/usr/share/perl5/Math/PlanePath/CfracDigits.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | # Copyright 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::CfracDigits;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
use Math::PlanePath::RationalsTree;
*_xy_to_quotients = \&Math::PlanePath::RationalsTree::_xy_to_quotients;
use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant parameter_info_array =>
[ { name => 'radix',
share_key => 'radix2_min1',
display => 'Radix',
type => 'integer',
minimum => 1,
default => 2,
width => 3,
},
];
use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 2;
use constant diffxy_maximum => -1; # upper octant X<=Y-1 so X-Y<=-1
use constant gcdxy_maximum => 1; # no common factor
# FIXME: believe this is right, but check N+1 always changes Y
sub absdy_minimum {
my ($self) = @_;
return ($self->{'radix'} < 3 ? 0 : 1);
}
# radix=1 N=1 has dir4=0
# radix=2 N=5628 has dir4=0 dx=9,dy=0
# radix=3 N=1189140 has dir4=0 dx=1,dy=0
# radix=4 N=169405 has dir4=0 dx=2,dy=0
# always eventually 0 ?
# use constant dir_minimum_dxdy => (1,0); # the default
# radix=1 N=4 dX=1,dY=-1 for dir4=3.5
# radix=2 N=4413 dX=9,dY=-1
# radix=3 N=9492 dX=3,dY=-1
# ENHANCE-ME: suspect believe approaches 360 degrees, eventually, but proof?
# use constant dir_maximum_dxdy => (0,0); # the default
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
unless ($self->{'radix'} && $self->{'radix'} >= 1) {
$self->{'radix'} = 2;
}
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### CfracDigits n_to_xy(): "$n"
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
{
my $int = int($n);
if ($n != $int) {
### frac ...
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
### x1,y1: "$x1, $y1"
### x2,y2: "$x2, $y2"
### dx,dy: "$dx, $dy"
### result: ($frac*$dx + $x1).', '.($frac*$dy + $y1)
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
my $radix = $self->{'radix'};
my $zero = ($n * 0); # inherit bignum 0
my $x = $zero;
my $y = 1 + $zero; # inherit bignum 1
foreach my $q (_n_to_quotients_bottomtotop($n,$radix,$zero)) { # bottom to top
### at: "$x,$y q=$q"
# 1/(q + X/Y) = 1/((qY+X)/Y)
# = Y/(qY+X)
($x,$y) = ($y, $q*$y + $x);
}
### return: "$x,$y"
return ($x,$y);
}
# Return a list of quotients bottom to top. The base3 digits of N are split
# by "3" delimiters and the parts adjusted so the first bottom-most q>=2 and
# the rest q>=1. The values are ready to be used as continued fraction
# terms.
#
sub _n_to_quotients_bottomtotop {
my ($n, $radix, $zero) = @_;
### _n_to_quotients_bottomtotop(): $n
my $radix_plus_1 = $radix + 1;
my @ret;
my @group;
foreach my $digit (_digit_split_1toR_lowtohigh($n,$radix_plus_1)) {
if ($digit == $radix_plus_1) {
### @group
push @ret, _digit_join_1toR_destructive(\@group, $radix, $zero) + 1;
@group = ();
} else {
push @group, $digit;
}
}
### final group: @group
push @ret, _digit_join_1toR_destructive(\@group, $radix, $zero) + 1;
$ret[0] += 1; # bottom-most is +2 rather than +1
### _n_to_quotients_bottomtotop result: @ret
return @ret;
}
# Return a list of digits 1 <= d <= R which is $n written in $radix, low to
# high digits.
sub _digit_split_1toR_lowtohigh {
my ($n, $radix) = @_;
### assert: $radix >= 1
### assert: $n >= 0
if ($radix == 1) {
return (1) x $n;
}
my @digits = digit_split_lowtohigh($n,$radix);
# mangle 0 -> R
my $borrow = 0;
foreach my $digit (@digits) { # low to high
if ($borrow = (($digit -= $borrow) <= 0)) { # modify array contents
$digit += $radix;
}
}
if ($borrow) {
### assert: $digits[-1] == $radix
pop @digits;
}
return @digits;
}
sub _digit_join_1toR_destructive {
my ($aref, $radix, $zero) = @_;
### assert: $radix >= 1
if ($radix == 1) {
return scalar(@$aref);
}
# mangle any digit==$radix down to digit=0
my $carry = 0;
foreach my $digit (@$aref) { # low to high
if ($carry = (($digit += $carry) >= $radix)) { # modify array contents
$digit -= $radix;
}
}
if ($carry) {
push @$aref, 1;
}
### _digit_join_1toR_destructive() result: digit_join_lowtohigh($aref, $radix, $zero)
return digit_join_lowtohigh($aref, $radix, $zero);
}
sub xy_is_visited {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
return (! ($x < 1 || $y < 2 || $x >= $y)
&& _coprime($x,$y));
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### CfracDigits xy_to_n(): "$x,$y"
if (is_infinite($x)) { return $x; }
if (is_infinite($y)) { return $y; }
if ($x < 1 || $y < 2 || $x >= $y) {
return undef;
}
my @quotients = _xy_to_quotients($x,$y)
or return undef; # $x,$y have a common factor
### @quotients
# drop initial 0 integer part
### assert: $quotients[0] == 0
shift @quotients;
return _cfrac_join_toptobottom(\@quotients,
$self->{'radix'},
$x * 0 * $y); # inherit bignum 0
}
# $aref is a list of continued fraction quotients from top-most to
# bottom-most. There's no initial integer term in $aref. Each quotient is
# q >= 1 except the bottom-most which q-1 and so also >=1.
#
sub _cfrac_join_toptobottom {
my ($aref, $radix, $zero) = @_;
### _cfrac_join_toptobottom(): $aref
my @digits;
foreach my $q (reverse @$aref) {
### assert: $q >= 1
push @digits, _digit_split_1toR_lowtohigh($q-1, $radix), $radix+1;
}
pop @digits; # no high delimiter
### groups digits 1toR: @digits
return _digit_join_1toR_destructive(\@digits, $radix+1, $zero);
}
# X/Y = F[k]/F[k+1] quotients all 1
# N = all delimiter digits R,R,...,R
# = 1222...2221
# = R^k + 2*(R^k+1)/(R-1) - 1
# = (RR^k - R^k + 2R^k + 2 - R + 1) / (R-1)
# = (RR^k + R^k - R + 3) / (R-1)
# = ((R+1)R^k - R + 3) / (R-1)
# take high as "12" = R+2
# k = log(Y)/log(phi)
# N = (R+2) * R ** k
# N = Y ** (log(R)/log(phi))
#
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### rect_to_n_range()
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
### $x2
### $y2
# | /
# | / x1
# | / +-----y2
# | / |
# |/ +-----
#
if ($x2 < 1 || $y2 < 2 || $x1 >= $y2) {
### no values, rect outside upper octant ...
return (1,0);
}
my $zero = ($x1 * 0 * $y1 * $x2 * $y2); # inherit bignum
my $radix = $self->{'radix'};
return (0,
($radix+3)
* ($radix+1 + $zero) ** ($radix == 1
? $y2
: _log_phi_estimate($y2,$radix)));
}
# Return an estimate of log base phi of $x, that being log($x)/log(phi),
# where phi=(1+sqrt(5))/2 the golden ratio.
#
sub _log_phi_estimate {
my ($x) = @_;
my ($pow,$exp) = round_down_pow ($x, 2);
return int ($exp * (log(2) / log((1+sqrt(5))/2)));
}
1;
__END__
=for stopwords eg Ryde OEIS ie Math-PlanePath coprime octant onwards decrement Shallit radix-1 Radix radix HCS 10www w's
=head1 NAME
Math::PlanePath::CfracDigits -- continued fraction terms encoded by digits
=head1 SYNOPSIS
use Math::PlanePath::CfracDigits;
my $path = Math::PlanePath::CfracDigits->new (tree_type => 'Kepler');
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Shallit, Jeffrey>This path enumerates reduced fractions
S<0 E<lt> X/Y E<lt> 1> with X,Y no common factor using a method by Jeffrey
Shallit encoding continued fraction terms in digit strings, as per
=over
Jeffrey Shallit, "Number Theory and Formal Languages", part 3,
L<https://cs.uwaterloo.ca/~shallit/Papers/ntfl.ps>
=back
Fractions up to a given denominator are covered by roughly N=den^2.28. This
is a much smaller N range than the run-length encoding in C<RationalsTree>
and C<FractionsTree> (but is more than C<GcdRationals>).
=cut
# math-image --path=CfracDigits --output=numbers_xy --all --size=78x17
=pod
15 | 25 27 91 61 115 307 105 104
14 | 23 48 65 119 111 103
13 | 22 24 46 29 66 59 113 120 101 109 99 98
12 | 17 60 114 97
11 | 16 18 30 64 58 112 118 102 96 95
10 | 14 28 100 94
9 | 13 15 20 38 36 35
8 | 8 21 39 34
7 | 7 9 19 37 33 32
6 | 5 31
5 | 4 6 12 11
4 | 2 10
3 | 1 3
2 | 0
1 |
Y=0 |
----------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A fraction S<0 E<lt> X/Y E<lt> 1> has a finite continued fraction of the
form
1
X/Y = 0 + ---------------------
1
q[1] + -----------------
1
q[2] + ------------
....
1
q[k-1] + ----
q[k]
where each q[i] >= 1
except last q[k] >= 2
The terms are collected up as a sequence of integers E<gt>=0 by subtracting
1 from each and 2 from the last.
# each >= 0
q[1]-1, q[2]-1, ..., q[k-2]-1, q[k-1]-1, q[k]-2
These integers are written in base-2 using digits 1,2. A digit 3 is written
between each term as a separator.
base2(q[1]-1), 3, base2(q[2]-1), 3, ..., 3, base2(q[k]-2)
If a term q[i]-1 is zero then its base-2 form is empty and there's adjacent
3s in that case. If the high q[1]-1 is zero then a bare high 3, and if the
last q[k]-2 is zero then a bare final 3. If there's just a single term q[1]
and q[1]-2=0 then the string is completely empty. This occurs for X/Y=1/2.
The resulting string of 1s,2s,3s is reckoned as a base-3 value with digits
1,2,3 and the result is N. All possible strings of 1s,2s,3s occur
(including the empty string) and so all integers NE<gt>=0 correspond
one-to-one with an X/Y fraction with no common factor.
Digits 1,2 in base-2 means writing an integer in the form
d[k]*2^k + d[k-1]*2^(k-1) + ... + d[2]*2^2 + d[1]*2 + d[0]
where each digit d[i]=1 or 2
Similarly digits 1,2,3 in base-3 which is used for N,
d[k]*3^k + d[k-1]*3^(k-1) + ... + d[2]*3^2 + d[1]*3 + d[0]
where each digit d[i]=1, 2 or 3
This is not the same as the conventional binary and ternary radix
representations by digits 0,1 or 0,1,2 (ie. 0 to radix-1). The effect of
digits 1 to R is to change any 0 digit to instead R and decrement the value
above that position to compensate.
=head2 Axis Values
N=0,1,2,4,5,7,etc in the X=1 column is integers with no digit 0s in ternary.
N=0 is considered no digits at all and so no digit 0. These points are
fractions 1/Y which are a single term q[1]=Y-1 and hence no "3" separators,
only a run of digits 1,2. These N values are also those which are the same
when written in digits 0,1,2 as when written in digits 1,2,3, since there's
no 0s or 3s.
N=0,3,10,11,31,etc along the diagonal Y=X+1 are integers which are ternary
"10www..." where the w's are digits 1 or 2, so no digit 0s except the
initial "10". These points Y=X+1 points are X/(X+1) with continued fraction
1
X/(X+1) = 0 + -------
1
1 + ---
X
so q0=1 and q1=X, giving N="3,X-1" in digits 1,2,3, which is N="1,0,X-1" in
normal ternary. For example N=34 is ternary "1021" which is leading "10"
and then X-1=7 ternary "21".
=head2 Radix
The optional C<radix> parameter can select another base for the continued
fraction terms, and corresponding radix+1 for the resulting N. The default
is radix=2 as described above. Any integer radixE<gt>=1 can be selected.
For example,
=cut
# math-image --path=CfracDigits,radix=5 --output=numbers_xy --all --size=78x17
=pod
radix => 5
11 | 10 30 114 469 75 255 1549 1374 240 225
10 | 9 109 1369 224
9 | 8 24 74 254 234 223
8 | 7 78 258 41
7 | 5 18 73 253 228 40
6 | 4 39
5 | 3 12 42 38
4 | 2 37
3 | 1 6
2 | 0
1 |
Y=0 |
----------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
The X=1 column is integers with no digit 0 in base radix+1, so in radix=5
means no 0 digit in base-6.
=head2 Radix 1
The radix=1 case encodes continued fraction terms using only digit 1, which
means runs of q many "1"s to add up to q, and then digit "2" as separator.
N = 11111 2 1111 2 ... 2 1111 2 11111 base2 digits 1,2
\---/ \--/ \--/ \---/
q[1]-1 q[2]-1 q[k-1]-1 q[k]-2
which becomes in plain binary
N = 100000 10000 ... 10000 011111 base2 digits 0,1
\----/ \---/ \---/ \----/
q[1] q[2] q[k-1] q[k]-1
Each "2" becomes "0" in plain binary and carry +1 into the run of 1s above
it. That carry propagates through those 1s, turning them into 0s, and stops
at the "0" above them (which had been a "2"). The low run of 1s from q[k]-2
has no "2" below it and is therefore unchanged.
=cut
# math-image --path=CfracDigits,radix=1 --output=numbers_xy --all --size=60x12
=pod
radix => 1
11 | 511 32 18 21 39 55 29 26 48 767
10 | 255 17 25 383
9 | 127 16 19 27 24 191
8 | 63 10 14 95
7 | 31 8 9 13 12 47
6 | 15 23
5 | 7 4 6 11
4 | 3 5
3 | 1 2
2 | 0
1 |
Y=0 |
-------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
The result is similar to L<Math::PlanePath::RationalsTree/HCS Continued
Fraction>. But the lowest run is "0111" here, instead of "1000" as it is in
the HCS. So N-1 here, and a flip (Y-X)/X to map from X/YE<lt>1 here to
instead all rationals for the HCS tree. For example
CfracDigits radix=1 RationalsTree tree_type=HCS
X/Y = 5/6 (Y-X)/X = 1/5
is at is at
N = 23 = 0b10111 N = 24 = 0b11000
^^^^ ^^^^
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over
=item C<$path = Math::PlanePath::CfracDigits-E<gt>new ()>
=item C<$path = Math::PlanePath::CfracDigits-E<gt>new (radix =E<gt> $radix)>
Create and return a new path object.
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include
=over
L<http://oeis.org/A032924> (etc)
=back
radix=1
A071766 X coordinate (numerator), except extra initial 1
radix=2 (the default)
A032924 N in X=1 column, ternary no digit 0 (but lacking N=0)
radix=3
A023705 N in X=1 column, base-4 no digit 0 (but lacking N=0)
radix=4
A023721 N in X=1 column, base-5 no digit 0 (but lacking N=0)
radix=10
A052382 N in X=1 column, decimal no digit 0 (but lacking N=0)
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::FractionsTree>,
L<Math::PlanePath::CoprimeColumns>
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::GcdRationals>,
L<Math::PlanePath::DiagonalRationals>
L<Math::ContinuedFraction>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|