This file is indexed.

/usr/share/perl5/Math/PlanePath/DragonMidpoint.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=DragonMidpoint --lines --scale=20
# math-image --path=DragonMidpoint --all --output=numbers_dash

# A006466 contfrac 2*sum( 1/2^(2^n)), 1 and 2 only
#    a(5n) recurrence ...
#    1,1,1,1, 2,
#    1,1,1,1,1,1,1, 2,
#    1,1,1,1, 2,
#    1,1,1,1, 2,
#    1, 2,
#    1,1,1,1, 2,
#    1,1,1,1,1,1,1, 2,
#    1,1,1,1, 2,
#    1, 2,
#    1,1,1,1,1,1,1, 2,
#    1,1,1,1, 2,
#    1, 2,
#    1,1,1,1, 2,
#    1,1,1,1, 2,
#    1,1,1,1,1,1,1, 2,
#    1,1,1,1, 2,
#    1, 2,
#    1,1,1,1,1,1,1, 2,
#    1,1,1,1, 2,
#    1,1,1,1, 2,
#    1, 2
# A076214   in decimal
#
# A073097 number of 4s - 6s - 2s - 1 is -1,0,1
# A081769 positions of 2s
# A073088 cumulative total multiples of 4 roughly, hence (4n-3-cum)/2
#
# A088435 (contfrac+1)/2 of sum(k>=1,1/3^(2^k)).
# A007404   in decimal
#


package Math::PlanePath::DragonMidpoint;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'bit_split_lowtohigh',
  'digit_join_lowtohigh',
  'round_down_pow';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

# uncomment this to run the ### lines
# use Smart::Comments;


# whole plane when arms==4
use Math::PlanePath::DragonCurve;


use constant n_start => 0;
use constant parameter_info_array => [ { name      => 'arms',
                                         share_key => 'arms_4',
                                         display   => 'Arms',
                                         type      => 'integer',
                                         minimum   => 1,
                                         maximum   => 4,
                                         default   => 1,
                                         width     => 1,
                                         description => 'Arms',
                                       } ];

{
  my @x_negative_at_n = (undef, 6,5,2,2);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef, 27,19,11,7);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}
{
  my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 9, 9, 5, 3);
  sub _UNDOCUMENTED__dxdy_list_at_n {
    my ($self) = @_;
    return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
  }
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(4, $self->{'arms'} || 1));
  return $self;
}

# sub n_to_xy {
#   my ($self, $n) = @_;
#   ### DragonMidpoint n_to_xy(): $n
#
#   if ($n < 0) { return; }
#   if (is_infinite($n)) { return ($n, $n); }
#
#   {
#     my $int = int($n);
#     if ($n != $int) {
#       my ($x1,$y1) = $self->n_to_xy($int);
#       my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
#       my $frac = $n - $int;  # inherit possible BigFloat
#       my $dx = $x2-$x1;
#       my $dy = $y2-$y1;
#       return ($frac*$dx + $x1, $frac*$dy + $y1);
#     }
#     $n = $int; # BigFloat int() gives BigInt, use that
#   }
#
#   my ($x1,$y1) = Math::PlanePath::DragonCurve->n_to_xy($n);
#   my ($x2,$y2) = Math::PlanePath::DragonCurve->n_to_xy($n+1);
#
#   my $dx = $x2-$x1;
#   my $dy = $y2-$y1;
#   return ($x1+$y1 + ($dx+$dy-1)/2,
#           $y1-$x1 + ($dy-$dx+1)/2);
# }

sub n_to_xy {
  my ($self, $n) = @_;
  ### DragonMidpoint n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $frac;
  {
    my $int = int($n);
    $frac = $n - $int;  # inherit possible BigFloat
    $n = $int;          # BigFloat int() gives BigInt, use that
  }
  my $zero = ($n * 0);  # inherit bignum 0

  # arm as initial rotation
  my $rot = _divrem_mutate ($n, $self->{'arms'});

  ### $arms
  ### rot from arm: $rot
  ### $n

  # ENHANCE-ME: sx,sy just from len,len
  my @digits = bit_split_lowtohigh($n);
  my @sx;
  my @sy;

  {
    my $sx = $zero + 1;
    my $sy = -$sx;
    foreach (@digits) {
      push @sx, $sx;
      push @sy, $sy;

      # (sx,sy) + rot+90(sx,sy)
      ($sx,$sy) = ($sx - $sy,
                   $sy + $sx);
    }
  }

  ### @digits
  my $rev = 0;
  my $x = $zero;
  my $y = $zero;
  my $above_low_zero = 0;

  for (my $i = $#digits; $i >= 0; $i--) {     # high to low
    my $digit = $digits[$i];
    my $sx = $sx[$i];
    my $sy = $sy[$i];
    ### at: "$x,$y  $digit   side $sx,$sy"
    ### $rot

    if ($rot & 2) {
      $sx = -$sx;
      $sy = -$sy;
    }
    if ($rot & 1) {
      ($sx,$sy) = (-$sy,$sx);
    }
    ### rotated side: "$sx,$sy"

    if ($rev) {
      if ($digit) {
        $x -= $sy;
        $y += $sx;
        ### rev add to: "$x,$y next is still rev"
      } else {
        $above_low_zero = $digits[$i+1];
        $rot ++;
        $rev = 0;
        ### rev rot, next is no rev ...
      }
    } else {
      if ($digit) {
        $rot ++;
        $x += $sx;
        $y += $sy;
        $rev = 1;
        ### plain add to: "$x,$y next is rev"
      } else {
        $above_low_zero = $digits[$i+1];
      }
    }
  }

  # Digit above the low zero is the direction of the next turn, 0 for left,
  # 1 for right.
  #
  ### final: "$x,$y  rot=$rot  above_low_zero=".($above_low_zero||0)

  if ($rot & 2) {
    $frac = -$frac;  # rotate 180
    $x -= 1;
  }
  if (($rot+1) & 2) {
    # rot 1 or 2
    $y += 1;
  }
  if (!($rot & 1) && $above_low_zero) {
    $frac = -$frac;
  }
  $above_low_zero ^= ($rot & 1);
  if ($above_low_zero) {
    $y = $frac + $y;
  } else {
    $x = $frac + $x;
  }

  ### rotated return: "$x,$y"
  return ($x,$y);
}

# or tables arithmetically,
#
#   my $ax = ((($x+1) ^ ($y+1)) >> 1) & 1;
#   my $ay = (($x^$y) >> 1) & 1;
#   ### assert: $ax == - $yx_adj_x[$y%4]->[$x%4]
#   ### assert: $ay == - $yx_adj_y[$y%4]->[$x%4]
#
my @yx_adj_x = ([0,1,1,0],
                [1,0,0,1],
                [1,0,0,1],
                [0,1,1,0]);

my @yx_adj_y = ([0,0,1,1],
                [0,0,1,1],
                [1,1,0,0],
                [1,1,0,0]);

# arm $x $y         2 | 1     Y=1
#  0   0  0         3 | 0     Y=0
#  1   0  1       ----+----
#  2  -1  1       X=-1  X=0
#  3  -1  0
my @xy_to_arm = ([0,   # x=0,y=0
                  1],  # x=0,y=1
                 [3,   # x=-1,y=0
                  2]); # x=-1,y=1

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### DragonMidpoint xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  { my $overflow = abs($x)+abs($y)+2;
    if (is_infinite($overflow)) { return $overflow; }
  }
  my $zero = ($x * 0 * $y);
  my @nbits;  # low to high

  while ($x < -1 || $x > 0 || $y < 0 || $y > 1) {
    my $y4 = $y % 4;
    my $x4 = $x % 4;
    my $ax = $yx_adj_x[$y4]->[$x4];
    my $ay = $yx_adj_y[$y4]->[$x4];

    ### at: "$x,$y  n=$n  axy=$ax,$ay  bit=".($ax^$ay)

    push @nbits, $ax^$ay;

    $x -= $ax;
    $y -= $ay;
    ### assert: ($x+$y)%2 == 0
    ($x,$y) = (($x+$y)/2,   # rotate -45 and divide sqrt(2)
               ($y-$x)/2);
  }

  ### final: "xy=$x,$y"

  my $arm = $xy_to_arm[$x]->[$y];
  ### $arm
  my $arms_count = $self->arms_count;
  if ($arm >= $arms_count) {
    return undef;
  }

  if ($arm & 1) {
    ### flip ...
    @nbits = map {$_^1} @nbits;
  }

  return digit_join_lowtohigh(\@nbits, 2, $zero) * $arms_count + $arm;
}

#------------------------------------------------------------------------------
# xy_is_visited()

sub xy_is_visited {
  my ($self, $x, $y) = @_;
  return ($self->{'arms'} >= 4
          || _xy_to_arm($x,$y) < $self->{'arms'});
}

# return arm number 0,1,2,3
sub _xy_to_arm {
  my ($x, $y) = @_;
  ### DragonMidpoint _xy_to_arm(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  { my $overflow = abs($x)+abs($y)+2;
    if (is_infinite($overflow)) { return $overflow; }
  }

  while ($x < -1 || $x > 0 || $y < 0 || $y > 1) {
    my $y4 = $y % 4;
    my $x4 = $x % 4;
    $x -= $yx_adj_x[$y4]->[$x4];
    $y -= $yx_adj_y[$y4]->[$x4];

    ### assert: ($x+$y)%2 == 0
    ($x,$y) = (($x+$y)/2,   # rotate -45 and divide sqrt(2)
               ($y-$x)/2);
  }
  return $xy_to_arm[$x]->[$y];
}

#------------------------------------------------------------------------------

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### DragonMidpoint rect_to_n_range(): "$x1,$y1  $x2,$y2  arms=$self->{'arms'}"
  $x1 = abs($x1);
  $x2 = abs($x2);
  $y1 = abs($y1);
  $y2 = abs($y2);
  my $xmax = int(max($x1,$x2));
  my $ymax = int(max($y1,$y2));
  return (0,
          ($xmax*$xmax + $ymax*$ymax + 1) * $self->{'arms'} * 5);
}

# sub rect_to_n_range {
#   my ($self, $x1,$y1, $x2,$y2) = @_;
#   ### DragonMidpoint rect_to_n_range(): "$x1,$y1  $x2,$y2"
#
#   return Math::PlanePath::DragonCurve->rect_to_n_range
#     (sqrt(2)*$x1, sqrt(2)*$y1, sqrt(2)*$x2, sqrt(2)*$y2);
# }

#------------------------------------------------------------------------------

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, 2**$level * $self->{'arms'} - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_down_pow ($n, 2);
  return $exp + 1;
}

#------------------------------------------------------------------------------
1;
__END__


# wider drawn arms ...
#
#
# ...            36---32             59---63-...        5
#  |              |    |              |
# 60             40   28             55                 4
#  |              |    |              |
# 56---52---48---44   24---20---16   51                 3
#                                |    |
#           17---13----9----5   12   47---43---39       2
#            |              |    |              |
#           21    6--- 2    1    8   27---31---35       1
#            |    |              |    |
# 33---29---25   10    3    0--- 4   23             <- Y=0
#  |              |    |              |
# 37---41---45   14    7---11---15---19                -1
#            |    |
#           49   18---22---26   46---50---54---58      -2
#            |              |    |              |
#           53             30   42             62      -3
#            |              |    |              |
# ...--61---57             34---38             ...     -4
#
#
#
#  ^    ^    ^    ^    ^    ^    ^    ^    ^    ^
# -5   -4   -3   -2   -1   X=0   1    2    3    4



# DragonMidpoint abs(dY) is A073089, but that seq has an extra leading 0
#
#   --*--+   dy=+/-1  vert and left
#        |            horiz and right
#        *
#        |
#   |
#   *
#   |
#   +--*--   dy=+/-1
#
#   +--*--   dx=+/-1  vert and right
#   |                 horiz and left
#   *
#   |
#        |   dx=+/-1
#        *
#        |
#   --*--+
#
# left turn  ...01000
# right turn ...11000
# vert           ...1
# horiz          ...0

# Offset=1  0,0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,

# mod16
# 0     1
# 1        8n+1=4n+1
# 2  0
# 3      1
# 4     1
# 5       1
# 6  0
# 7   0
# 8     1
# 9       8n+1=4n+1
# 10 0
# 11     1
# 12    1
# 13   0
# 14 0
# 15  0
#
# a(1) = a(4n+2) = a(8n+7) = a(16n+13) = 0,
# a(4n) = a(8n+3) = a(16n+5) = 1
# a(8n+1) = a(4n+1)

# N=0   0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1,0,1,1,0,0,0,1,0,0,1,1,





=for stopwords eg Ryde Dragon Math-PlanePath Nlevel Heighway Harter et al bignum Xadj,Yadj lookup OEIS 0b.zz111 0b..zz11 ie tilingsearch Xadj

=head1 NAME

Math::PlanePath::DragonMidpoint -- dragon curve midpoints

=head1 SYNOPSIS

 use Math::PlanePath::DragonMidpoint;
 my $path = Math::PlanePath::DragonMidpoint->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is the midpoint of each segment of the dragon curve by Heighway,
Harter, et al, per L<Math::PlanePath::DragonCurve>.


                    17--16           9---8                5
                     |   |           |   |
                    18  15          10   7                4
                     |   |           |   |
                    19  14--13--12--11   6---5---4        3
                     |                           |
                    20--21--22                   3        2
                             |                   |
    33--32          25--24--23                   2        1
     |   |           |                           |
    34  31          26                       0---1    <- Y=0
     |   |           |
    35  30--29--28--27                                   -1
     |
    36--37--38  43--44--45--46                           -2
             |   |           |
            39  42  49--48--47                           -3
             |   |   |
            40--41  50                                   -4
                     |
                    51                                   -5
                     |
                    52--53--54                           -6
                             |
    ..--64          57--56--55                           -7
         |           |
        63          58                                   -8
         |           |
        62--61--60--59                                   -9


     ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^
    -10 -9  -8  -7  -6  -5  -4  -3  -2  -1  X=0  1

The dragon curve begins as follows.  The midpoints of each segment are
numbered starting from 0,

     +--8--+     +--4--+
     |     |     |     |
     9     7     5     3
     |     |     |     |                               |
     +-10--+--6--+     +--2--+       rotate 45 degrees |
           |                 |                         v
          11                 1
           |                 |
     +-12--+           *--0--+       * = Origin
     |
    ...

These midpoints are on fractions X=0.5,Y=0, X=1,Y=0.5, etc.  For this
C<DragonMidpoint> path they're turned clockwise 45 degrees and shrunk by
sqrt(2) to be integer X,Y values a unit apart and initial direction to the
right.

The midpoints are distinct X,Y positions because the dragon curve traverses
each edge only once.

The dragon curve is self-similar in 2^level sections due to its unfolding.
This can be seen in the midpoints too as for example above N=0 to N=16 is
the same shape as N=16 to N=32, with the latter rotated 90 degrees and in
reverse.

=head2 Arms

Like the C<DragonCurve> the midpoints fill a quarter of the plane and four
copies mesh together perfectly when rotated by 90, 180 and 270 degrees.  The
C<arms> parameter can choose 1 to 4 curve arms, successively advancing.

For example C<arms =E<gt> 4> begins as follows, with N=0,4,8,12,etc being
the first arm (the same as the plain curve above), N=1,5,9,13 the second,
N=2,6,10,14 the third and N=3,7,11,15 the fourth.

    arms => 4

                    ...-107-103  83--79--75--71             6
                              |   |           |
     68--64          36--32  99  87  59--63--67             5
      |   |           |   |   |   |   |
     72  60          40  28  95--91  55                     4
      |   |           |   |           |
     76  56--52--48--44  24--20--16  51                     3
      |                           |   |
     80--84--88  17--13---9---5  12  47--43--39 ...         2
              |   |           |   |           |  |
    100--96--92  21   6---2   1   8  27--31--35 106         1
      |           |   |           |   |          |
    104  33--29--25  10   3   0---4  23  94--98-102    <- Y=0
      |   |           |   |           |   |
    ...  37--41--45  14   7--11--15--19  90--86--82        -1
                  |   |                           |
                 49  18--22--26  46--50--54--58  78        -2
                  |           |   |           |   |
                 53  89--93  30  42          62  74        -3
                  |   |   |   |   |           |   |
         65--61--57  85  97  34--38          66--70        -4
          |           |   |
         69--73--77--81 101-105-...                        -5

                              ^
     -6  -5  -4  -3  -2  -1  X=0  1   2   3   4   5

With four arms like this every X,Y point is visited exactly once, because
four arms of the C<DragonCurve> traverse every edge exactly once.

=head2 Tiling

Taking pairs of adjacent points N=2k and N=2k+1 gives little rectangles with
the following tiling of the plane repeating in 4x4 blocks.

         +---+---+---+-+-+---+-+-+---+
         |   | | |   | | |   | | |   |
         +---+ | +---+ | +---+ | +---+
         |   | | |9 8| | |   | | |   |
         +-+-+---+-+-+-+-+-+-+-+-+-+-+
         | | |   | |7|   | | |   | | |
         | | +---+ | +---+ | +---+ | |
         | | |   | |6|5 4| | |   | | |
         +---+-+-+-+-+-+-+-+-+-+-+-+-+
         |   | | |   | |3|   | | |   |
         +---+ | +---+ | +---+ | +---+
         |   | | |   | |2|   | | |   |
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         | | |   | | |0 1| | |   | | |   <- Y=0
         | | +---+ | +---+ | +---+ | |
         | | |   | | |   | | |   | | |
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         |   | | |   | | |   | | |   |
         +---+ | +---+ | +---+ | +---+
         |   | | |   | | |   | | |   |
         +---+-+-+---+-+-+---+-+-+---+
                      ^
                     X=0

The pairs follow this pattern both for the main curve N=0 etc shown, and
also for the rotated copies per L</Arms> above.  This tiling is in the
tilingsearch database as

=over

L<http://tilingsearch.org/HTML/data24/K02A.html>

=back

Taking pairs N=2k+1 and N=2k+2, being each odd N and its successor, gives a
regular pattern too, but this time repeating in blocks of 16x16.

    |||--||||||--||--||--||||||--||||||--||||||--||||||--||||||--|||
    |||--||||||--||--||--||||||--||||||--||||||--||||||--||||||--|||
    -||------||------||------||------||------||------||------||-----
    -||------||------||------||------||------||------||------||-----
    |||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
    |||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
    -----||------||------||------||------||------||------||------||-
    -----||------||------||------||------||------||------||------||-
    -||--||--||--||--||--||||||--||--||--||--||--||--||--||||||--||-
    -||--||--||--||--||--||||||--||--||--||--||--||--||--||||||--||-
    -||------||------||------||------||------||------||------||-----
    -||------||------||------||------||------||------||------||-----
    |||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
    |||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
    -----||------||------||------||------||------||------||------||-
    -----||------||------||------||------||------||------||------||-
    |||--||||||--||--||--||||||--||  ||--||||||--||--||--||||||--|||
    |||--||||||--||--||--||||||--||  ||--||||||--||--||--||||||--|||
    -||------||------||------||------||------||------||------||-----
    -||------||------||------||------||------||------||------||-----
    |||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
    |||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
    -----||------||------||------||------||------||------||------||-
    -----||------||------||------||------||------||------||------||-
    -||--||||||--||--||--||--||--||--||--||||||--||--||--||--||--||-
    -||--||||||--||--||--||--||--||--||--||||||--||--||--||--||--||-
    -||------||------||------||------||------||------||------||-----
    -||------||------||------||------||------||------||------||-----
    |||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
    |||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
    -----||------||------||------||------||------||------||------||-
    -----||------||------||------||------||------||------||------||-

=head2 Curve from Midpoints

Since the dragon curve always turns left or right, never straight ahead or
reverse, its segments are alternately horizontal and vertical.  Rotated -45
degrees for the midpoints here this means alternately "opposite diagonal"
and "leading diagonal".  They fall on X,Y alternately even or odd.  So the
original dragon curve can be recovered from the midpoints by choosing
leading diagonal or opposite diagonal segment according to X,Y even or odd,
which is the same as N even or odd.

    DragonMidpoint                  dragon segment
    --------------                 -----------------
    "even" N==0 mod 2              opposite diagonal
      which is X+Y==0 mod 2 too

    "odd"  N==1 mod 2              leading diagonal
      which is X+Y==1 mod 2 too

               /
              3         0 at X=0,Y=0 "even", opposite diagonal
             /          1 at X=1,Y=0 "odd", leading diagonal
             \          etc
              2
               \
         \     /
          0   1
           \ /

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::DragonMidpoint-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2**$level - 1)>, or for multiple arms return C<(0, $arms *
2**$level - 1)>.

There are 2^level segments comprising the dragon, or arms*2^level when
multiple arms, numbered starting from 0.

=back

=head1 FORMULAS

=head2 X,Y to N

An X,Y point is turned into N by dividing out digits of a complex base i+1.
This base is per the doubling of the C<DragonCurve> at each level.  In
midpoint coordinates an adjustment subtracting 0 or 1 must be applied to
move an X,Y which is either N=2k or N=2k+1 to the position where dividing
out i+1 gives the N=k X,Y.

The adjustment is in a repeating pattern of 4x4 blocks.  Points N=2k and
N=2k+1 both move to the same place corresponding to N=k multiplied by i+1.
The adjustment pattern is a little like the pair tiling shown above, but for
some pairs both the N=2k and N=2k+1 positions must move, it's not enough
just to shift the N=2k+1 to the N=2k.

            Xadj               Yadj
    Ymod4              Ymod4
      3 | 0 1 1 0        3 | 1 1 0 0
      2 | 1 0 0 1        2 | 1 1 0 0
      1 | 1 0 0 1        1 | 0 0 1 1
      0 | 0 1 1 0        0 | 0 0 1 1
        +--------          +--------
          0 1 2 3            0 1 2 3
           Xmod4              Xmod4

The same tables work for both the main curve and for the rotated copies per
L</Arms> above.

    until -1<=X<=0 and 0<=Y<=1

      Xm = X - Xadj(X mod 4, Y mod 4)
      Ym = Y - Yadj(X mod 4, Y mod 4)

      new X,Y = (Xm+i*Ym) / (i+1)
              = (Xm+i*Ym) * (1-i)/2
              = (Xm+Ym)/2, (Ym-Xm)/2     # Xm+Ym and Ym-Xm are both even

      Nbit = Xadj xor Yadj               # bits of N low to high

The X,Y reduction stops at one of the start points for the four arms

    X,Y endpoint   Arm        +---+---+
    ------------   ---        | 2 | 1 |  Y=1
        0, 0        0         +---+---+
        0, 1        1         | 3 | 0 |  Y=0
       -1, 1        2         +---+---+
       -1, 0        3         X=-1 X=0

For arms 1 and 3 the N bits must be flipped 0E<lt>-E<gt>1.  The arm number
and hence whether this flip is needed is not known until reaching the
endpoint.

For bignum calculations there's no need to apply the "/2" shift in
newX=(Xm+Ym)/2 and newY=(Ym-Xm)/2.  Instead keep a bit position which is the
logical low end and pick out two bits from there for the Xadj,Yadj lookup.
A whole word can be dropped when the bit position becomes a multiple of 32
or 64 or whatever.

=head2 Boundary

Taking unit squares at each point, the boundary MB[k] of the resulting shape
from 0 to N=2^k-1 inclusive can be had from the boundary B[k] of the plain
dragon curve.  Taking points N=0 to N=2^k-1 inclusive is the midpoints of
the dragon curve line segments N=0 to N=2^k inclusive.


    MB[k] = B[k] + 2
          = 4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710, 1202, ...

                             2 + x + 2*x^2
    generating function  2 * -------------
                             1 - x - 2*x^3

=for Test-Pari-DEFINE gB(x)=(2 + 2*x^2) / ((1 - x - 2*x^3) * (1-x))

=for Test-Pari-DEFINE gMB(x) = (4 + 2*x + 4*x^2) / (1 - x - 2*x^3)

=for Test-Pari gMB(x) == 2*(2 + x + 2*x^2)/(1-x-2*x^3)

=for Test-Pari-DEFINE gOnes(x)=1/(1-x) /* 1,1,1,1,1,1,etc */

=for Test-Pari gMB(x) == gB(x) + 2*gOnes(x)

=for Test-Pari Vec(gMB(x) - O(x^12)) == [4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710, 1202]

A unit square at the midpoint is a diamond on a dragon line segment

      / \
     /   \         midpoint m
    *--m--*        diamond on dragon curve line segment
     \   /
      \ /

A boundary segment of the dragon curve has two sides of the diamond which
are boundary.  But when the boundary makes a right hand turn two such sides
touch and are therefore not midpoint boundary.

     /^\
    / | \        right turn
    \ | //\      two diamond sides touch
     \|//  \
      *<----*
       \   /
        \ /

The dragon curve at N=0 points East and the last segment N=2^k-1 to N=2^k is
North.  Since the curve never overlaps itself this means that when going
around the right side of the curve there is 1 more left turn than right
turn,

    lefts - rights = 1

The total line segments on the right is the dragon curve R[k] and there are
R[k]-1 turns, so the total turns lefts+rights is

    lefts + rights + 1 = R[k]

So the lefts and rights are obtained separately

    2*lefts            = R[k]       adding the two equations
    2*rights           = R[k] - 2   subtracting the two equations

The result is then

    MR[k] = 2*R[k] - 2*rights
          = 2*R[k] - 2*(R[k]-2)/2
          = R[k] + 2

A similar calculation is made on the left side of the curve.  The net turn
is the same and so the same lefts-rights=1 and thus from the dragon curve
L[k] left boundary

    ML[k] = 2*L[k] - 2*lefts
          = 2*L[k] - 2*(L[k]/2)
          = L[k]

The total is then

    MB[k] = MR[k] + ML[k]
          = R[k]+2 + L[k]
          = B[k] + 2                 since B[k]=R[k]+L[k]

The generating function can be had from the partial fractions form of the
dragon curve boundary.  B[k]+2 means adding 2/(1-x) which cancels out the
-2/(1-x) in gB(x).

=cut

#  /\     B[0]=2
# *--*    MB[0]=4
#  \/
#
#    *
#   /|\
#  /\|/   B[0]=4
# *--*    MB[0]=6
#  \/
#
#    *
#   /|\     B[0] = 8
#   \|/\    MR[2] = 6
#    *--*   ML[2] = 4
#     \/|\  MB[2] = 10
#     /\|/
#    *--*
#     \/
#
# 4,6,10,18,30,50,86,146,246,418,710,1202,
# 6,8,12,20,32,52,88,148,248,420,712,1204,

=pod

=head1 OEIS

The C<DragonMidpoint> is in Sloane's Online Encyclopedia of Integer
Sequences as

=over

L<http://oeis.org/A073089> (etc)

=back

    A073089   abs(dY) of n-1 to n, so 0=horizontal,1=vertical
                (extra initial 0)
    A077860   Y at N=2^k, being Re(-(i+1)^k + i-1)
    A203175   boundary of unit squares N=0 to N=2^k-1, value 4 onwards

=head2 A073089

For A073089=abs(dY), the midpoint curve is vertical when the C<DragonCurve>
has a vertical followed by a left turn, or horizontal followed by a right
turn.  C<DragonCurve> verticals are whenever N is odd, and the turn is the
bit above the lowest 0 in N (per L<Math::PlanePath::DragonCurve/Turn>).  So

    abs(dY) = lowbit(N) XOR bit-above-lowest-zero(N)

The n in A073089 is offset by 2 from the N numbering of the path here, so
n=N+2.  The initial value at n=1 in A073089 has no corresponding N (it would
be N=-1).

The mod-16 definitions in A073089 express combinations of N odd/even and
bit-above-low-0 which are the vertical midpoint segments.  The recurrence
a(8n+1)=a(4n+1) acts to strip zeros above a low 1 bit,

    n = 0b..uu0001
     -> 0b...uu001

In terms of N=n-2 this reduces

    N = 0b..vv1111
     -> 0b...vv111

which has the effect of seeking a lowest 0 in the range of the mod-16
conditions.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::DragonRounded>

L<Math::PlanePath::AlternatePaperMidpoint>,
L<Math::PlanePath::R5DragonMidpoint>,
L<Math::PlanePath::TerdragonMidpoint>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut