dd=$dd"

    # last step must be East dx=1,dy=0
    unless ($ds == 1 && $dd == -1) { next; }

    if ($s == $ds && $d == $dd) {
      push @nbits, 1;
    } elsif ($s != 0 || $d != 0) {
      next;
    }
    # ended s=0,d=0 or s=ds,d=dd, found an N
    push @n_list, digit_join_lowtohigh(\@nbits, 2, $zero);
    ### found N: "$n_list[-1]"
  }
  ### @n_list
  return sort {$a<=>$b} @n_list;
}

# f = (1 - 1/sqrt(2) = .292
# 1/f = 3.41
# N = 2^level
# Rend = sqrt(2)^level
# Rmin = Rend / 2  maybe
# Rmin^2 = (2^level)/4
# N = 4 * Rmin^2
#
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### CCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  my ($len,$level) = _rect_to_k ($x1,$y1, $x2,$y2);
  if (is_infinite($level)) {
    return (0, $level);
  }
  return (0, 4*$len*$len*$self->{'arms'} - 1);
}

# N=16 is Y=4 away   k=2
# N=64 is Y=-8+1=-7 away  k=3
# N=256=4^4 is X=2^4=16-3=-7 away  k=4
# dist = 2^k - (2^(k-2)-1)
#      = 2^k - 2^(k-2) + 1
#      = 4*2^(k-2) - 2^(k-2) + 1
#      = 3*2^(k-2) + 1
#   k=2 3*2^(2-2)+1=4   len=4^2=16
#   k=3 3*2^(3-2)+1=7   len=4^3=64
#   k=4 3*2^(4-2)+1=13
# 2^(k-2) = (dist-1)/3
# 2^k = (dist-1)*4/3
#
# up = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# left = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# down = 3*2^(k-2+1) + 1
# 2^(k+1) = (dist-1)*4/3
# 2^k = (dist-1)*2/3
#
# m=2 4*(2-1)/3=4/3=1
# m=4 4*(4-1)/3=4
sub _rect_to_k {
  my ($x1,$y1, $x2,$y2) = @_;
  ### _rect_to_k(): $x1,$y1

  {
    my $m = max(abs($x1),abs($y1),abs($x2),abs($y2));
    if ($m < 2) {
      return (2, 1);
    }
    if ($m < 4) {
      return (4, 2);
    }
    ### round_down: 4*($m-1)/3
    my ($len, $k) = round_down_pow (4*($m-1)/3, 2);
    return ($len, $k);
  }

  my $len;
  my $k = 0;

  my $offset = -1;
  foreach my $m ($x2, $y2, -$x1, -$y1) {
    $offset++;
    ### $offset
    ### $m
    next if $m < 0;

    my ($len1, $k1);
    # if ($m < 2) {
    #   $len1 = 1;
    #   $k1 = 0;
    # } else {
    # }

    ($len1, $k1) = round_down_pow (($m-1)/3, 2);
    next if $k1 < $offset;
    my $sub = ($offset-$k1) % 4;
    $k1 -= $sub;  # round down to k1 == offset mod 4

    if ($k1 > $k) {
      $k = $k1;
      $len = $len1 / 2**$sub;
    }
  }

  ### result: "k=$k  len=$len"
  return ($len, 2*$k);
}



my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  my $int = int($n);
  $n -= $int;  # $n fraction part

  my @digits = bit_split_lowtohigh($int);
  my $dir = (sum(@digits)||0) & 3;  # count of 1-bits
  my $dx = $dir4_to_dx[$dir];
  my $dy = $dir4_to_dy[$dir];

  if ($n) {
    # apply fraction part $n

    # count low 1-bits is right turn of N+1, apply as dir-(turn-1) so decr $dir
    while (shift @digits) {
      $dir--;
    }

    # this with turn=count-1 turn which is dir++ worked into swap and negate
    # of dir4_to_dy parts
    $dir &= 3;
    $dx -= $n*($dir4_to_dy[$dir] + $dx);  # with rot-90 instead of $dir+1
    $dy += $n*($dir4_to_dx[$dir] - $dy);

    # this the equivalent with explicit dir++ for turn=count-1
    # $dir++;
    # $dir &= 3;
    # $dx += $n*($dir4_to_dx[$dir] - $dx);
    # $dy += $n*($dir4_to_dy[$dir] - $dy);
  }

  ### result: "$dx, $dy"
  return ($dx,$dy);
}

#------------------------------------------------------------------------------
# k even
#         S[h]
#       ---------
#      /          \  Z[h-1]
#     /            \
#    |              |  S[h-1]
#     \            / Z[h-2]
#      --        --
# Hb[k] = S[h] + 2*S[h-1] + S[h] + 2*(Z[h-1]/2 - Z[h-2]/2)
#          + sqrt(2)*(2*Z[h-1]/2 + 2*Z[h-2]/2)
#       = 2*S[h] + 2*S[h-1] + Z[h-1]-Z[h-2]   + sqrt(2) * (Z[h-1] + Z[h-2])
#       = 2*2^h + 2*2^(h-1) + 2*2^(h-1)-2 - (2*2^(h-2)-2)   + sqrt(2) * (2*2^(h-1)-2 + 2*2^(h-2)-2)
#       = 3*2^h             + 2*2^(h-1)-2 - 2*2^(h-2) + 2   + sqrt(2) * (3*2^(h-1) - 4)
#       = 3*2^h             +   2^(h-1)                     + sqrt(2) * (3*2^(h-1) - 4)
#       = 7*2^(h-1) + sqrt(2) * (3*2^(h-1) - 4)
#       = 7*sqrt(2)^(2h-2) + sqrt(2) * (3*sqrt(2)^(2h-2) - 4)
#       = 7*sqrt(2)^(k-2) + sqrt(2) * (3*sqrt(2)^(k-2) - 4)
#       = 7*sqrt(2)^(k-2) + sqrt(2)*3*sqrt(2)^(k-2) - 4*sqrt(2)
#       = 7*sqrt(2)^(k-2) + 3*sqrt(2)*sqrt(2)^(k-2) - 4*sqrt(2)
#       = (7 + 3*sqrt(2))*sqrt(2)^(k-2) - 4*sqrt(2)
#
#             S[2]=4
#       11--10--7,9--6---5  Z[1]=2         k=4 h=2
#        |       |       |
#   13--12       8       4---3             4 + 2*2 + 4+(2-0) = 14
#    |                       |  S[1]=2     (2+0) = 2
#   14                       2
#    |                       |
#   15---16              0---1  Z[0] = 0
#

# k odd
#            S[h]
#            ----
#   Z[h-1] /     \    middle Z[h]
# S[h-1]  |       \
#          \       \
#                   |  S[h]
#                   |
#             \    /  Z[h-1]
#               --
#              S[h-1]
#
# Hb[k] = 2*S[h] + 2*S[h-1]  + sqrt(2)*( Z[h]/2 + Z[h-1] + Z[h]/2 + S[h]-S[h-1] )
#       = 2*S[h] + 2*S[h-1]  + sqrt(2)*( Z[h]   + Z[h-1]          + S[h]-S[h-1] )
#       = 2*2^h  + 2*2^(h-1) + sqrt(2)*( 2*2^h-2 + 2*2^(h-1)-2 + 2^h - 2^(h-1) )
#       = 3*2^h              + sqrt(2)*( 3*2^h                 + 2^(h-1)       - 4 )
#       = 3*2^h + sqrt(2)*( 7*2^(h-1) - 4 )

sub _UNDOCUMENTED_level_to_hull_boundary {
  my ($self, $level) = @_;
  my ($a, $b) = $self->_UNDOCUMENTED_level_to_hull_boundary_sqrt2($level)
    or return undef;
  return $a + $b*sqrt(2);
}
sub _UNDOCUMENTED_level_to_hull_boundary_sqrt2 {
  my ($self, $level) = @_;
  if ($level <= 2) {
    if ($level < 0) { return; }
    if ($level == 2) { return (6,0); }
    return (2, ($level == 0 ? 0 : 1));
  }

  my ($h, $rem) = _divrem($level, 2);
  my $pow = 2**($h-1);

  if ($rem) {
    return (6*$pow, 7*$pow-4);

    # return (2*S_formula($h) + 2*S_formula($h-1),
    #         Z_formula($h)/2 + Z_formula($h-1)
    #         + Z_formula($h)/2 + (S_formula($h)-S_formula($h-1)) );

  } else {
    return (7*$pow, 3*$pow-4);

    # return (S_formula($h) + 2*S_formula($h-1) + S_formula($h)+(Z_formula($h-1)-Z_formula($h-2)),
    #         (Z_formula($h-1) + Z_formula($h-2)));
  }
}

#------------------------------------------------------------------------------
{
  my @_UNDOCUMENTED_level_to_hull_area = (0, 1/2, 2);

  sub _UNDOCUMENTED_level_to_hull_area {
    my ($self, $level) = @_;

    if ($level < 3) {
      if ($level < 0) { return undef; }
      return $_UNDOCUMENTED_level_to_hull_area[$level];
    }
    my ($h, $rem) = _divrem($level, 2);
    return 35*2**($level-4) - ($rem ? 13 : 10)*2**($h-1) + 2;

    #   if ($rem) {
    #     return 35*2**($level-4) - 13*$pow + 2;
    #
    #     my $width = S_formula($h) + Z_formula($h)/2 + Z_formula($h-1)/2;
    #     my $ul = Z_formula($h-1)/2;
    #     my $ur = Z_formula($h)/2;
    #     my $bl = $width - Z_formula($h-1)/2 - S_formula($h-1);
    #     my $br = Z_formula($h-1)/2;
    #     return $width**2 - $ul**2/2 - $ur**2/2 - $bl**2/2 - $br**2/2;
    #
    #   } else {
    #     return 35*2**($level-4) - 10*$pow + 2;
    #     return 0;
    #     return 35*2**($level-4) - 5*2**$h + 2;
    #
    #     # my $width = S_formula($h) + Z_formula($h-1);
    #     # my $upper = Z_formula($h-1)/2;
    #     # my $lower = Z_formula($h-2)/2;
    #     # my $height = S_formula($h-1) + $upper + $lower;
    #     # return $width; # * $height - $upper*$upper - $lower*$lower;
    #   }
    # }
  }
}

#------------------------------------------------------------------------------
# levels

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, 2**$level);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  my ($pow, $exp) = round_down_pow ($n-1, 2);
  return $exp + 1;
}

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Math-PlanePath ie OEIS dX,dY dX combinatorial Ramus th zig zags stairstep Duvall Keesling vy Preprint

=head1 NAME

Math::PlanePath::CCurve -- Levy C curve

=head1 SYNOPSIS

 use Math::PlanePath::CCurve;
 my $path = Math::PlanePath::CCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is an integer version of the Levy "C" curve.


                          11-----10-----9,7-----6------5               3
                           |             |             |
                   13-----12             8             4------3        2
                    |                                         |
            19---14,18----17                                  2        1
             |      |      |                                  |
     21-----20     15-----16                           0------1   <- Y=0
      |
     22                                                               -1
      |
    25,23---24                                                        -2
      |
     26     35-----34-----33                                          -3
      |      |             |
    27,37--28,36          32                                          -4
      |      |             |
     38     29-----30-----31                                          -5
      |
    39,41---40                                                        -6
      |
     42                                              ...              -7
      |                                                |
     43-----44     49-----48                          64-----63       -8
             |      |      |                                  |
            45---46,50----47                                 62       -9
                    |                                         |
                   51-----52            56            60-----61      -10
                           |             |             |
                          53-----54----55,57---58-----59             -11

                                                       ^
     -7     -6     -5     -4     -3     -2     -1     X=0     1

The initial segment N=0 to N=1 is repeated with a turn +90 degrees left to
give N=1 to N=2.  Then N=0to2 is repeated likewise turned +90 degrees and
placed at N=2 to make N=2to4.  And so on doubling each time.

                                  4----3
                                       |      N=0to2
                       2               2      repeated
                       |               |      as N=2to4
    0----1        0----1          0----1      with turn +90

The 90 degree rotation is the same at each repetition, so the segment at
N=2^k is always the initial N=0to1 turned +90 degrees.  This means at
N=1,2,4,8,16,etc the direction is always upwards.

The X,Y position can be written in complex numbers as a recurrence

    with N = 2^k + r      high bit 2^k and remainder r<2^k

    C(N) = C(2^k) + i*C(r)
         = (1+i)^k + i*C(r)

The effect is a change from base 2 to base 1+i, but with a further power of
i on each term.  Suppose the 1-bits in N are at positions k0, k1, k2, etc
(high to low), then

    C(N) = b^k0 * i^0      N= 2^k0 + 2^(k1) + 2^(k2) + ... in binary
         + b^k1 * i^1      k0 > k1 > k2 > ...
         + b^k2 * i^2      base b=1+i
         + b^k3 * i^3
         + ...

Notice the i power is not the bit position k, but rather how many 1-bits are
above the position.  This calculation is straightforward but the resulting
structure of overlaps and internal shapes has many different parts.

=head2 Level Ranges 4^k

The X,Y extents of the path through to Nlevel=2^k can be expressed as a
width and height measured relative to the endpoints.

       *------------------*       <-+
       |                  |         |
    *--*                  *--*      | height h[k]
    |                        |      |
    *   N=4^k         N=0    *    <-+
    |     |            |     |      | below l[k]
    *--*--*            *--*--*    <-+

    ^-----^            ^-----^
     width     2^k      width
      w[k]               w[k]           Extents to N=4^k

    <------------------------>
    total width = 2^k + 2*w[k]

N=4^k is on either the X or Y axis and for the extents here it's taken
rotated as necessary to be horizontal.  k=2 N=4^2=16 shown above is already
horizontal.  The next level k=3 N=64=4^3 would be rotated -90 degrees to be
horizontal.

The width w[k] is measured from the N=0 and N=4^k endpoints.  It doesn't
include the 2^k length between those endpoints.  The two ends are symmetric
so the extent is the same at each end.

    h[k] = 2^k - 1                     0,1,3,7,15,31,etc

    w[k] = /  0            for k=0
           \  2^(k-1) - 1  for k>=1    0,0,1,3,7,15,etc

    l[k] = /  0            for k<=1
           \  2^(k-2) - 1  for k>=2    0,0,0,1,3,7,etc

The initial N=0 to N=64 shown above is k=3.  h[3]=7 is the X=-7 horizontal.
l[3]=1 is the X=1 horizontal.  w[3]=3 is the vertical Y=3, and also Y=-11
which is 3 below the endpoint N=64 at Y=8.

Expressed as a fraction of the 2^k distance between the endpoints the
extents approach total 2 wide by 1.25 high,

       *------------------*       <-+
       |                  |         |  1
    *--*                  *--*      |         total
    |                        |      |         height
    *   N=4^k         N=0    *    <-+         -> 1+1/4
    |     |            |     |      |  1/4
    *--*--*            *--*--*    <-+

    ^-----^            ^-----^
      1/2        1       1/2     total width -> 2

The extent formulas can be found by considering the self-similar blocks.
The initial k=0 is a single line segment and all its extents are 0.

                          h[0] = 0
          N=1 ----- N=0
                          l[0] = 0
                    w[0] = 0

Thereafter the replication overlap as

       +-------+---+-------+
       |       |   |       |
    +------+   |   |   +------+
    |  | D |   | C |   | B |  |        <-+
    |  +-------+---+-------+  |          | 2^(k-1)
    |      |           |      |          | previous
    |      |           |      |          | level ends
    |    E |           | A    |        <-+
    +------+           +------+

         ^---------------^
        2^k this level ends

    w[k] =           max (h[k-1], w[k-1])  # right of A,B
    h[k] = 2^(k-1) + max (h[k-1], w[k-1])  # above B,C,D
    l[k] = max w[k-1], l[k-1]-2^(k-1)      # below A,E

Since h[k]=2^(k-1)+w[k] have S<h[k] E<gt> w[k]> for kE<gt>=1 and with the
initial h[0]=w[k]=0 have h[k]E<gt>=w[k] always.  So the max of those two
is h.

    h[k] = 2^(k-1) + h[k-1]  giving h[k] = 2^k-1     for k>=1
    w[k] = h[k-1]            giving w[k] = 2^(k-1)-1 for k>=1

The max for l[k] is always w[k-1] as l[k] is never big enough that the parts
B-C and C-D can extend down past their 2^(k-1) vertical position.
(l[0]=w[0]=0 and thereafter by induction l[k]E<lt>=w[k].)

    l[k] = w[k-1]   giving l[k] = 2^(k-2)-1 for k>=2

=head2 Repeated Points

The curve crosses itself and can repeat X,Y positions up to 4 times.  The
first doubled, tripled and quadrupled points are

    visits      X,Y         N
    ------    -------    ----------------------
       2       -2,  3       7,    9
       3       18, -7     189,  279,  281
       4      -32, 55    1727, 1813, 2283, 2369

=cut

# binary
#     2        -10,     11        111,      1001
#                                  3          2
#     3      10010,   -111   10111101, 100010111, 100011001
#                                 6         5         4
#     4    -100000, 110111   11010111111,  11100010101,
#                           100011101011, 100101000001
#                                9, 6, 7, 4

=pod

Each line segment between integer points is traversed at most 2 times, once
forward and once backward.  There's 4 lines reaching each integer point and
this line traversal means the points are visited at most 4 times.

As per L</Direction> below the direction of the curve is given by the count
of 1-bits in N.  Since no line is repeated each of the N values at a given
X,Y have a different count-1-bits mod 4.  For example N=7 is 3 1-bits and
N=9 is 2 1-bits.  The full counts need not be consecutive, as for example
N=1727 is 9 1-bits and N=2369 is 4 1-bits.

The maximum of 2 line segment traversals can be seen from the way the curve
replicates.  Suppose the entire plane had all line segments traversed
forward and backward.

      v |         v |
    --   <--------   <-
     [0,1]       [1,1]           [X,Y] = integer points
    ->   -------->   --          each edge traversed
      | ^         | ^            forward and backward
      | |         | |
      | |         | |
      v |         v |
    --   <--------   <--
     [0,0]       [1,0]
    ->   -------->   --
      | ^         | ^

Then when each line segment expands on the right the result is the same
pattern of traversals -- viewed rotated by 45-degrees and scaled by factor
sqrt(2).

     \ v / v        \ v  / v
      [0,1]           [1,1]
     / / ^ \         ^ / ^ \
    / /   \ \       / /   \ \
           \ \     / /
            \ v   / v
             [1/2,1/2]
            ^ /   ^ \
           / /     \ \
    \ \   / /       \ \   / /
     \ v / v         \ v / v
      [0,0]            1,0
     ^ / ^ \         ^ / ^ \

The curve is a subset of this pattern.  It begins as a single line segment
which has this pattern and thereafter the pattern preserves itself.  Hence
at most 2 segment traversals in the curve.

=head2 Tiling

The segment traversal argument above can also be made by taking the line
segments as triangles which are a quarter of a unit square with peak
pointing to the right of the traversal direction.

       to  *
           ^\
           | \
           |  \ triangle peak
           |  /
           | /
           |/       quarter of a unit square
      from *

These triangles in the two directions tile the plane.  On expansion each
splits into 2 halves in new positions.  Those parts don't overlap and the
plane is still tiled.  See for example

=over

Larry Riddle
L<http://ecademy.agnesscott.edu/~lriddle/ifs/levy/levy.htm>
L<http://ecademy.agnesscott.edu/~lriddle/ifs/levy/tiling.htm>

=back

For the integer version of the curve this kind of tiling can be used to
combine copies of the curve so that each every point is visited precisely 4
times.  The h[k], w[k] and l[k] extents above are less than the 2^k endpoint
length, so a square of side 2^k can be fully tiled with copies of the curve
at each corner,

             | ^         | ^
             | |         | |               24 copies of the curve
             | |         | |               to visit all points of the
             v |         v |               inside square ABCD
    <-------    <--------   <--------      precisely 4 times each
              A           B
    -------->   -------->   -------->      each part points
             | ^         | ^               N=0 to N=4^k-1
             | |         | |               rotated and shifted
             | |         | |               suitably
             v |         v |
    <--------   <--------   <--------
              C           D
    --------    -------->   -------->
             | ^         | ^
             | |         | |
             | |         | |
             v |         v |

The four innermost copies of the curve cover most of the inside square, but
the other copies surrounding them loop into the square and fill in the
remainder to make 4 visits at every point.

=cut

# If doing this tiling note that only points N=0 to N=4^k-1 are used.  If
# N=4^k was included then it would duplicate the N=0 at the "*" endpoints,
# resulting in 8 visits there rather than the intended 4.

=pod

It's interesting to note that a set of 8 curves at the origin only covers
the axes with 4-fold visits,

             | ^              8 arms at the origin
             | |              cover only X,Y axes
             v |              with 4-visits
    <--------   <--------
             0,0              away from the axes
    --------    -------->     some points < 4 visits
             | ^
             | |
             v |

This means that if the path had some sort of "arms" of multiple curves
extending from the origin then it would visit all points on the axes X=0 Y=0
a full 4 times, but off the axes there would be points without full 4
visits.

=cut

# The S<"_ _ _"> line shown which is part of the 24-pattern above but omitted
# here.  This line is at Y=2^k.  The extents described above mean that it
# extends down to Y=2^k - h[k] = 2^k-(2^k-1)=1, so it visits some points in
# row Y=1 and higher.  Omitting the curve means there are YE<gt>=1 not visited
# 4 times.  Similarly YE<lt>=-1 and XE<lt>-1 and XE<gt>=+1.

=pod

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.

=over 4

=item C<$path = Math::PlanePath::CCurve-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.  If C<$x,$y> is visited more than once then
return the smallest C<$n> which visits it.

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers at coordinates C<$x,$y>.  If there's
nothing at C<$x,$y> then return an empty list.

A given C<$x,$y> is visited at most 4 times so the returned list is at most
4 values.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2**$level)>.

=back

=head1 FORMULAS

=head2 Direction

The direction or net turn of the curve is the count of 1 bits in N,

    direction = count_1_bits(N) * 90degrees

For example N=11 is binary 1011 has three 1 bits, so direction 3*90=270
degrees, ie. to the south.

This bit count is because at each power-of-2 position the curve is a copy of
the lower bits but turned +90 degrees, so +90 for each 1-bit.

For powers-of-2 N=2,4,8,16, etc, there's only a single 1-bit so the
direction is always +90 degrees there, ie. always upwards.

=head2 Turn

At each point N the curve can turn in any direction: left, right, straight,
or 180 degrees back.  The turn is given by the number of low 0-bits of N,

    turn right = (count_low_0_bits(N) - 1) * 90degrees

For example N=8 is binary 0b100 which is 2 low 0-bits for turn=(2-1)*90=90
degrees to the right.

When N is odd there's no low zero bits and the turn is always (0-1)*90=-90
to the right, so every second turn is 90 degrees to the left.

=head2 Next Turn

The turn at the point following N, ie. at N+1, can be calculated by counting
the low 1-bits of N,

    next turn right = (count_low_1_bits(N) - 1) * 90degrees

For example N=11 is binary 0b1011 which is 2 low one bits for
nextturn=(2-1)*90=90 degrees to the right at the following point, ie. at
N=12.

This works simply because low 1-bits like ..0111 increment to low 0-bits
..1000 to become N+1.  The low 1-bits at N are thus the low 0-bits at N+1.

=head2 N to dX,dY

C<n_to_dxdy()> is implemented using the direction described above.  For
integer N the count mod 4 gives the direction for dX,dY.

    dir = count_1_bits(N) mod 4
    dx = dir_to_dx[dir]    # table 0 to 3
    dy = dir_to_dy[dir]

For fractional N the direction at int(N)+1 can be obtained from the
direction at int(N) and the turn at int(N)+1, which is the low 1-bits of N
per L</Next Turn> above.  Those two directions can then be combined as
described in L<Math::PlanePath/N to dX,dY -- Fractional>.

    # apply turn to make direction at Nint+1
    turn = count_low_1_bits(N) - 1      # N integer part
    dir = (dir - turn) mod 4            # direction at N+1

    # adjust dx,dy by fractional amount in this direction
    dx += Nfrac * (dir_to_dx[dir] - dx)
    dy += Nfrac * (dir_to_dy[dir] - dy)

A small optimization can be made by working the "-1" of the turn formula
into a +90 degree rotation of the C<dir_to_dx[]> and C<dir_to_dy[]> parts by
swap and sign change,

    turn_plus_1 = count_low_1_bits(N)     # on N integer part
    dir = (dir - turn_plus_1) mod 4       # direction-1 at N+1

    # adjustment including extra +90 degrees on dir
    dx -= $n*(dir_to_dy[dir] + dx)
    dy += $n*(dir_to_dx[dir] - dy)

=head2 X,Y to N

The N values at a given X,Y can be found by taking terms low to high from
the complex number formula (the same as given above)

    X+iY = b^k            N = 2^k + 2^(k1) + 2^(k2) + ... in binary
         + b^k1 * i       base b=1+i
         + b^k2 * i^2
         + ...

If the lowest term is b^0 then X+iY has X+Y odd.  If the lowest term is not
b^0 but instead some power b^n then X+iY has X+Y even.  This is because a
multiple of b=1+i,

    X+iY = (x+iy)*(1+i)
         = (x-y) + (x+y)i
    so X=x-y Y=x+y
    sum X+Y = 2x is even if X+iY a multiple of 1+i

So the lowest bit of N is found by

    bit = (X+Y) mod 2

If bit=1 then a power i^p is to be subtracted from X+iY.  p is how many
1-bits are above that point, and this is not yet known.  It represents a
direction to move X,Y to put it on an even position.  It's also the
direction of the step N-2^l to N, where 2^l is the lowest 1-bit of N.

The reduction should be attempted with p commencing as each of the four
possible directions N,S,E,W.  Some or all will lead to an N.  For quadrupled
points (such as X=-32, Y=55 described above) all four will lead to an N.

    for p 0 to 3
      dX,dY = i^p   # directions [1,0]  [0,1]  [-1,0]  [0,-1]

      loop until X,Y = [0,0] or [1,0] or [-1,0] or [0,1] or [0,-1]
      {
        bit = X+Y mod 2       # bits of N from low to high
        if bit == 1 {
          X -= dX             # move to "even" X+Y == 0 mod 2
          Y -= dY
          (dX,dY) = (dY,-dX)       # rotate -90 as for p-1
        }
        X,Y = (X+Y)/2, (Y-X)/2   # divide (X+iY)/(1+i)
      }

      if not (dX=1 and dY=0)
        wrong final direction, try next p
      if X=dX and Y=dY
        further high 1-bit for N
        found an N
      if X=0 and Y=0
        found an N

The "loop until" ends at one of the five points

            0,1
             |
    -1,0 -- 0,0 -- 1,0
             |
            0,-1

It's not possible to wait for X=0,Y=0 to be reached because some dX,dY
directions will step infinitely among the four non-zeros.  Only the case
X=dX,Y=dY is sure to reach 0,0.

The successive p decrements which rotate dX,dY by -90 degrees must end at p
== 0 mod 4 for highest term in the X+iY formula having i^0=1.  This means
must end dX=1,dY=0 East.  If this doesn't happen then there is no N for that
p direction.

The number of 1-bits in N is == p mod 4.  So the order the N values are
obtained follows the order the p directions are attempted.  In general the N
values will not be smallest to biggest N so a little sort is necessary if
that's desired.

It can be seen that sum X+Y is used for the bit calculation and then again
in the divide by 1+i.  It's convenient to write the whole loop in terms of
sum S=X+Y and difference D=Y-X.

    for dS = +1 or -1      # four directions
      for dD = +1 or -1    #
        S = X+Y
        D = Y-X

        loop until -1 <= S <= 1 and -1 <= D <= 1 {
          bit = S mod 2       # bits of N from low to high
          if bit == 1 {
            S -= dS              # move to "even" S+D == 0 mod 2
            D -= dD
            (dS,dD) = (dD,-dS)   # rotate -90
          }
          (S,D) = (S+D)/2, (D-S)/2   # divide (S+iD)/(1+i)
        }

        if not (dS=1 and dD=-1)
          wrong final direction, try next dS,dD direction
        if S=dS and D=dD
          further high 1-bit for N
          found an N
        if S=0 and D=0
          found an N

The effect of S=X+Y, D=Y-D is to rotate by -45 degrees and use every second
point of the plane.

    D= 2                      X=0,Y=2       .              rotate -45

    D= 1            X=0,Y=1      .       X=1,Y=2       .

    D= 0  X=0,Y=0      .      X=1,Y=1       .       X=2,Y=2

    D=-1            X=1,Y=0      .       X=2,Y=1       .

    D=-2                      X=2,Y=0       .

           S=0        S=1       S=2        S=3        S=4

The final five points described above are then in a 3x3 block at the origin.
The four in-between points S=0,D=1 etc don't occur so range tests
-1E<lt>=SE<lt>=1 and -1E<lt>=DE<lt>=1 can be used.

     S=-1,D=1      .      S=1,D=1

        .       S=0,D=0      .

     S=-1,D=-1     .      S=1,D=-1

=head2 Segments by Direction

In a level N=0 to N=2^k-1 inclusive, the number of segments in each
direction 0=East, 1=North, 2=West, 3=South are given by

           k=0        for k >= 1
           ---        ----------
    M0[k] = 1,    2^(k-2) + d(k+2)*2^(h-1)
    M1[k] = 0,    2^(k-2) + d(k+0)*2^(h-1)
    M2[k] = 0,    2^(k-2) + d(k-2)*2^(h-1)
    M3[k] = 0,    2^(k-2) + d(k-4)*2^(h-1)

    where h = floor(k/2)
    and   d(m) = 0  1  1  1  0 -1 -1 -1
                 for m == 0 to 7 mod 8

    M0[k] = 1, 1, 1, 1, 2,  6, 16, 36, 72, 136, 256, ...
    M1[k] = 0, 1, 2, 3, 4,  6, 12, 28, 64, 136, 272, ...
    M2[k] = 0, 0, 1, 3, 6, 10, 16, 28, 56, 120, 256, ...
    M3[k] = 0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, ...

d(n) is a factor +1, -1 or 0 according to n mod 8.  Each M goes as a power
2^(k-2), so roughly 1/4 each, but a half power 2^(h-1) possibly added or
subtracted in a k mod 8 pattern.  In binary this is a 2^(k-2) high 1-bit
with another 1-bit in the middle added or subtracted.

The total is 2^k since there are a total 2^k points from N=0 to 2^k-1
inclusive.

    M0[k] + M1[k] + M2[k] + M3[k] = 2^k

It can be seen that the d(n) parts sum to 0 so the 2^(h-1) parts cancel out
leaving 4*2^(k-2) = 2^k.

    d(0) + d(2) + d(4) + d(6) = 0
    d(1) + d(3) + d(5) + d(7) = 0

=for Test-Pari-DEFINE  Mdir_vec = [0, 1, 1, 1,  0, -1, -1, -1]

=for Test-Pari-DEFINE  Mdir(n) = Mdir_vec[(n%8)+1]  /* +1 for vector start index 1 */

=for Test-Pari-DEFINE  M0half(k) = local(h); h=floor(k/2); if(k==0,1, 2^(k-2) + Mdir(k+2)*2^(h-1))

=for Test-Pari-DEFINE  M1half(k) = local(h); h=floor(k/2); if(k==0,0, 2^(k-2) + Mdir(k+0)*2^(h-1))

=for Test-Pari-DEFINE  M2half(k) = local(h); h=floor(k/2); if(k==0,0, 2^(k-2) + Mdir(k-2)*2^(h-1))

=for Test-Pari-DEFINE  M3half(k) = local(h); h=floor(k/2); if(k==0,0, 2^(k-2) + Mdir(k-4)*2^(h-1))

=for Test-Pari-DEFINE  M0samples = [ 1, 1, 1, 1, 2,  6, 16, 36, 72, 136, 256 ]

=for Test-Pari-DEFINE  M1samples = [ 0, 1, 2, 3, 4,  6, 12, 28, 64, 136, 272 ]

=for Test-Pari-DEFINE  M2samples = [ 0, 0, 1, 3, 6, 10, 16, 28, 56, 120, 256 ]

=for Test-Pari-DEFINE  M3samples = [ 0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240 ]

=for Test-Pari  vector(length(M0samples),k,M0half(k-1)) == M0samples

=for Test-Pari  vector(length(M1samples),k,M1half(k-1)) == M1samples

=for Test-Pari  vector(length(M2samples),k,M2half(k-1)) == M2samples

=for Test-Pari  vector(length(M3samples),k,M3half(k-1)) == M3samples

The counts can be calculated in two ways.  Firstly they satisfy mutual
recurrences.  Each adds the preceding rotated M.

    M0[k+1] = M0[k] + M3[k]        initially M0[0] = 1 (N=0 to N=1)
    M1[k+1] = M1[k] + M0[k]                  M1[0] = 0
    M2[k+1] = M2[k] + M1[k]                  M2[0] = 0
    M3[k+1] = M3[k] + M2[k]                  M3[0] = 0

Geometrically this can be seen from the way each level extends by a copy of
the previous level rotated +90,

    7---6---5            Easts in N=0 to 8
    |       |            =   Easts in N=0 to 4
    8       4---3          + Wests in N=0 to 4
                |             since N=4 to N=8 is
                2             the N=0 to N=4 rotated +90
                |
            0---1

For the bits in N, level k+1 introduces a new bit either 0 or 1.  In M0[k+1]
the a 0-bit is count M0[k] the same direction, and when a 1-bit is M3[k]
since one less bit mod 4.  Similarly the other counts.

Some substitutions give 3rd order recurrences

    for k >= 4
    M0[k] = 4*M0[k-1] - 6*M0[k-2] + 4*M0[k-3]    initial 1,1,1,1
    M1[k] = 4*M1[k-1] - 6*M1[k-2] + 4*M1[k-3]    initial 0,1,2,3
    M2[k] = 4*M2[k-1] - 6*M2[k-2] + 4*M2[k-3]    initial 0,0,1,3
    M3[k] = 4*M3[k-1] - 6*M3[k-2] + 4*M3[k-3]    initial 0,0,0,1

=for Test-Pari-DEFINE  M0rec(k) = if(k<4,1, 4*M0rec(k-1) - 6*M0rec(k-2) + 4*M0rec(k-3))

=for Test-Pari-DEFINE  M1rec(k) = if(k<4,k, 4*M1rec(k-1) - 6*M1rec(k-2) + 4*M1rec(k-3))

=for Test-Pari-DEFINE  M2rec(k) = if(k<2,0, if(k==2,1, if(k==3,3, 4*M2rec(k-1) - 6*M2rec(k-2) + 4*M2rec(k-3))))

=for Test-Pari-DEFINE  M3rec(k) = if(k<3,0, if(k==3,1, 4*M3rec(k-1) - 6*M3rec(k-2) + 4*M3rec(k-3)))

=for Test-Pari  vector(20,k,M0rec(k-1)) == vector(20,k,M0half(k-1))

=for Test-Pari  vector(20,k,M1rec(k-1)) == vector(20,k,M1half(k-1))

=for Test-Pari  vector(20,k,M2rec(k-1)) == vector(20,k,M2half(k-1))

=for Test-Pari  vector(20,k,M3rec(k-1)) == vector(20,k,M3half(k-1))

The characteristic polynomial  of these recurrences is

    x^3 - 4x^2 + 6x - 4
    = (x-2) * (x - (1-i)) * (x - (1+i))

=for Test-Pari  x^3 - 4*x^2 + 6*x - 4 == (x-2)*(x^2 - 2*x + 2)

=for Test-Pari  x^3 - 4*x^2 + 6*x - 4 == (x-2) * (x + (I-1)) * (x - (I+1))

So explicit formulas can be written in powers of the roots 2, 1-i and 1+i,

    M0[k] = ( 2^k +   (1-i)^k +   (1+i)^k )/4      for k>=1
    M1[k] = ( 2^k + i*(1-i)^k - i*(1+i)^k )/4
    M2[k] = ( 2^k -   (1-i)^k -   (1+i)^k )/4
    M3[k] = ( 2^k - i*(1-i)^k + i*(1+i)^k )/4

=for Test-Pari-DEFINE  M0pow(k) = if(k==0,1, (1/4)*(2^k +   (1-I)^k +   (1+I)^k))

=for Test-Pari-DEFINE  M1pow(k) = if(k==0,0, (1/4)*(2^k + I*(1-I)^k - I*(1+I)^k))

=for Test-Pari-DEFINE  M2pow(k) = if(k==0,0, (1/4)*(2^k -   (1-I)^k -   (1+I)^k))

=for Test-Pari-DEFINE  M3pow(k) = if(k==0,0, (1/4)*(2^k - I*(1-I)^k + I*(1+I)^k))

=for Test-Pari  vector(50,k,M0pow(k-1)) == vector(50,k,M0half(k-1))

=for Test-Pari  vector(50,k,M1pow(k-1)) == vector(50,k,M1half(k-1))

=for Test-Pari  vector(50,k,M2pow(k-1)) == vector(50,k,M2half(k-1))

=for Test-Pari  vector(50,k,M3pow(k-1)) == vector(50,k,M3half(k-1))

The complex numbers 1-i and 1+i are 45 degree lines clockwise and
anti-clockwise respectively.  The powers turn them in opposite directions so
the imaginary parts always cancel out.  The remaining real parts can be had
by a half power h=floor(k/2) which is the magnitude abs(1-i)=sqrt(2)
projected onto the real axis.  The sign selector d(n) above is whether the
positive or negative part of the real axis, or zero when at the origin.

The second way to calculate is the combinatorial interpretation that per
L</Direction> above the direction is count_1_bits(N) mod 4 so East segments
are all N values with count_1_bits(N) == 0 mod 4, ie. N with 0, 4, 8, etc
many 1-bits.  The number of ways to have those bit counts within total k
bits is k choose 0, 4, 8 etc.

    M0[k] = /k\ + /k\ + ... + / k\      m = floor(k/4)
            \0/   \4/         \4m/

    M1[k] = /k\ + /k\ + ... + / k  \    m = floor((k-1)/4)
            \1/   \5/         \4m+1/

    M2[k] = /k\ + /k\ + ... + / k  \    m = floor((k-2)/4)
            \2/   \6/         \4m+2/

    M3[k] = /k\ + /k\ + ... + / k  \    m = floor((k-3)/4)
            \3/   \7/         \4m+3/

=for Test-Pari-DEFINE  M0sum(k) = sum(i=0,floor(k/4), binomial(k, 4*i))

=for Test-Pari-DEFINE  M1sum(k) = sum(i=0,floor(k/4), binomial(k, 4*i+1))

=for Test-Pari-DEFINE  M2sum(k) = sum(i=0,floor(k/4), binomial(k, 4*i+2))

=for Test-Pari-DEFINE  M3sum(k) = sum(i=0,floor(k/4), binomial(k, 4*i+3))

=for Test-Pari  vector(length(M0samples),k,M0sum(k-1)) == M0samples

=for Test-Pari  vector(length(M1samples),k,M1sum(k-1)) == M1samples

=for Test-Pari  vector(length(M2samples),k,M2sum(k-1)) == M2samples

=for Test-Pari  vector(length(M3samples),k,M3sum(k-1)) == M3samples

The power forms above are cases of the identity by Ramus for sums of
binomial coefficients in arithmetic progression like this.  (See Knuth
volume 1 section 1.2.6 exercise 30 for a form with cosines resulting from
w=i+1 as 8th roots of unity.)

The total M0+M1+M2+M3=2^k is the total binomials across a row of Pascal's
triangle.

    /k\ + /k\ + ... + /k\ = 2^k
    \0/   \1/         \k/

It's interesting to note the M counts here are the same in the dragon curve
(L<Math::PlanePath::DragonCurve>).  The shapes of the curves are different
since the segments are in a different order, but the total puts points N=2^k
at the same X,Y position.

=cut

# cf.
# J. Konvalina, Y.-H. Liu, Arithmetic progression sums of binomial
# coefficients, Appl. Math. Lett., 10(4), 11-13 (1997).

# ((1+I)^k + (1-I)^k)/2^floor(k/2) = [2, 2, 0, -2,  -2, -2, 0, 2, ]
# M3[k] = M0[k+1] - M0[k]
#       = 2^(k+1) - 2^k   (1-i)^(k+1) - (1-i)^k   (1+i)^(k+1) - (1+i)^k
#       = 2^k   (1-i - 1)*(1+i)^k   (1+i - 1)*(1+i)^k
#       = 2^k   (-i)*(1+i)^k   (i)*(1+i)^k
# M2[k] = M3[k+1] - M3[k]
#       = 2^k   (-i)*(-i)*(1+i)^k   (i)*(i)*(1+i)^k
#       = 2^k  - (1+i)^k   - (1+i)^k
# M2[k] = M3[k+1] - M3[k]
#       = 2^k   (-i)*(-i)*(-i)*(1+i)^k   (i)*(i)*(i)*(1+i)^k
#       = 2^k  + i*(1+i)^k   - i*(1+i)^k
# S[k] = a*2^k + (c+di)*(1-i)^k + (e+fi)*(1+i)^k
# a*2^0 + (c+di)*(1-i)^0 + (e+fi)*(1+i)^0 = 1
# a     + (c+di)         + (e+fi)         = 1
#    a  + c     + e     = 1
#           + d     + f = 0
# a*2^1 + (c+di)*(1-i)^1 + (e+fi)*(1+i)^1 = 1
# a*2   + (c+di)*(1-i)   + (e+fi)*(1+i)   = 1
#   2a      + d     - f = 1
#       - c     + e     = 0
# a*2^2 + (c+di)*(1-i)^2 + (e+fi)*(1+i)^2 = 1
# a*4   + (c+di)*-2i     + (e+fi)*2i      = 1
#   4a      + 2d      - 2f = 1
#   4b  - 2c     + 2e      = 0
  # matsolve([1,1,1; 2,1,1; 4,2,-2]; [1,1,1])
# a*2 + b*(1-i) + c*(1+i) = 1
#            2a + (1-i)b + (1+i)c = 1
# a*4 + b*-2i + c*2i = 1                  4a +   -2ib +    2ic = 1
# b=c a=1/4 b=c=3/8

=pod

=head2 Right Boundary

The length of the right-side boundary of the curve, which is the outside of
the "C", from N=0 to N=2^k is

    R[k] = /  7*2^h - 2k - 6     if k even
           \ 10*2^h - 2k - 6     if k odd
           where h = floor(k/2)
         = 1, 2, 4, 8, 14, 24, 38, 60, 90, 136, 198, 292, 418, ...

    R[k] =   (7/2 + 5/2 * sqrt(2)) * ( sqrt(2))^k
           + (7/2 - 5/2 * sqrt(2)) * (-sqrt(2))^k
           - 2*k - 6

    R[k] = 2*R[k-1] + R[k-2] - 4*R[k-3] + 2*R[k-4]

=for Test-Pari-DEFINE Rsamples = [1, 2, 4, 8, 14, 24, 38, 60, 90, 136, 198, 292, 418]

=for Test-Pari-DEFINE Rcases(k)=if(k%2,10,7)*2^floor(k/2) - 2*k - 6

=for Test-Pari vector(length(Rsamples), k, Rcases(k-1)) == Rsamples

=for Test-Pari-DEFINE Rrec(k)=if(k<4,Rsamples[k+1], 2*Rrec(k-1) + Rrec(k-2) - 4*Rrec(k-3) + 2*Rrec(k-4))

=for Test-Pari vector(length(Rsamples), k, Rrec(k-1)) == Rsamples

=for Test-Pari-DEFINE nearint(x)=if(abs(x-round(x)) < 0.000001, round(x), x)

=for Test-Pari-DEFINE Rpow(k)=nearint( (7/2 + 5/2 * sqrt(2))*( sqrt(2))^k + (7/2 - 5/2 * sqrt(2))*(-sqrt(2))^k ) - 2*k - 6

=for Test-Pari vector(length(Rsamples), k, Rpow(k-1)) == Rsamples

=cut

# R[2k] =   (7/2 + 5/2 * sqrt(2))*( sqrt(2))^(2k)
#         + (7/2 - 5/2 * sqrt(2))*(-sqrt(2))^(2k)
#       =   (7/2 + 5/2 * sqrt(2))*2^k
#         + (7/2 - 5/2 * sqrt(2))*2^k
#       =   2*7/2*2^k
#       =   7*2^k
#
# R[2k+1] =   (7/2 + 5/2 * sqrt(2))*( sqrt(2))^(2k)
#           + (7/2 - 5/2 * sqrt(2))*(-sqrt(2))^(2k)
#         =   (7/2 + 5/2 * sqrt(2))*2^k*sqrt(2)
#           + (7/2 - 5/2 * sqrt(2))*2^k*-sqrt(2)
#         =   (7/2*sqrt(2)  + 5/2 * sqrt(2)*sqrt(2))*2^k
#           + (7/2*-sqrt(2) - 5/2 * sqrt(2)*-sqrt(2))*2^k
#         =   (7/2*sqrt(2)  + 5/2 * 2)*2^k
#           + (7/2*-sqrt(2) + 5/2 * 2)*2^k
#         =   (5/2 * 2)*2^k * 2
#         =   10*2^k

=pod

The length doubles until R[4]=14 which is points N=0 to N=2^4=16.  At k=4
the points N=7,8,9 have turned inward and closed off some of the outside of
the curve so the boundary less than 2x.

        11--10--9,7--6--5        right boundary
         |       |      |        around "outside"
    13--12       8      4--3     N=0 to N=2^4=16
     |                     |
    14                     2        R[4]=14
     |                     |
    15--16              0--1


The floor(k/2) and odd/even cases are eliminated by the +/-sqrt(2) powering
shown.  Those powers are also per the characteristic equation of the
recurrence,

    x^4 - 2*X^3 - x^2 + 4*x - 2
      = (x - 1)^2 * (x + sqrt(2)) * (x - sqrt(2))
    roots 1, sqrt(2), -sqrt(2)

The right boundary comprises runs of straight lines and zig-zags.  When it
expands the straight lines become zig-zags and the zig-zags become straight
lines.  The straight lines all point "forward", which is anti-clockwise.

                                      c     *     a
                                     / ^   / ^   / ^
                            =>      v   \ v   \ v   \
    D<----C<----B<----A            D     C     B     A
    |                 ^           /                   ^
    v                 |          v                     \
       straight S=3                zig-zag Z[k+1] = 2S[k]-2 = 4

The count Z here is both sides of each "V" shape from points "a" through to
"c".  So Z counts the boundary length (rather than the number of "V"s).
Each S becomes an upward peak.  The first and last side of those peaks
become part of the following "straight" section (at A and D), hence
Z[k+1]=2*S[k]-2.

The zigzags all point "forward" too.  When they expand they close off the V
shape and become 2 straight lines for each V, which means 1 straight line
for each Z side.  The segment immediately before and after contribute a
segment to the resulting straight run too, hence S[k+1]=Z[k]+2.

         C     B     A               *<---C<---*<---B<---*<---A<---*
        / ^   / ^   / ^              |         |         |         |
       v   \ v   \ v   \      =>     |         |         |         |
      *     *     *     *         <--*         *         *         *<--
     /                   ^
    v                     \
      zig-zag Z=4 segments             straight S[k+1] = Z[k]+2 = 6

The initial N=0 to N=1 is a single straight segment S[0]=1 and from there
the runs grow.  N=1 to N=3 is a straight section S[1]=2.  Z[0]=0 represents
an empty zigzag at N=1.  Z[1] is the first non-empty at N=3 to N=5.

     h   S[h]     Z[h]       Z[h]   = 2*S[h]-2
    --   ----     ----       S[h+1] = Z[h]+2
     0     1        0
     1     2        2        S[h+1] = 2*S[h]-2+2 = 2*S[h]
     2     4        6        so
     3     8       14        S[h] = 2^h
     4    16       30        Z[h] = 2*2^h-2
     5    32       62
     5    64      126

The curve N=0 to N=2^k is symmetric at each end and is made up of runs S[0],
Z[0], S[1], Z[1], etc, of straight and zigzag alternately at each end.  When
k is even there's a single copy of a middle S[k/2].  When k is odd there's a
single middle Z[(k-1)/2] (with an S[(k-1)/2] before and after).  So

                / i=h-1          \           # where h = floor(k/2)
    R[k] = 2 * | sum   S[i]+Z[i]  |
                \ i=0            /
           + S[h]
           + / S[h]+Z[h]  if k odd
             \ 0          if k even

         =  2*(  1+2+4+...+2^(h-1)           # S[0] to S[h-1]
               + 2+4+8+...+2^h  -  2*h)      # Z[0] to Z[h-1]
           + 2^h                             # S[h]
           + if k odd (2^h + 2*2^h - 2)      # possible S[h]+Z[h]

         = 2*(2^h-1 + 2*2^h-2 - 2h) + 2^h + (k odd 3*2^h - 2)
         = 7*2^h - 4h-6 + (if k odd then + 3*2^h - 2)
         = 7*2^h - 2k-6 + (if k odd then + 3*2^h)

=head2 Convex Hull Boundary

A convex hull is the smallest convex polygon which contains a given set of
points.  For the C curve the boundary length of the convex hull for points
N=0 to N=2^k inclusive is

    hull boundary[k]
        / 2                                    if k=0
        | 2+sqrt(2)                            if k=1
      = | 6                                    if k=2
        | 6*2^(h-1) + (7*2^(h-1) - 4)*sqrt(2)  if k odd  >=3
        \ 7*2^(h-1) + (3*2^(h-1) - 4)*sqrt(2)  if k even >=4
    where h = floor(k/2)

      k              hull boundary
     ---      ----------------------------
      0        2 +  0 * sqrt(2)  =    2
      1        2 +  1 * sqrt(2)  =    3.41
      2        6 +  0 * sqrt(2)  =    6
      3        6 +  3 * sqrt(2)  =   10.24
      4       14 +  2 * sqrt(2)  =   16.82
      5       12 + 10 * sqrt(2)  =   26.14
      6       28 +  8 * sqrt(2)  =   39.31
      7       24 + 24 * sqrt(2)  =   57.94
      8       56 + 20 * sqrt(2)  =   84.28
      9       48 + 52 * sqrt(2)  =  121.53

The integer part is the straight sides of the hull and the sqrt(2) part is
the diagonal sides of the hull.

When k is even the hull has the following shape.  The sides are as per the
right boundary above but after Z[h-2] the curl goes inwards and so parts
beyond Z[h-2] are not part of the hull.  Each Z stair-step diagonal becomes
a sqrt(2) length for the hull.  Z counts both vertical and horizontal of
each stairstep, hence sqrt(2)*Z/2 for the hull boundary.

                  S[h]
               *--------*                  *       Z=2
      Z[h-1]  /          \  Z[h-1]         | \     diagonal
             /            \                |  \    sqrt(2)*Z/2
            *              *               *----*  = sqrt(2)
    S[h-1]  |              |  S[h-1]
            |              |
            *              *
      Z[h-2] \            / Z[h-2]
              *--      --*

                S[h] + Z[h-2]-Z[h-1]

    k even
    hull boundary[k] = S[h] + 2*S[h-1] + S[h+Z[h-2]-Z[h-1]
                       + sqrt(2)*(2*Z[h-1] + 2*Z[h-2])/2

When k is odd the shape is similar but Z[h] in the middle.

                        S[h]
                       *----*
               Z[h-1] /      \  middle
                     *        \  Z[h]
             S[h-1]  |         \
                     *          *
                      \         |  S[h]
          Z[h]                  |
    + 2*(S[h]-S[h-1])           *
                         \     /  Z[h-1]
                          *---*
                          S[h-1]

    k odd
    hull boundary[k] = 2*S[h] + 2*S[h-1]
                       + sqrt(2)*(Z[h]/2 + 2*Z[h-1]/2
                                  + Z[h]/2 + S[h]-S[h-1]

=head2 Convex Hull Area

The area of the convex hull for points N=0 to N=2^k inclusive is

            / 0                                if k=0
            | 1/2                              if k=1
    HA[k] = | 2                                if k=2
            | 35*2^(k-4) - 13*2^(h-1) + 2      if k odd  >=3
            \ 35*2^(k-4) - 10*2^(h-1) + 2      if k even >=4
          where h = floor(k/2)

    = 0, 1/2, 2, 13/2, 17, 46, 102, 230, 482, 1018, 2082, 4274, ...

HA[1] and HA[3] are fractions but all others are integers.

The area can be calculated from the shapes shown for the hull boundary
above.  For k odd it can be noted the width and height are equal, then the
various corners are cut off.

=head2 Line Points

The number of points which fall on straight and diagonal lines from the
endpoints can be calculated by considering how the previous level duplicates
to make the next.

              d   d
            c  \ /  c
        b   |   +   |   b
         \  |  / \  |  /           curve endpoints
          \ | /   \ | /             "S" start
           \|/     \|/              "E" end
     a------E---e---S------a
           /|\     /|\
          / | \   / | \
         /  |  f f  |  \
        h   g       g   h

The curve is rotated to make the endpoints horizontal.  Each "a" through "h"
is the number of points which fall on the respective line.  The curve is
symmetric in left to right so the line counts are the same each side in
mirror image.

"S" start and "E" end points are not included in any of the counts.  "e" is
the count in between S and E.  The two "d" lines meet at point "+" and that
point is counted in d.  That point is where two previous level curves meet
for kE<gt>=1.  Points are visited up to 4 times (per L</Repeated Points>
above) and all those multiple visits are counted.

The following diagram shows how curve level k+1 is made from two level k
curves.  One is from S to M and another M to E.

            |\       /|            curve level k copies
            | \     / |            S to M and M to E
            | c+a c+a |            making curve k+1 S to E
            |   \|/   |
       \    |  --M--  |    /
        \   |   /|\   |   c        a[k+1] = b[k]
         c  d e+g e+g d  /         b[k+1] = c[k]
          \ | /     \ | /          c[k+1] = d[k]
           \|/       \|/           d[k+1] = a[k]+c[k] + e[k]+g[k] + 1
    b-------E--f---f--S-------b    e[k+1] = 2*f[k]
           /|\       /|\           f[k+1] = g[k]
          a | g     g | a          g[k+1] = h[k]
         /  h  \   /  h  \         h[k+1] = a[k]
        /   |   \ /   |   \
       /    |         |    \

For example the line S to M is an e[k], but also the M to E contributes a
g[k] on that same line so e+g.  Similarly c[k] and a[k] on the outer sides
of M.  Point M itself is visited too so the grand total for d[k+1] is
a+c+e+g+1.  The other lines are simpler, being just rotations except for the
middle line e[k+1] which is made of two f[k].

The successive g[k+1]=h[k]=a[k-1]=b[k-2]=c[k-3]=d[k-4] can be substituted
into the d to give a recurrence

    d[k+1] = d[k-1] + d[k-3] + d[k-5] + 2*d[k-7] + 1
           = 0,1,1,2,2,4,4,8,8,17,17,34,34,68,68,136,136,273,273,...

                               x + x^2
    generating function  -------------------
                         (1-2*x^2) * (1-x^8)

=for Test-Pari-DEFINE gd(x)=(x+x^2) / ( (1-2*x^2)*(1-x^8) )

=for Test-Pari gd(x) == (x+x^2) / ( (1-x^2)*(1+x^2)*(1-2*x^2)*(1+x^4) )

=for Test-Pari Vec(gd(x) - O(x^19)) == [1,1,2,2,4,4,8,8,17,17,34,34,68,68,136,136,273,273] /* sans initial 0s */

The recurrence begins with the single segment N=0 to N=1 and the two
endpoints are not included so initial all zeros a[0]=...=h[0]=0.

As an example, the N=0 to N=64 picture above is level k=6 and its "d" line
relative to those endpoints is the South-West diagonal down from N=0.  The
points on that line are N=32,30,40,42 giving d[6]=4.

All the measures are relative to the endpoint direction.  The points on the
fixed X or Y axis or diagonal can be found by taking the appropriate a
through h, or sum of two of them for both positive and negative of a
direction.

=head2 Triangle Areas in Regions

Consider a little right triangle with hypotenuse on each line segment (the
same as in L</Tiling> above) and the way it becomes two triangles on
replicating

                                                *   *
    1 triangle           2 triangles           / \ / \    4 triangles
                                              *---M---*
       *                  *--M--*            /|       |\
      / \       =>        | / \ |     =>    * |       | *
     /   \                |/   \|            \|       |/
    E-----S               E     S             E       E

Consider the triangles which fall within the following regions a,b,c,...,i.
The line from start "S" to end "E" is rotated as necessary to be horizontal.

            *-------*
           /|\  a  /|\
          / | \   / | \
         /  |  \ /  |  \
        * b | c M c | b *
       / \  |  / \  |  / \             next c[2] = 1
      /   \ | /   \ | /   \                 b[2] = 1
     /  d  \|/  e  \|/  d  \
    *-------E-------S-------*          always
     \  f  /|\  g  /|\  f  /
      \   / | \   / | \   /
       \ /  |  \ /  |  \ /
        * h | i * i | h *
         \  |  / \  |  /
          \ | /   \ | /
           \|/     \|/
            *       *

The curve is symmetric in horizontal mirror image so there are two "b"
regions, two "c" regions, etc, one on each side.

The initial triangle is e[0]=1.  On expanding to S,M,E shown above there are
then 2 triangles, 1 in each of the two "c" regions, giving c[1]=1.  The
third expansion keeps 2 triangles in "c" and pushes 2 triangles into "b" for
c[2]=1 and b[2]=1.  In all cases the total is the power-of-2 doubling, hence
sum

    a[k] + 2*b[k] + 2*c[k] + 2*d[k] +   e[k]
         + 2*f[k] +   g[k] + 2*h[k] + 2*i[k] = 2^k

Level k+1 can be calculated by considering two level k, one from S to M and
another from M to E.  The following shows how those two previous levels fall
within the regions of the k+1 level,

          left side, M to E                 right side, S to M

              *---------*                       *---------*
             /|\   |   /|\                     /|\   |   /|\
            / | \b | d/ | \                   / | \ d|b / | \
           /  |  \   /  |  \                 /  |  \   /  |  \
          / a | c \ / f |   \               /   | f \ / c | a \
         *--- | ---M--  |  --*             *--- | ---M--  |  --*
        / \ c | e / \ h |   / \           / \   | h / \ e | c / \
       /   \  |  /   \  |  /   \         /   \  |  /   \  |  /   \
      /  |b \ | / g|i \ | /  |  \       /  |  \ | / i|g \ | / b|  \
     /   |   \|/   |   \|/   |   \     /   |   \|/   |   \|/   |   \
    *---------E---------S---------*   *---------E---------S---------*
     \   |   /|\   |   /|\   |   /     \   |   /|\   |   /|\   |   /
      \  |d / | \ i|  / | \  |  /       \  |  / | \  |i / | \ d|  /
       \   /  |  \   /  |  \   /         \   /  |  \   /  |  \   /
        \ / f | h \ /   |   \ /           \ /   |   \ / h | f \ /
         *--  |  --*--  |  --*             *--  |  --*--  |  --*
          \   |   / \   |   /               \   |   / \   |   /
           \  |  /   \  |  /                 \  |  /   \  |  /
            \ | /     \ | /                   \ | /     \ | /
             \|/       \|/                     \|/       \|/
              *         *                       *         *

For example the top-most "a" triangle gets b[k]+d[k] triangles from the M to
E on the left, plus d[k]+b[k] triangles from S to M on the right, for total
a[k+1] = 2*b[k] + 2*d[k].  The recurrences are

=cut

# It can be seen there is nothing in the outer half of the "d" and "f" regions
# and the lower halves of "h" and "i".  That is per the level extents

=pod

                                             starting
    a[k+1] = 2*b[k] + 2*d[k]                   a[0] = 0
    b[k+1] = a[k] + c[k]                       b[0] = 0
    c[k+1] = c[k] + e[k] + f[k] + h[k]         c[0] = 0
    d[k+1] = b[k]                              d[0] = 0
    e[k+1] = 2*g[k] + 2*i[k]                   e[0] = 1
    f[k+1] = d[k]                              f[0] = 0
    g[k+1] = 2*i[k]                            g[0] = 0
    h[k+1] = f[k]                              h[0] = 0
    i[k+1] = h[k]                              i[0] = 0

These equations are not independent since a[k+1] can be written in terms of
d[k+1] and f[k+1]

    a[k+1] = 2*b[k]   + 2*d[k]
    a[k+1] = 2*d[k+1] + 2*f[k+1]

The initial values a[0]=0, d[0]=0 and f[0]=0 also satisfy this, so
a[k]=2*d[k]+2*f[k] for kE<gt>=0.  Substituting into the equation for b[k+1]
eliminates a[k].

    b[k+1] = c[k] + 2*d[k] + 2*f[k]      k>=0

This leaves 8 equations in 8 unknowns and a little linear algebra gives 8th
order recurrences for each region individually.  The centre e is

    e[k+8] = e[k+7] + 2*e[k+6] - e[k+4] + e[k+3] + 2*e[k+1] + 4*e[k]
      = 1,0,0,0, 0,0,0,2, 6, 10, 22, 40, 80, 156, 308, 622, 1242, ...

                                1 - x - 2*x^2 + x^4 - x^5
    generating function  -----------------------------------------
                         1 - x - 2*x^2 + x^4 - x^5 - 2*x^7 - 4*x^8

=for Test-Pari-DEFINE  Etsamples = [1,0,0,0,0,0,0,2,6,10,22,40,80,156,308,622,1242,2494,4994,9988,19988,39952,79904,159786]

=for Test-Pari-DEFINE Et_rec(k) = if(k<8,Etsamples[k+1], Et_rec(k-1) + 2*Et_rec(k-2) - Et_rec(k-4) + Et_rec(k-5) + 2*Et_rec(k-7) + 4*Et_rec(k-8))

=for Test-Pari vector(length(Etsamples), k, Et_rec(k-1)) == Etsamples

=for Test-Pari-DEFINE  gEt(x) = (1 - x - 2*x^2 + x^4 - x^5) / (1 - x - 2*x^2 + x^4 - x^5 - 2*x^7 - 4*x^8)

=for Test-Pari Vec(gEt(x) - O(x^24)) == Etsamples

The recurrence is the same form for each a through i, just different initial
values

        initial values      further values
        -----------------   --------------
    a   0,0,0,2,4,8,16,30,  60,116,232,466,932,1872,3744,7494,
    c   0,1,1,1,1,2, 4, 8,  18, 39, 79,159,315, 628,1250,2494,
    e   1,0,0,0,0,0, 0, 2,   6, 10, 22, 40, 80, 156, 308, 622,
    g   0,0,0,0,0,0, 0, 2,   2,  6, 10, 20, 40,  76, 156, 310,

    b   0,0,1,1,3,5,10,20,  38,78,155,311,
    d   0,0,0,1,1,3, 5,10,  20,38, 78,155,311,
    f   0,0,0,0,1,1, 3, 5,  10,20, 38, 78,155,311,
    h   0,0,0,0,0,1, 1, 3,   5,10, 20, 38, 78,155,311,
    i   0,0,0,0,0,0, 1, 1,   3, 5, 10, 20, 38, 78,155,311

The values for b through i are the same, just starting one position later
each time.  This is the spiralling out by 45 degrees each time and per the
successive equations above.

    i[k+1] = h[k] = f[k-1] = d[k-2] = b[k-3]

=for Test-Pari-DEFINE  Btsamples = [0,0,1,1,3,5,10,20,  38,78,155,311]

=for Test-Pari-DEFINE Bt_rec(k) = if(k<1,0, if(k==2, 1, Bt_rec(k-1) + 2*Bt_rec(k-2) - Bt_rec(k-4) + Bt_rec(k-5) + 2*Bt_rec(k-7) + 4*Bt_rec(k-8)))

=for Test-Pari vector(length(Btsamples), k, Bt_rec(k-1)) == Btsamples

=for Test-Pari-DEFINE  gBt(x) = x^2 / (1 - x - 2*x^2 + x^4 - x^5 - 2*x^7 - 4*x^8)

=for Test-Pari Vec(gBt(x) - O(x^12)) == vecextract(Btsamples,"3..")  /* no leading zeros from Vec() */

The recurrence for these can be started from a single initial "1" and
treating preceding values (including some negative indices) as "0".  The
generating function for these have a single term in numerator.  For example
the generating function for "b",

                               x^2
    gb(x) =  -----------------------------------------
             1 - x - 2*x^2 + x^4 - x^5 - 2*x^7 - 4*x^8

=cut

/* b  c  d  e  f  g  h  i */
m = \
 [ 0, 1, 2, 0, 2, 0, 0, 0 ; \
   0, 1, 0, 1, 1, 0, 1, 0 ; \
   1, 0, 0, 0, 0, 0, 0, 0 ; \
   0, 0, 0, 0, 0, 2, 0, 2 ; \
   0, 0, 1, 0, 0, 0, 0, 0 ; \
   0, 0, 0, 0, 0, 0, 0, 2 ; \
   0, 0, 0, 0, 1, 0, 0, 0 ; \
   0, 0, 0, 0, 0, 0, 1, 0 ]
matdet(m)

/* select a[k] */
A = [ 0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0; \
      0,0,0,0,0,1,0,0 ]

/* shift upwards */
r = [ 0,1,0,0,0,0,0,0; \
      0,0,1,0,0,0,0,0; \
      0,0,0,1,0,0,0,0; \
      0,0,0,0,1,0,0,0; \
      0,0,0,0,0,1,0,0; \
      0,0,0,0,0,0,1,0; \
      0,0,0,0,0,0,0,1; \
      0,0,0,0,0,0,0,0 ]

p = sum(i=0,7, r^i*A*m^i)
p*m*p^-1

b = [1 2 0 -1 1 0 2 4]
c = [1 2 0 -1 1 0 2 4]
d = [1 2 0 -1 1 0 2 4]
e = [1 2 0 -1 1 0 2 4]
g = [1 2 0 -1 1 0 2 4]

# i[1]=h[0]=f[-1]=d[-2]=b[-3]
#
/* a  b  c  d  e  f  g  h  i */
m = \
 [ 0, 2, 0, 2, 0, 0, 0, 0, 0 ; \
   1, 0, 1, 0, 0, 0, 0, 0, 0 ; \
   0, 0, 1, 0, 1, 1, 0, 1, 0 ; \
   0, 1, 0, 0, 0, 0, 0, 0, 0 ; \
   0, 0, 0, 0, 0, 0, 2, 0, 2 ; \
   0, 0, 0, 1, 0, 0, 0, 0, 0 ; \
   0, 0, 0, 0, 0, 0, 0, 0, 2 ; \
   0, 0, 0, 0, 0, 1, 0, 0, 0 ; \
   0, 0, 0, 0, 0, 0, 0, 1, 0 ]
matdet(m) == 0

matdet(p)
p*m*p^-1

# (a[k+1];...;i[k+1]) = m*(a[k+1];...;i[k+1])
#
# (e[k];0;...;0) = E*(a[k+1];...;i[k+1])
# (0;e[k+1];0;...;0) = r*E*m*(a[k];...;i[k])
#
# (e[k];e[k+1];...;e[k+8]) = p*(a[k];...;i[k])
# (e[k+1];e[k+2];...;e[k+9]) = p*m*(a[k];...;i[k])
# (e[k+1];e[k+2];...;e[k+9]) = p*m*p^-1*(e[k];e[k+1];...;e[k+8])
# p*[0;0;0;0;1;0;0;0;0] = [1; 0; 0; 0; 0; 0; 0; 2; 6]
p*m*p^-1 = [0 1 0 0 0  0 0 0 0]
           [0 0 1 0 0  0 0 0 0]
           [0 0 0 1 0  0 0 0 0]
           [0 0 0 0 1  0 0 0 0]
           [0 0 0 0 0  1 0 0 0]
           [0 0 0 0 0  0 1 0 0]
           [0 0 0 0 0  0 0 1 0]
           [0 0 0 0 0  0 0 0 1]
           [0 4 2 0 1 -1 0 2 1]
e[k+9] = + e[k+8] + 2*e[k+7] - e[k+5] + e[k+4] + 2*e[k+2] + 4*e[k+1]
e[k+8] = + e[k+7] + 2*e[k+6] - e[k+4] + e[k+3] + 2*e[k+1] + 4*e[k]
  for(i=0;20;print1((p*m*p^-1)^i*[1;0;0;0;0;0;0;0;0],","))

B = [ 0,1,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0,0; \
      0,0,0,0,0,0,0,0,0 ]
q = sum(i=0,8, r^i*B*m^i)
q*[0;0;0;0;1;0;0;0;0] = [0; 0; 1; 1; 3; 5; 10; 20; 38]
# b = 1,1,3,5,10,20,38,78,155,311,625

q*m*q^-1 =

# e[k+1] = 2*g[k] + 2*i[k]
#        = 2*i[k-1] + 2*i[k]
#        = 2*h[k-2] + 2*h[k-1]
#        = 2*f[k-3] + 2*f[k-2]
#        = 2*d[k-4] + 2*d[k-3]
#        = 2*b[k-5] + 2*b[k-4]
#        = 2*a[k-6] + 2*c[k-6] + 2*a[k-5]+ 2*c[k-5]


# e[1] = 2g[0] + 2i[0]
#      = 4i[-1] + 2i[0]
#      = 4b[-5] + 2b[-4]
# a[1] = 2d[0] + 2b[0]
#      = 2b[-1] + 2b[0]
# b[1] = a[0] + c[0]
#      = 2b[-2] + 2b[-1] + c[0]
# so c[0] = b[1] - 2b[-2] - 2b[-1]
# c[1] = c[0] + e[0]            + f[0]  + h[0]
#      = c[0] + 4b[-6] + 2b[-5] + b[-2] + b[-3]
# b[2] - 2b[-1] - 2b[0] =  b[1] - 2b[-2] - 2b[-1] + 4b[-6] + 2b[-5] + b[-2] + b[-3]
# b[2] = 2b[-1] + 2b[0] + b[1] - 2b[-2] - 2b[-1] + 4b[-6] + 2b[-5] + b[-2] + b[-3]
# b[2] = b[1] + 2b[0] + 0 - b[-2] + b[-3] + 0 + 2b[-5] + 4b[-6]
# b[0] = b[-1] + 2b[-2] + 0 - b[-4] + b[-5] + 0 + 2b[-7] + 4b[-8]
# for 625 upwards
# b = 1,1,3,5,10,20,38,78,155,311,625
# 4*1 + 2*3 + 0*5 + 10 - 20 + 0*38 + 2*78 + 155
# 4*3 + 2*5 + 0*10 + 20 - 38 + 0*78 + 2*155 + 311
# (-1)/(-1 + 1*x + 2*x^2 + 0*x^3 - x^4 + x^5 + 0*x^6 + 2*x^7 + 4*x^8)

=pod

=head2 Triangles in Parts as Fractal

For the curve as a fractal, the two sub-parts are two half size copies of
the whole, as if a[k]=a[k+1]/2 etc.  This gives the following set of
equations,

    a = 2*b/2 + 2*d/2
    b = a/2 + c/2
    c = c/2 + e/2 + f/2 + h/2
    d = b/2
    e = 2*g/2 + 2*i/2
    f = d/2
    g = 2*i/2
    h = f/2
    i = h/2

The total area is reckoned as 1,

    a + 2*b + 2*c + 2*d + e + 2*f + g + 2*h + 2*i = 1

A little linear algebra gives the following solution,

    a = 24/105               *-------*
    b = 16/105              /|\ 24  /|\
    c =  8/105             / | \   / | \
    d =  8/105            /  |  \ /  |  \
    e =  2/105           * 16| 8 * 8 |16 *
    f =  4/105          / \  |  / \  |  / \
    g =  1/105         /   \ | /   \ | /   \
    h =  2/105        /  8  \|/  2  \|/  8  \
    i =  1/105       *-------E-------S-------*
         -----        \  4  /|\  1  /|\  4  /
    total  1           \   / | \   / | \   /
                        \ /  |  \ /  |  \ /
                         * 2 | 1 * 1 | 2 *
                          \  |  / \  |  /
                           \ | /   \ | /
                            \|/     \|/
                             *       *

This shows how much area of the fractal is in each respective region.

One use for this could be some gray-scale colouring at a limit of drawing
resolution.  Replications to a desired level give triangles then those
triangles which are "on" can be drawn as gray spread out among its
neighbouring triangles in the pattern above.  The total in a given triangle
would be all grays which go into that triangle.  For square pixels the
triangles making up a square can be averaged (4 triangles at even
replication levels, 2 triangles at odd replication levels).

Triangles with total gray "1" are fully within the final fractal.  The first
such does not arise until 14 expansions, as per Duvall and Keesling
reference below.

=cut

# det=0 unless the total a+...+i=1 equation is included
/*  a    b    c    d    e     f   g    h    i  */
m = \
[   1, -2/2,  0, -2/2,  0,    0,  0,   0,   0  ; \
  -1/2,  1, -1/2,  0,   0,    0,  0,   0,   0  ; \
    0,   0, 1-1/2, 0, -1/2, -1/2, 0, -1/2,  0  ; \
    0,  -1/2, 0,   1,   0,    0,  0,   0,   0  ; \
    0,   0,   0,   0,   1,    0, -2/2, 0, -2/2 ; \
    0,   0,   0, -1/2,  0,    1,  0,   0,   0  ; \
    0,   0,   0,   0,   0,    0,  1,   0, -2/2 ; \
    0,   0,   0,   0,   0,  -1/2, 0,   1,   0  ; \
    0,   0,   0,   0,   0,    0,  0,  -1/2, 1  ; \
    1,   2,   2,   2,   1,    2,  1,   2,   2  ]
matsolve(m,[0;0;0;0;0;0;0;0;0;1])

# this one omitting i=h/2 line to make a square matrix
# the result i=1/105 and h=2/105 satisfies i=h/2
/*  a    b    c    d    e     f   g    h    i  */
m = \
[   1, -2/2,  0, -2/2,  0,    0,  0,   0,   0  ; \
  -1/2,  1, -1/2,  0,   0,    0,  0,   0,   0  ; \
    0,   0, 1-1/2, 0, -1/2, -1/2, 0, -1/2,  0  ; \
    0,  -1/2, 0,   1,   0,    0,  0,   0,   0  ; \
    0,   0,   0,   0,   1,    0, -2/2, 0, -2/2 ; \
    0,   0,   0, -1/2,  0,    1,  0,   0,   0  ; \
    0,   0,   0,   0,   0,    0,  1,   0, -2/2 ; \
    0,   0,   0,   0,   0,  -1/2, 0,   1,   0  ; \
    1,   2,   2,   2,   1,    2,  1,   2,   2  ]
matsolve(m,[0;0;0;0;0;0;0;0;1])

=pod

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A179868> (etc)

=back

    A010059   abs(dX), count1bits(N) mod 2
    A010060   abs(dY), count1bits(N)+1 mod 2, being Thue-Morse

    A000120   direction, being total turn, count 1-bits
    A179868   direction 0to3, count 1-bits mod 4

    A035263   turn 0=straight or 180, 1=left or right,
                being (count low 0-bits + 1) mod 2
    A096268   next turn 1=straight or 180, 0=left or right,
                being count low 1-bits mod 2
    A007814   turn-1 to the right,
                being count low 0-bits

    A003159   N positions of left or right turn, ends even num 0 bits
    A036554   N positions of straight or 180 turn, ends odd num 0 bits

    A146559   X at N=2^k, being Re((i+1)^k)
    A009545   Y at N=2^k, being Im((i+1)^k)

    A131064   right boundary length to odd power N=2^(2k-1),
                being 5*2^n-4n-4, skip initial 1
    A027383   right boundary length differences

    A038503   number of East  segments in N=0 to N=2^k-1
    A038504   number of North segments in N=0 to N=2^k-1
    A038505   number of West  segments in N=0 to N=2^k-1
    A000749   number of South segments in N=0 to N=2^k-1

    A191689   fractal dimension of the interior boundary

A191689 is the boundary of the fractal, which is not the same as the
boundary of the integer form here.  When extended infinitely only some
points persist indefinitely when the expansion rule is applied repeatedly.

=over

P. Duvall and J. Keesling, "The Dimension of the Boundary of the
LE<233>vy Dragon", International Journal Math and Math Sci, volume 20,
number 4, 1997, pages 627-632.  (Preprint "The Hausdorff Dimension of the
Boundary of the LE<233>vy Dragon" L<http://at.yorku.ca/p/a/a/h/08.htm>.)

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::AlternatePaper>,
L<Math::PlanePath::KochCurve>

L<ccurve(6x)> back-end for L<xscreensaver(1)> which displays the C curve
(and various other dragon curve and Koch curves).

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut