/usr/share/perl5/Math/PlanePath/ComplexMinus.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=ComplexMinus --lines --scale=10
# math-image --path=ComplexMinus --all --output=numbers_dash --size=80x50
# Penney numerals in tcl
# http://wiki.tcl.tk/10761
# cf A003476 = boundary length of i-1 ComplexMinus
# is same as DragonCurve single points N=0 to N=2^k inclusive
# Mandelbrot "Fractals: Form, Chance and Dimension"
# distance along the boundary between any two points is infinite
# Fractal Tilings Derived from Complex Bases
# Sara Hagey and Judith Palagallo
# The Mathematical Gazette
# Vol. 85, No. 503 (Jul., 2001), pp. 194-201
# Published by: The Mathematical Association
# Article Stable URL: http://www.jstor.org/stable/3622004
package Math::PlanePath::ComplexMinus;
use 5.004;
use strict;
use List::Util 'min';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant n_start => 0;
use constant parameter_info_array =>
[ { name => 'realpart',
display => 'Real Part',
type => 'integer',
default => 1,
minimum => 1,
width => 2,
description => 'Real part r in the i-r complex base.',
} ];
sub x_negative_at_n {
my ($self) = @_;
return $self->{'norm'};
}
sub y_negative_at_n {
my ($self) = @_;
return $self->{'norm'} ** 2;
}
sub absdx_minimum {
my ($self) = @_;
return ($self->{'realpart'} == 1
? 0 # i-1 N=3 dX=0,dY=-3
: 1); # i-r otherwise always diff
}
# realpart=1
# dx=1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0 = (6*16^k-2)/15
# dy=1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1 = ((9*16^5-1)/15-1)/2+1
# approaches dx=6/15=12/30, dy=9/15/2=9/30
# FIXME: are others smaller than East ?
sub dir_maximum_dxdy {
my ($self) = @_;
if ($self->{'realpart'} == 1) { return (12,-9); }
else { return (0,0); }
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
my $realpart = $self->{'realpart'};
if (! defined $realpart || $realpart < 1) {
$self->{'realpart'} = $realpart = 1;
}
$self->{'norm'} = $realpart*$realpart + 1;
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### ComplexMinus n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
# is this sort of midpoint worthwhile? not documented yet
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
my $x = 0;
my $y = 0;
my $dx = 1;
my $dy = 0;
my $realpart = $self->{'realpart'};
my $norm = $self->{'norm'};
foreach my $digit (digit_split_lowtohigh($n,$norm)) {
### at: "$x,$y digit=$digit"
$x += $digit * $dx;
$y += $digit * $dy;
# multiply i-r, ie. (dx,dy) = (dx + i*dy)*(i-$realpart)
$dy = -$dy;
($dx,$dy) = ($dy - $realpart*$dx,
$dx + $realpart*$dy);
}
### final: "$x,$y"
return ($x,$y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### ComplexMinus xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
my $realpart = $self->{'realpart'};
{
my $rx = $realpart*$x;
my $ry = $realpart*$y;
foreach my $overflow ($rx+$ry, $rx-$ry) {
if (is_infinite($overflow)) { return $overflow; }
}
}
my $norm = $self->{'norm'};
my $zero = ($x * 0 * $y); # inherit bignum 0
my @n; # digits low to high
while ($x || $y) {
my $new_y = $y*$realpart + $x;
my $digit = $new_y % $norm;
push @n, $digit;
$x -= $digit;
$new_y = $digit - $new_y;
# div i-realpart,
# is (i*y + x) * -(i+realpart)/norm
# x = [ x*realpart - y ] / -norm
# = [ y - x*realpart ] / norm
# y = - [ y*realpart + x ] / norm
#
### assert: (($y - $x*$realpart) % $norm) == 0
### assert: ($new_y % $norm) == 0
($x,$y) = (($y - $x*$realpart) / $norm,
$new_y / $norm);
}
return digit_join_lowtohigh (\@n, $norm, $zero);
}
# for i-1 need level=6 to cover 8 points surrounding 0,0
# for i-2 and higher level=3 is enough
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### ComplexMinus rect_to_n_range(): "$x1,$y1 $x2,$y2"
my $xm = max(abs($x1),abs($x2));
my $ym = max(abs($y1),abs($y2));
return (0,
int (($xm*$xm + $ym*$ym)
* $self->{'norm'} ** ($self->{'realpart'} > 1
? 4
: 8)));
}
#------------------------------------------------------------------------------
sub _UNDOCUMENTED_level_to_figure_boundary {
my ($self, $level) = @_;
### _UNDOCUMENTED_level_to_figure_boundary(): "level=$level realpart=$self->{'realpart'}"
if ($level < 0) { return undef; }
if (is_infinite($level)) { return $level; }
my $b0 = 4;
if ($level == 0) { return $b0; }
my $norm = $self->{'norm'};
my $b1 = 2*$norm + 2;
if ($level == 1) { return $b1; }
# 2*(norm-1)*(realpart + 2) + 4;
# = 2*(n*r + 2*n -r - 2) + 4
# = 2*n*r + 4n -2r - 4 + 4
# = 2*n*r + 4n -2r
my $realpart = $self->{'realpart'};
my $b2 = 2*($norm-1)*($realpart + 2) + 4;
my $f1 = $norm - 2*$realpart;
my $f2 = 2*$realpart - 1;
foreach (3 .. $level) {
($b2,$b1,$b0) = ($f2*$b2 + $f1*$b1 + $norm*$b0, $b2, $b1);
}
return $b2;
}
#------------------------------------------------------------------------------
{
my @table = ('','');
# 6-bit blocks per Penney
foreach my $i (064,067,060,063, 4,7,0,3) { vec($table[0],$i,1) = 1; }
foreach my $i (020,021,034,035, 0,1,014,015) { vec($table[1],$i,1) = 1; }
sub _UNDOCUMENTED__n_is_y_axis {
my ($self, $n) = @_;
if (is_infinite($n)) { return 0; }
if ($n < 0) { return 0; }
if ($self->{'realpart'} == 1) {
my $pos = 0;
foreach my $digit (digit_split_lowtohigh($n,64)) {
unless (vec($table[$pos&1],$digit,1)) {
### bad digit: "pos=$pos digit=$digit"
return 0;
}
$pos++;
}
### good ...
return 1;
} else {
my ($x,$y) = $self->n_to_xy($n)
or return 0;
return $x == 0;
}
}
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return (0, $self->{'norm'}**$level - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
my ($pow, $exp) = round_down_pow ($n, $self->{'norm'});
return $exp + 1;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Math-PlanePath 0.abcde twindragon ie 0xC 0,1,0xC,0xD OEIS ACM abcde Xnew Ynew Realpart characterises
=head1 NAME
Math::PlanePath::ComplexMinus -- twindragon and other complex number base i-r
=head1 SYNOPSIS
use Math::PlanePath::ComplexMinus;
my $path = Math::PlanePath::ComplexMinus->new (realpart=>1);
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Penney, Walter>X<Twindragon>This path traverses points by a complex number
base i-r for given integer r. The default is base i-1 as per
=over
Walter Penny, "A 'Binary' System for Complex Numbers", Journal of the ACM,
volume 12, number 2, April 1965, pages 247-248.
=back
When continued to a power-of-2 extent this is called the "twindragon" shape.
=cut
# math-image --path=ComplexMinus --expression='i<64?i:0' --output=numbers
=pod
26 27 10 11 3
24 25 8 9 2
18 19 30 31 2 3 14 15 1
16 17 28 29 0 1 12 13 <- Y=0
22 23 6 7 58 59 42 43 -1
20 21 4 5 56 57 40 41 -2
50 51 62 63 34 35 46 47 -3
48 49 60 61 32 33 44 45 -4
54 55 38 39 -5
52 53 36 37 -6
^
-5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7
A complex integer can be represented as a set of powers,
X+Yi = a[n]*b^n + ... + a[2]*b^2 + a[1]*b + a[0]
base b=i-1
digits a[n] to a[0] each = 0 or 1
N = a[n]*2^n + ... + a[2]*2^2 + a[1]*2 + a[0]
N is the a[i] digits as bits and X,Y is the resulting complex number. It
can be shown that this is a one-to-one mapping so every integer X,Y of the
plane is visited once each.
The shape of points N=0 to N=2^level-1 repeats as N=2^level to
N=2^(level+1)-1. For example N=0 to N=7 is repeated as N=8 to N=15, but
starting at position X=2,Y=2 instead of the origin. That position 2,2 is
because b^3 = 2+2i. There's no rotations or mirroring etc in this
replication, just position offsets.
N=0 to N=7 N=8 to N=15 repeat shape
2 3 10 11
0 1 8 9
6 7 14 15
4 5 12 13
For b=i-1 each N=2^level point starts at X+Yi=(i-1)^level. The powering of
that b means the start position rotates around by +135 degrees each time and
outward by a radius factor sqrt(2) each time. So for example b^3 = 2+2i is
followed by b^4 = -4, which is 135 degrees around and radius |b^3|=sqrt(8)
becomes |b^4|=sqrt(16).
=head2 Real Part
The C<realpart =E<gt> $r> option gives a complex base b=i-r for a given
integer rE<gt>=1. For example C<realpart =E<gt> 2> is
20 21 22 23 24 4
15 16 17 18 19 3
10 11 12 13 14 2
5 6 7 8 9 1
45 46 47 48 49 0 1 2 3 4 <- Y=0
40 41 42 43 44 -1
35 36 37 38 39 -2
30 31 32 33 34 -3
70 71 72 73 74 25 26 27 28 29 -4
65 66 67 68 69 -5
60 61 62 63 64 -6
55 56 57 58 59 -7
50 51 52 53 54 -8
^
-8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9 10
N is broken into digits of base=norm=r*r+1, ie. digits 0 to r*r inclusive.
This makes horizontal runs of r*r+1 many points, such as N=5 to N=9 etc
above. In the default r=1 these runs are 2 long whereas for r=2 they're
2*2+1=5 long, or r=3 would be 3*3+1=10, etc.
The offset back for each run like N=5 shown is the r in i-r, then the next
level is (i-r)^2 = (-2r*i + r^2-1) so N=25 begins at Y=-2*2=-4, X=2*2-1=3.
The successive replications tile the plane for any r, though the N values
needed to rotate around and do so become large if norm=r*r+1 is large.
=head2 Fractal
The i-1 twindragon is usually conceived as taking fractional N like 0.abcde
in binary and giving fractional complex X+iY. The twindragon is then all
the points of the complex plane reached by such fractional N. This set of
points can be shown to be connected and to fill a certain radius around the
origin.
The code here might be pressed into use for that to some finite number of
bits by multiplying up to make an integer N
Nint = Nfrac * 256^k
Xfrac = Xint / 16^k
Yfrac = Yint / 16^k
256 is a good power because b^8=16 is a positive real and so there's no
rotations to apply to the resulting X,Y, only a power-of-16 division
(b^8)^k=16^k each. Using b^4=-4 for a multiplier 16^k and divisor (-4)^k
would be almost as easy too, requiring just sign changes if k odd.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::ComplexMinus-E<gt>new ()>
=item C<$path = Math::PlanePath::ComplexMinus-E<gt>new (realpart =E<gt> $r)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
C<$n> should be an integer, it's unspecified yet what will be done for a
fraction.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 2**$level - 1)>, or with C<realpart> option return C<(0,
$norm**$level - 1)> where norm=realpart^2+1.
=back
=head1 FORMULAS
=head2 X,Y to N
A given X,Y representing X+Yi can be turned into digits of N by successive
complex divisions by i-r. Each digit of N is a real remainder 0 to r*r
inclusive from that division.
The base formula above is
X+Yi = a[n]*b^n + ... + a[2]*b^2 + a[1]*b + a[0]
and we want the a[0]=digit to be a real 0 to r*r inclusive. Subtracting
a[0] and dividing by b will give
(X+Yi - digit) / (i-r)
= - (X-digit + Y*i) * (i+r) / norm
= (Y - (X-digit)*r)/norm
+ i * - ((X-digit) + Y*r)/norm
which is
Xnew = Y - (X-digit)*r)/norm
Ynew = -((X-digit) + Y*r)/norm
The a[0] digit must make both Xnew and Ynew parts integers. The easiest one
to calculate from is the imaginary part, from which require
- ((X-digit) + Y*r) == 0 mod norm
so
digit = X + Y*r mod norm
This digit value makes the real part a multiple of norm too, as can be seen
from
Xnew = Y - (X-digit)*r
= Y - X*r - (X+Y*r)*r
= Y - X*r - X*r + Y*r*r
= Y*(r*r+1)
= Y*norm
Notice Ynew is the quotient from (X+Y*r)/norm rounded downwards (towards
negative infinity). Ie. in the division "X+Y*r mod norm" which calculates
the digit, the quotient is Ynew and the remainder is the digit.
=cut
# Is this quite right ? ...
#
# =head2 Radius Range
#
# In general for base i-1 after the first few innermost levels each
# N=2^level increases the covered radius around by a factor sqrt(2), ie.
#
# N = 0 to 2^level-1
# Xmin,Ymin closest to origin
# Xmin^2+Ymin^2 approx 2^(level-7)
#
# The "level-7" is since the innermost few levels take a while to cover the
# points surrounding the origin. Notice for example X=1,Y=-1 is not reached
# until N=58. But after that it grows like N approx = pi*R^2.
=pod
=head2 X Axis N for Realpart 1
For base i-1, Penney shows the N on the X axis are
X axis N in hexadecimal uses only digits 0, 1, C, D
= 0, 1, 12, 13, 16, 17, 28, 29, 192, 193, 204, 205, 208, ...
Those on the positive X axis have an odd number of digits and on the X
negative axis an even number of digits.
To be on the X axis the imaginary parts of the base powers b^k must cancel
out to leave just a real part. The powers repeat in an 8-long cycle
k b^k for b=i-1
0 +1
1 i -1
2 -2i +0 \ pair cancel
3 2i +2 /
4 -4
5 -4i +4
6 8i +0 \ pair cancel
7 -8i -8 /
The k=0 and k=4 bits are always reals and can always be included. Bits k=2
and k=3 have imaginary parts -2i and 2i which cancel out, so they can be
included together. Similarly k=6 and k=7 with 8i and -8i. The two blocks
k=0to3 and k=4to7 differ only in a negation so the bits can be reckoned in
groups of 4, which is hexadecimal. Bit 1 is digit value 1 and bits 2,3
together are digit value 0xC, so adding one or both of those gives
combinations are 0,1,0xC,0xD.
The high hex digit determines the sign, positive or negative, of the total
real part. Bits k=0 or k=2,3 are positive. Bits k=4 or k=6,7 are negative,
so
N for X>0 N for X<0
0x01.. 0x1_.. even number of hex 0,1,C,D following
0x0C.. 0xC_.. "_" digit any of 0,1,C,D
0x0D.. 0xD_..
which is equivalent to XE<gt>0 is an odd number of hex digits or XE<lt>0 is
an even number. For example N=28=0x1C is at X=-2 since that N is XE<lt>0
form "0x1_".
The order of the values on the positive X axis is obtained by taking the
digits in reverse order on alternate positions
0,1,C,D high digit
D,C,1,0
0,1,C,D
...
D,C,1,0
0,1,C,D low digit
For example in the following notice the first and third digit increases, but
the middle digit decreases,
X=4to7 N=0x1D0,0x1D1,0x1DC,0x1DD
X=8to11 N=0x1C0,0x1C1,0x1CC,0x1CD
X=12to15 N=0x110,0x111,0x11C,0x11D
X=16to19 N=0x100,0x101,0x10C,0x10D
X=20to23 N=0xCD0,0xCD1,0xCDC,0xCDD
For the negative X axis it's the same if reading by increasing X,
ie. upwards toward +infinity, or the opposite way around if reading
decreasing X, ie. more negative downwards toward -infinity.
=head2 Y Axis N for Realpart 1
For base i-1 Penny also characterises the N values on the Y axis,
Y axis N in base-64 uses only
at even digits 0, 3, 4, 7, 48, 51, 52, 55
at odd digit 0, 1, 12, 13, 16, 17, 28, 29
= 0,3,4,7,48,51,52,55,64,67,68,71,112,115,116,119, ...
Base-64 means taking N in 6-bit blocks. Digit positions are counted
starting from the least significant digit as position 0 which is even. So
the low digit can be only 0,3,4,etc, then the second digit only 0,1,12,etc,
and so on.
This arises from (i-1)^6 = 8i which gives a repeating pattern of 6-bit
blocks. The different patterns at odd and even positions are since i^2
= -1.
=head2 Boundary Length
X<Gilbert, William J.>The length of the boundary of unit squares for the
first norm^k many points, ie. N=0 to N=norm^k-1 inclusive, is calculated in
=over
William J. Gilbert, "The Fractal Dimension of Sets Derived From Complex
Bases", Canadian Math Bulletin, volume 29, number 4, 1986.
L<http://www.math.uwaterloo.ca/~wgilbert/Research/GilbertFracDim.pdf>
=back
The boundary formula is a 3rd-order recurrence. For the twindragon case it
is
for realpart=1
boundary[k] = boundary[k-1] + 2*boundary[k-3]
= 4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710, ...
4 + 2*x + 4*x^2
generating function ---------------
1 - x - 2*x^3
=for Test-Pari 2*4+10 == 18
=for Test-Pari 2*6+18 == 30
=for Test-Pari-DEFINE gB1(x) = (4 + 2*x + 4*x^2) / (1 - x - 2*x^3)
=for Test-Pari Vec(gB1(x) - O(x^11)) == [4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710]
The first three boundaries are as follows. Then the recurrence gives the
next boundary[3] = 10+2*4 = 18.
k area boundary[k]
--- ---- -----------
+---+
0 2^k = 1 4 | 0 |
+---+
+---+---+
1 2^k = 2 6 | 0 1 |
+---+---+
+---+---+
| 2 3 |
2 2^k = 4 10 +---+ +---+
| 0 1 |
+---+---+
Gilbert calculates for any i-r by taking the boundary in three parts A,B,C
and showing how in the next replication level those boundary parts transform
into multiple copies of the preceding level parts. The replication is
easier to visualize for a bigger "r" than for the twindragon because in
bigger r it's clearer how the A, B and C parts differ. The length
replications are
A -> A * (2*r-1) + C * 2*r
B -> A * (r^2-2*r+2) + C * (r-1)^2
C -> B
starting from
A = 2*r
B = 2
C = 2 - 2*r
total boundary = A+B+C
For the twindragon realpart=1 these A,B,C are already in the form of a
recurrence A-E<gt>A+2*C, B-E<gt>A, C-E<gt>B, per the formula above. For
other real parts a little matrix rearrangement turns the A,B,C parts into
recurrence
boundary[k] = boundary[k-1] * (2*r - 1)
+ boundary[k-2] * (norm - 2*r)
+ boundary[k-3] * norm
starting from
boundary[0] = 4 # single square cell
boundary[1] = 2*norm + 2 # oblong of norm many cells
boundary[2] = 2*(norm-1)*(r+2) + 4
For example
for realpart=2
boundary[k] = 3*boundary[k-1] + 1*boundary[k-2] + 5*boundary[k-3]
= 4, 12, 36, 140, 516, 1868, 6820, 24908, 90884, ...
4 - 4*x^2
generating function ---------------------
1 - 3*x - x^2 - 5*x^3
=for Test-Pari-DEFINE gB2(x) = (4 - 4*x^2) / (1 - 3*x - x^2 - 5*x^3)
=for Test-Pari Vec(gB2(x) - O(x^9)) == [4, 12, 36, 140, 516, 1868, 6820, 24908, 90884]
=for Test-Pari 5*4+1*12+3*36 == 140
=for Test-Pari 5*12+1*36+3*140 == 516
If calculating for large k values then the matrix form can be powered up
rather than repeated additions. (As usual for all such linear recurrences.)
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include
=over
L<http://oeis.org/A066321> (etc)
=back
realpart=1 (twindragon, the default)
A066321 N on X axis, being the base i-1 positive reals
A066323 N on X axis, in binary
A066322 diffs (N at X=16k+4) - (N at X=16k+3)
A003476 boundary length / 2
recurrence a(n) = a(n-1) + 2*a(n-3)
A203175 boundary length, starting from 4
(believe its conjectured recurrence is true)
A052537 boundary length part A, B or C, per Gilbert's paper
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::ComplexPlus>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|