/usr/share/perl5/Math/PlanePath/DiagonalRationals.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# Maybe:
# including_zero=>1 to have 0/1 for A038567
package Math::PlanePath::DiagonalRationals;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_rect_for_first_quadrant = \&Math::PlanePath::_rect_for_first_quadrant;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::CoprimeColumns;
*_extend = \&Math::PlanePath::CoprimeColumns::_extend;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;
use vars '@_x_to_n';
*_x_to_n = \@Math::PlanePath::CoprimeColumns::_x_to_n;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant parameter_info_array =>
[ { name => 'direction',
share_key => 'direction_downup',
display => 'Direction',
type => 'enum',
default => 'down',
choices => ['down','up'],
choices_display => ['Down','Up'],
description => 'Number points downwards or upwards along the diagonals.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
use constant default_n_start => 1;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
use constant x_minimum => 1;
use constant y_minimum => 1;
use constant gcdxy_maximum => 1; # no common factor
sub absdx_minimum {
my ($self) = @_;
return ($self->{'direction'} eq 'down' ? 0 : 1);
}
sub absdy_minimum {
my ($self) = @_;
return ($self->{'direction'} eq 'down' ? 1 : 0);
}
use constant dsumxy_minimum => 0;
use constant dsumxy_maximum => 1; # to next diagonal stripe
sub dir_minimum_dxdy {
my ($self) = @_;
return ($self->{'direction'} eq 'down'
? (0,1) # North
: (1,0)); # East
}
sub dir_maximum_dxdy {
my ($self) = @_;
return ($self->{'direction'} eq 'down'
? (1,-1) # South-East
: (2,-1)); # ESE at N=3 down to X axis
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
my $direction = ($self->{'direction'} ||= 'down');
if (! ($direction eq 'up' || $direction eq 'down')) {
croak "Unrecognised direction option: ", $direction;
}
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### DiagonalRationals n_to_xy(): $n
if (2*($n - $self->{'n_start'}) < -1) {
### before n_start ...
return;
}
my ($x,$y) = $self->Math::PlanePath::CoprimeColumns::n_to_xy($n+1)
or return;
### CoprimeColumns returned: "x=$x y=$y"
$x -= $y;
### shear to: "x=$x y=$y"
return ($x,$y);
}
# Note: shared by FactorRationals
sub xy_is_visited {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 1
|| $y < 1
|| ! _coprime($x,$y)) {
return 0;
}
return 1;
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### DiagonalRationals xy_to_n(): "$x,$y"
my $n = Math::PlanePath::CoprimeColumns::xy_to_n($self,$x+$y,$y);
# not the N=0 at Xcol=1,Ycol=1 which is Xdiag=1,Ydiag=0
if (defined $n && $n > $self->{'n_start'}) {
return $n-1;
} else {
return undef;
}
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### DiagonalRationals rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest($x1);
$y1 = round_nearest($y1);
$x2 = round_nearest($x2);
$y2 = round_nearest($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x2 < 1 || $y2 < 1) {
### outside quadrant ...
return (1, 0);
}
### rect: "$x1,$y1 $x2,$y2"
my $d2 = $x2 + $y2 + 1;
if (is_infinite($d2)) {
return (1, $d2);
}
while ($#_x_to_n < $d2) {
_extend();
}
my $d1 = max (2, $x1 + $y1);
### $d1
### $d2
return ($_x_to_n[$d1] - 1 + $self->{'n_start'},
$_x_to_n[$d2] + $self->{'n_start'});
}
1;
__END__
=for stopwords Ryde Math-PlanePath coprime coprimes coprimeness totient totients Euler's onwards OEIS
=head1 NAME
Math::PlanePath::DiagonalRationals -- rationals X/Y by diagonals
=head1 SYNOPSIS
use Math::PlanePath::DiagonalRationals;
my $path = Math::PlanePath::DiagonalRationals->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path enumerates positive rationals X/Y with no common factor, going in
diagonal order from Y down to X.
17 | 96...
16 | 80
15 | 72 81
14 | 64 82
13 | 58 65 73 83 97
12 | 46 84
11 | 42 47 59 66 74 85 98
10 | 32 48 86
9 | 28 33 49 60 75 87
8 | 22 34 50 67 88
7 | 18 23 29 35 43 51 68 76 89 99
6 | 12 36 52 90
5 | 10 13 19 24 37 44 53 61 77 91
4 | 6 14 25 38 54 69 92
3 | 4 7 15 20 30 39 55 62 78 93
2 | 2 8 16 26 40 56 70 94
1 | 1 3 5 9 11 17 21 27 31 41 45 57 63 71 79 95
Y=0 |
+---------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
The order is the same as the C<Diagonals> path, but only those X,Y with no
common factor are numbered.
1/1, N = 1
1/2, 1/2, N = 2 .. 3
1/3, 1/3, N = 4 .. 5
1/4, 2/3, 3/2, 4/1, N = 6 .. 9
1/5, 5/1, N = 10 .. 11
N=1,2,4,6,10,etc at the start of each diagonal (in the column at X=1) is the
cumulative totient,
totient(i) = count numbers having no common factor with i
i=K
cumulative_totient(K) = sum totient(i)
i=1
=head2 Direction Up
Option C<direction =E<gt> 'up'> reverses the order within each diagonal to
count upward from the X axis.
=cut
# math-image --path=DiagonalRationals,direction=up --all --output=numbers --size=50x10
=pod
direction => "up"
8 | 27
7 | 21 26
6 | 17
5 | 11 16 20 25
4 | 9 15 24
3 | 5 8 14 19
2 | 3 7 13 23
1 | 1 2 4 6 10 12 18 22
Y=0|
+---------------------------
X=0 1 2 3 4 5 6 7 8
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start with the same shape, For example
to start at 0,
=cut
# math-image --path=DiagonalRationals,n_start=0 --all --output=numbers --size=50x10
=pod
n_start => 0
8 | 21
7 | 17 22
6 | 11
5 | 9 12 18 23
4 | 5 13 24
3 | 3 6 14 19
2 | 1 7 15 25
1 | 0 2 4 8 10 16 20 26
Y=0|
+---------------------------
X=0 1 2 3 4 5 6 7 8
=head2 Coprime Columns
The diagonals are the same as the columns in C<CoprimeColumns>. For example
the diagonal N=18 to N=21 from X=0,Y=8 down to X=8,Y=0 is the same as the
C<CoprimeColumns> vertical at X=8. In general the correspondence is
Xdiag = Ycol
Ydiag = Xcol - Ycol
Xcol = Xdiag + Ydiag
Ycol = Xdiag
C<CoprimeColumns> has an extra N=0 at X=1,Y=1 which is not present in
C<DiagonalRationals>. (It would be Xdiag=1,Ydiag=0 which is 1/0.)
The points numbered or skipped in a column up to X=Y is the same as the
points numbered or skipped on a diagonal, simply because X,Y no common
factor is the same as Y,X+Y no common factor.
Taking the C<CoprimeColumns> as enumerating fractions F = Ycol/Xcol with
S<0 E<lt> F E<lt> 1> the corresponding diagonal rational
S<0 E<lt> R E<lt> infinity> is
1 F
R = ------- = ---
1/F - 1 1-F
1 R
F = ------- = ---
1/R + 1 1+R
which is a one-to-one mapping between the fractions S<F E<lt> 1> and all
rationals.
=cut
# R = 1 / (1/F - 1)
# F = Ycol/Xcol
# R = 1 / (Xcol/Ycol - 1)
# = 1 / (Xcol-Ycol)/Ycol
# = Ycol / (Xcol-Ycol)
#
# R = 1 / (1/F - 1)
# = 1 / (1-F)/F
# = F/(1-F)
#
# 1/R = 1/F - 1
# 1/R + 1 = 1/F
# F = 1 / (1/R + 1)
# = 1 / (1+R)/R
# = R/(1+R)
#
# F = 1 / (1/R + 1)
# R = Xdiag/Ydiag
# F = 1 / (Ydiag/Xdiag + 1)
# = 1 / (Ydiag+Xdiag)/Xdiag
# = Xdiag/(Ydiag+Xdiag)
# = Ycol/Xcol
# Xcol = Ydiag+Xdiag
# Ycol = Xdiag
#
# R = 1 / (1/F - 1)
# = 1 / ((1+R)/R - 1)
# = 1 / ((1+R-R)/R)
# = 1 / (1/R)
# = R
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::DiagonalRationals-E<gt>new ()>
=item C<$path = Math::PlanePath::DiagonalRationals-E<gt>new (direction =E<gt> $str, n_start =E<gt> $n)>
Create and return a new path object. C<direction> (a string) can be
"down" (the default)
"up"
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 1 and if C<$n E<lt> 1> then the return is an empty list.
=back
=head1 BUGS
The current implementation is fairly slack and is slow on medium to large N.
A table of cumulative totients is built and retained for the diagonal d=X+Y.
=head1 OEIS
This enumeration of rationals is in Sloane's Online Encyclopedia of Integer
Sequences in the following forms
=over
L<http://oeis.org/A020652> (etc)
=back
direction=down, n_start=1 (the defaults)
A020652 X, numerator
A020653 Y, denominator
A038567 X+Y sum, starting from X=1,Y=1
A054431 by diagonals 1=coprime, 0=not
(excluding X=0 row and Y=0 column)
A054430 permutation N at Y/X
reverse runs of totient(k) many integers
A054424 permutation DiagonalRationals -> RationalsTree SB
A054425 padded with 0s at non-coprimes
A054426 inverse SB -> DiagonalRationals
A060837 permutation DiagonalRationals -> FactorRationals
direction=down, n_start=0
A157806 abs(X-Y) difference
direction=up swaps X,Y.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::PythagoreanTree>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|