This file is indexed.

/usr/share/perl5/Math/PlanePath/FactorRationals.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# Multiples of prime make grid.

# [13] L. S. Johnston, Denumerability of the rational number system, Amer. Math. Monthly, 55 (Feb.
#      1948), no. 2, 65-70.
# www.jstor.org/stable/2305738


# prime factors q1,..qk of n
# f(m/n) = m^2*n^2/ (q1q2...qk)

# Kevin McCrimmon, 1960
#
# integer prod p[i]^a[i] -> rational prod p[i]^b[i]
# b[i] = a[2i-1] if a[2i-1]!=0
#    b[1]=a[1], b[2]=a[3], b[3]=a[5]
# b[i] = -a[2k] if a[2i-1]=0 and is kth such
#
# b[i] = f(a[i]) where f(n) = (-1)^(n+1) * floor((n+1)/2)
#   f(0) =  0
#   f(1) =  1
#   f(2) = -1
#   f(3) =  2
#   f(4) = -2

# Gerald Freilich, 1965
#
# f(n) = n/2      if n even n>=0
#      = -(n+1)/2 if n odd n>0
# f(0)=0/2      =  0
# f(1)=-(1+1)/2 = -1
# f(2)=2/2      =  1
# f(3)=-(3+1)/2 = -2
# f(4)=4/2      =  2

# Yoram Sagher, "Counting the rationals", American Math Monthly, Nov 1989,
# page 823.  http://www.jstor.org/stable/2324846
#
# m = p1^e1.p2^e2...
# n = q1^f1.q2^f2...
# f(m/n) = p1^2e1.p2^2e2... . q1^(2f1-1).q2^(2f2-1)...
# so     0 -> 0              0 ->  0
#    num 1 -> 2              1 -> -1
#        2 -> 4              2 ->  1
# den -1 1 -> 2*1-1 = 1      3 -> -2
#     -2 2 -> 2*2-1 = 3      4 ->  2

# Umberto Cerruti, "Ordinare i razionali Gli alberi di Keplero e di
# Calkin-Wilf", following T.J. Heard
#   B(2k)=-k   even=negative and zero
#   B(2k-1)=k  odd=positive
#   which is Y/X invert
# B(0 =2*0)   =  0
# B(1 =2*1-1) =  1
# B(2 =2*1)   = -1
# B(3 =2*2-1) =  2
# B(4 =2*2)   = -2


package Math::PlanePath::FactorRationals;
use 5.004;
use strict;
use Carp 'croak';
use List::Util 'min';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'digit_join_lowtohigh';

use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;

# uncomment this to run the ### lines
# use Smart::Comments;


# Not yet.
use constant parameter_info_array =>
  [ { name      => 'factor_coding',
      display   => 'Sign Encoding',
      type      => 'enum',
      default   => 'even/odd',
      choices         => ['even/odd','odd/even',
                          'negabinary','revbinary',
                         ],
      choices_display => ['Even/Odd','Odd/Even',
                          'Negabinary','Revbinary',
                          ],
    },
  ];

use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 1;
use constant gcdxy_maximum => 1;  # no common factor
use constant absdy_minimum => 1;

# factor_coding=even/odd
# factor_coding=odd/even
#   dir_minimum_dxdy() suspect dir approaches 0.
#   Eg. N=5324   = 2^2.11^3     dx=3,dy=92   0.97925
#       N=642735 = 3^5.23^2     dX=45 dY=4    Dir4=0.05644
#         642736 = 2^4.17^2.139
#   dir_maximum_dxdy() suspect approaches 360 degrees
#   use constant dir_maximum_dxdy => (0,0);  # the default
#
# factor_coding=negabinary
#   dir_minimum_dxdy() = East 1,0 at N=1
#   dir_maximum_dxdy() believe approaches 360 degrees
#   Eg. N=40=2^3.5 X=5, Y=2
#       N=41=41    X=41, Y=1
#   N=multiple 8 and solitary primes, followed by N+1=prime is dX=big, dY=-1
#
# factor_coding=revbinary
#   dir_maximum_dxdy() approaches 360 degrees  dY=-1, dX=big
#   Eg. N=7208=2^3*17*53 X=17*53  Y=2
#       N=7209=3^4*89    X=3^4*89 Y=1
#                       dX=6308  dY=-1


#------------------------------------------------------------------------------
# even/odd

# $n>=0, return a positive if even or negative if odd
#   $n==0  return  0
#   $n==1  return -1
#   $n==2  return +1
#   $n==3  return -2
#   $n==4  return +2
sub _pos_to_pn__even_odd {
  my ($n) = @_;
  return ($n % 2 ? -1-$n : $n) / 2;
}

# # $n is positive or negative, return even for positive or odd for negative.
# #   $n==0   return 0
# #   $n==-1  return 1
# #   $n==+1  return 2
# #   $n==-2  return 3
# #   $n==+2  return 4
# sub _pn_to_pos__even_odd {
#   my ($n) = @_;
#   return ($n >= 0 ? 2*$n : -1-2*$n);
# }

#------------------------------------------------------------------------------
# odd/even

# $n>=0, return a positive if even or negative if odd
#   $n==0  return  0
#   $n==1  return +1
#   $n==2  return -1
#   $n==3  return +2
#   $n==4  return -2
sub _pos_to_pn__odd_even {
  my ($n) = @_;
  return ($n % 2 ? $n+1 : -$n) / 2;
}

# # $n is positive or negative, return odd for positive or even for negative.
# #   $n==0   return 0
# #   $n==+1  return 1
# #   $n==-1  return 2
# #   $n==+2  return 3
# #   $n==-2  return 4
# sub _pn_to_pos__odd_even {
#   my ($n) = @_;
#   return ($n <= 0 ? -2*$n : 2*$n-1);
# }

#------------------------------------------------------------------------------
# negabinary

sub _pn_to_pos__negabinary {
  my ($n) = @_;
  my @bits;
  while ($n) {
    my $bit = ($n % 2);
    push @bits, $bit;
    $n -= $bit;
    $n /= 2;
    $n = -$n;
  }
  return digit_join_lowtohigh(\@bits, 2,
                              $n); # zero
}
sub _pos_to_pn__negabinary {
  my ($n) = @_;
  return (($n & 0x55555555) - ($n & 0xAAAAAAAA));
}

#------------------------------------------------------------------------------
# revbinary
# A065620  pos -> pn
# A065621  pn(+ve) -> pos
# A048724  pn(-ve) -> pos        n XOR 2n
# A048725  A048724 twice
# cf
# A073122  minimizing by taking +/- powers  cf A072219 A072339

# rev = 2^e0 - 2^e1 + 2^e2 - 2^e3 + ... + (-1)^t*2^et
#       0 <= e0 < e1 < e2 ...
sub _pos_to_pn__revbinary {
  my ($n) = @_;
  my $sign = 1;
  my $ret = 0;
  for (my $bit = 1; $bit <= $n; $bit *= 2) {
    if ($n & $bit) {
      $ret += $bit*$sign;
      $sign = -$sign;
    }
  }
  return $ret;
}
sub _pn_to_pos__revbinary {
  my ($n) = @_;
  my @bits;
  while ($n) {
    my $bit = ($n % 2);
    push @bits, $bit;
    $n -= $bit;
    $n /= 2;
    if ($bit) {
      $n = -$n;
    }
  }
  return digit_join_lowtohigh(\@bits, 2,
                              $n); # zero
}

#------------------------------------------------------------------------------

my %factor_coding__pos_to_pn = ('even/odd' => \&_pos_to_pn__even_odd,
                                'odd/even' => \&_pos_to_pn__odd_even,
                                negabinary => \&_pos_to_pn__negabinary,
                                revbinary  => \&_pos_to_pn__revbinary,
                               );
my %factor_coding__pn_to_pos = (# 'even/odd' => \&_pn_to_pos__even_odd,
                                # 'odd/even' => \&_pn_to_pos__odd_even,
                                negabinary => \&_pn_to_pos__negabinary,
                                revbinary  => \&_pn_to_pos__revbinary,
                               );

sub new {
  my $self = shift->SUPER::new(@_);

  my $factor_coding = ($self->{'factor_coding'} ||= 'even/odd');
  $factor_coding__pos_to_pn{$factor_coding}
    or croak "Unrecognised factor_coding: ",$factor_coding;

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### FactorRationals n_to_xy(): "$n"

  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  # what to do for fractional $n?
  {
    my $int = int($n);
    if ($n != $int) {
      ### frac ...
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  my $zero = $n * 0;

  my $pos_to_pn = $factor_coding__pos_to_pn{$self->{'factor_coding'}};
  my $x = my $y = ($n * 0) + 1;  # inherit bignum 1
  my ($limit,$overflow) = _limit($n);
  ### $limit
  my $divisor = 2;
  my $dstep = 1;
  while ($divisor <= $limit) {
    if (($n % $divisor) == 0) {
      my $count = 0;
      for (;;) {
        $count++;
        $n /= $divisor;
        if ($n % $divisor) {
          my $pn = &$pos_to_pn($count);
          ### $count
          ### $pn
          my $pow = ($divisor+$zero) ** abs($pn);
          if ($pn >= 0) {
            $x *= $pow;
          } else {
            $y *= $pow;
          }
          last;
        }
      }
      ($limit,$overflow) = _limit($n);
      ### $limit
    }
    $divisor += $dstep;
    $dstep = 2;
  }
  if ($overflow) {
    ### n too big ...
    return;
  }

  ### remaining $n is prime, count=1: "n=$n"
  my $pn = &$pos_to_pn(1);
  ### $pn
  my $pow = $n ** abs($pn);
  if ($pn >= 0) {
    $x *= $pow;
  } else {
    $y *= $pow;
  }

  ### result: "$x, $y"
  return ($x, $y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### FactorRationals xy_to_n(): "x=$x y=$y"

  if ($x < 1 || $y < 1) {
    return undef;  # negatives and -infinity
  }
  if (is_infinite($x)) { return $x; } # +infinity or nan
  if (is_infinite($y)) { return $y; } # +infinity or nan

  if ($self->{'factor_coding'} eq 'negabinary'
      || $self->{'factor_coding'} eq 'revbinary') {
    ### negabinary or revbinary ...
    my $pn_to_pos = $factor_coding__pn_to_pos{$self->{'factor_coding'}};
    my $n = 1;
    my $zero = $x * 0 * $y;

    # Factorize both $x and $y and apply their pn_to_pos encoded powers to
    # make $n.  A common factor between $x and $y is noticed if $divisor
    # divides both.

    my ($limit,$overflow) = _limit(max($x,$y));
    my $dstep = 1;
    for (my $divisor = 2; $divisor <= $limit; $divisor += $dstep, $dstep=2) {
      my $count = 0;
      if ($x % $divisor == 0) {
        if ($y % $divisor == 0) {
          return undef;  # common factor
        }
        while ($x % $divisor == 0) {
          $count++;
          $x /= $divisor;  # mutate loop variable
        }
      } elsif ($y % $divisor == 0) {
        while ($y % $divisor == 0) {
          $count--;
          $y /= $divisor;  # mutate loop variable
        }
      } else {
        next;
      }

      # Here $count > 0 if from $x or $count < 0 if from $y.
      ### $count
      ### pn: &$pn_to_pos($count)

      $count = &$pn_to_pos($count);
      $n *= ($divisor+$zero) ** $count;

      # new search limit, perhaps smaller than before
      ($limit,$overflow) = _limit(max($x,$y));
    }

    if ($overflow) {
      ### x,y too big to find all primes ...
      return undef;
    }

    # Here $x and $y are primes.
    if ($x > 1 && $x == $y) {
      ### common factor final remaining prime x,y ...
      return undef;
    }

    # $x is power p^1 which is negabinary=1 or revbinary=1 so multiply into
    # $n.  $y is power p^-1 and -1 is negabinary=3 so cube and multiply into
    # $n.
    $n *= $x;
    $n *= $y*$y*$y;

    return $n;

  } else {
    ### assert: $self->{'factor_coding'} eq 'even/odd' || $self->{'factor_coding'} eq 'odd/even'
    if ($self->{'factor_coding'} eq 'odd/even') {
      ($x,$y) = ($y,$x);
    }

    # Factorize $y so as to make an odd power of its primes.  Only need to
    # divide out one copy of each prime, but by dividing out them all the
    # $limit to search up to is reduced, usually by a lot.
    #
    # $ymult is $y with one copy of each prime factor divided out.
    # $ychop is $y with all primes divided out as they're found.
    # $y itself is unchanged.
    #
    my $ychop = my $ymult = $y;

    my ($limit,$overflow) = _limit($ychop);
    my $dstep = 1;
    for (my $divisor = 2; $divisor <= $limit; $divisor += $dstep, $dstep=2) {
      next if $ychop % $divisor;

      if ($x % $divisor == 0) {
        ### common factor with X ...
        return undef;
      }
      $ymult /= $divisor;           # one of $divisor divided out
      do {
        $ychop /= $divisor;         # all of $divisor divided out
      } until ($ychop % $divisor);
      ($limit,$overflow) = _limit($ychop);  # new lower $limit, perhaps
    }

    if ($overflow) {
      return undef; # Y too big to find all primes
    }

    # remaining $ychop is a prime, or $ychop==1
    if ($ychop > 1) {
      if ($x % $ychop == 0) {
        ### common factor with X ...
        return undef;
      }
      $ymult /= $ychop;
    }

    return $x*$x * $y*$ymult;
  }
}

#------------------------------------------------------------------------------

# all rationals X,Y >= 1 with no common factor
use Math::PlanePath::DiagonalRationals;
*xy_is_visited = Math::PlanePath::DiagonalRationals->can('xy_is_visited');

#------------------------------------------------------------------------------

# even/odd
#   X=2^10 -> N=2^20 is X^2
#   Y=3 -> N=3
#   Y=3^2 -> N=3^3
#   Y=3^3 -> N=3^5
#   Y=3^4 -> N=3^7
#   Y*Y / distinct prime factors
#
# negabinary
#   X=prime^2 -> N=prime^6       is X^3
#   X=prime^6 -> N=prime^26      is X^4.33
#   maximum 101010...10110 -> 1101010...10 approaches factor 5
#   same for negatives
#
# revbinary
#   X=prime^k -> N=prime^(3k)    ix X^3

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### rect_to_n_range()

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  my $n = max($x1,$x2) * max($y1,$y2);
  my $n_squared = $n * $n;
  return (1,
          ($self->{'factor_coding'} eq 'negabinary'
           ? ($n_squared*$n_squared) * $n     # X^5*Y^5
           : $self->{'factor_coding'} eq 'revbinary'
           ? $n_squared * $n                  # X^3*Y^3
           # even/odd, odd/even
           : $n_squared));                    # X^2*Y^2
}


#------------------------------------------------------------------------------

# _limit() returns ($limit,$overflow).
#
# $limit is the biggest divisor to attempt trial division of $n.  If $n <
# 2^32 then $limit=sqrt($n) and that will find all primes.  If $n >= 2^32
# then $limit is smaller than sqrt($n), being calculated from the length of
# $n so as to make a roughly constant amount of time doing divisions.  But
# $limit is always at least 50 so as to divide by primes up to 50.
#
# $overflow is a boolean, true if $n is too big to search for all primes and
# $limit is something smaller than sqrt($n).  $overflow is false if $limit
# has not been capped and is enough to find all primes.
#
sub _limit {
  my ($n) = @_;
  my $limit = int(sqrt($n));
  my $cap = max (int(65536 * 10 / length($n)),
                 50);
  if ($limit > $cap) {
    return ($cap, 1);
  } else {
    return ($limit, 0);
  }
}

1;
__END__

=for stopwords eg Ryde OEIS ie Math-PlanePath Calkin-Wilf McCrimmon Freilich Yoram Sagher negabinary Denumerability revbinary Niven

=head1 NAME

Math::PlanePath::FactorRationals -- rationals by prime powers

=head1 SYNOPSIS

 use Math::PlanePath::FactorRationals;
 my $path = Math::PlanePath::FactorRationals->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<McCrimmon, Kevin>X<Freilich, Gerald>X<Sagher, Yoram>This path enumerates
rationals X/Y with no common factor, based on the prime powers in numerator
and denominator, as per

=over

Kevin McCrimmon, "Enumeration of the Positive Rationals", American
Math. Monthly, Nov 1960, page 868.
L<http://www.jstor.org/stable/2309448>

Gerald Freilich, "A Denumerability Formula for the Rationals", American
Math. Monthly, Nov 1965, pages 1013-1014.
L<http://www.jstor.org/stable/2313350>

Yoram Sagher, "Counting the rationals", American Math. Monthly, Nov 1989,
page 823.  L<http://www.jstor.org/stable/2324846>

=back

The result is

=cut

# math-image --path=FactorRationals,factor_coding=even/odd --all --output=numbers --size=58x16

=pod

    15  |      15   60       240            735  960           1815
    14  |      14       126       350                1134      1694
    13  |      13   52  117  208  325  468  637  832 1053 1300 1573
    12  |      24                 600      1176                2904
    11  |      11   44   99  176  275  396  539  704  891 1100
    10  |      10        90                 490       810      1210
     9  |      27  108       432  675      1323 1728      2700 3267
     8  |      32       288       800      1568      2592      3872
     7  |       7   28   63  112  175  252       448  567  700  847
     6  |       6                 150       294                 726
     5  |       5   20   45   80       180  245  320  405       605
     4  |       8        72       200       392       648       968
     3  |       3   12        48   75       147  192       300  363
     2  |       2        18        50        98       162       242
     1  |       1    4    9   16   25   36   49   64   81  100  121
    Y=0 |
         ----------------------------------------------------------
          X=0   1    2    3    4    5    6    7    8    9   10   11

A given fraction X/Y with no common factor has a prime factorization

    X/Y = p1^e1 * p2^e2 * ...

The exponents e[i] are positive, negative or zero, being positive when the
prime is in the numerator or negative when in the denominator.  Those
exponents are represented in an integer N by mapping the exponents to
non-negative,

    N = p1^f(e1) * p2^f(e2) * ...

    f(e) = 2*e      if e >= 0
         = 1-2*e    if e < 0

    f(e)      e
    ---      ---
     0        0
     1       -1
     2        1
     3       -2
     4        2

For example

    X/Y = 125/7 = 5^3 * 7^(-1)
    encoded as N = 5^(2*3) * 7^(1-2*(-1)) = 5^6 * 7^1 = 5359375

    N=3   ->  3^-1 = 1/3
    N=9   ->  3^1  = 3/1
    N=27  ->  3^-2 = 1/9
    N=81  ->  3^2  = 9/1

The effect is to distinguish prime factors of the numerator or denominator
by odd or even exponents of those primes in N.  Since X and Y have no common
factor a given prime appears in one and not the other.  The oddness or
evenness of the p^f() exponent in N can then encode which of the two X or Y
it came from.

The exponent f(e) in N has term 2*e in both cases, but the exponents from Y
are reduced by 1.  This can be expressed in the following form.  Going from
X,Y to N doesn't need to factorize X, only Y.

             X^2 * Y^2
    N = --------------------
        distinct primes in Y

N=1,2,3,8,5,6,etc in the column X=1 is integers with odd powers of prime
factors.  These are the fractions 1/Y so the exponents of the primes are all
negative and thus all exponents in N are odd.

X<Square numbers>N=1,4,9,16,etc in row Y=1 are the perfect squares.  That
row is the integers X/1 so the exponents are all positive and thus in N
become 2*e, giving simply N=X^2.

=head2 Odd/Even

Option C<factor_coding =E<gt> "odd/even"> changes the f() mapping to
numerator exponents as odd numbers and denominator exponents as even.

    f(e) = 2*e-1    if e > 0
         = -2*e     if e <= 0

The effect is simply to transpose XE<lt>-E<gt>Y.

"odd/even" is the form given by Kevin McCrimmon and Gerald Freilich.  The
default "even/odd" is the form given by Yoram Sagher.

=head2 Negabinary

X<Bradley, David M.>Option C<factor_coding =E<gt> "negabinary"> changes the
f() mapping to negabinary as suggested in

=over

David M. Bradley, "Counting the Positive Rationals: A Brief Survey",
L<http://arxiv.org/abs/math/0509025>

=back

=cut

# math-image --path=FactorRationals,factor_coding=negabinary --all --output=numbers_xy --size=70x14

=pod

This coding is not as compact as odd/even and tends to make bigger N values,

    13  |    2197   4394   6591 140608  10985  13182  15379 281216
    12  |     108                         540           756
    11  |    1331   2662   3993  85184   6655   7986   9317 170368
    10  |    1000          3000                        7000
     9  |       9     18           576     45            63   1152
     8  |    8192         24576         40960         57344
     7  |     343    686   1029  21952   1715   2058         43904
     6  |     216                        1080          1512
     5  |     125    250    375   8000           750    875  16000
     4  |       4            12            20            28
     3  |      27     54          1728    135           189   3456
     2  |       8            24            40            56
     1  |       1      2      3     64      5      6      7    128
    Y=0 |
         ----------------------------------------------------------
          X=0   1      2      3      4      5      6      7      8

=head2 Reversing Binary

Option C<factor_coding =E<gt> "revbinary"> changes the f() mapping to
"reversing binary" where a given integer is represented as a sum of powers
2^k with alternating signs

    e = 2^k1 - 2^k2 + 2^k3 - ...           0 <= k1 < k2 < k3

    f(e)      e
    ---      ---
     0        0
     1        1
     2        2
     3       -1
     4        4
     5       -3
     6       -2
     7        3

This representation is per Knuth volume 2 section 4.1 exercise 27.  The
exercise there is to show all integers can be represented this way.

=cut

# math-image --path=FactorRationals,factor_coding=revbinary --all --output=numbers --size=15x10

=pod

     9  |     729  1458        2916  3645        5103 93312        7290
     8  |      32          96         160         224         288
     7  |     343   686  1029  1372  1715  2058       43904  3087  3430
     6  |     216                    1080        1512
     5  |     125   250   375   500         750   875 16000  1125
     4  |      64         192         320         448         576
     3  |      27    54         108   135         189  3456         270
     2  |       8          24          40          56          72
     1  |       1     2     3     4     5     6     7   128     9    10
    Y=0 |
         ---------------------------------------------------------------
          X=0   1     2     3     4     5     6     7     8     9    10

The X axis begins with the integers 1 to 7 because f(1)=1 and f(2)=2 so N=X
until X has a prime p^3 or higher power.  The first such is X=8=2^3 which is
f(7)=3 so N=2^7=128.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over

=item C<$path = Math::PlanePath::FactorRationals-E<gt>new ()>

=item C<$path = Math::PlanePath::FactorRationals-E<gt>new (factor_coding =E<gt> $str)>

Create and return a new path object.  C<factor_coding> can be

    "even/odd"    (the default)
    "odd/even"
    "negabinary"
    "revbinary"

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return X,Y coordinates of point C<$n> on the path.  If there's no point
C<$n> then the return is an empty list.

This depends on factorizing C<$n> and in the current code there's a hard
limit on the amount of factorizing attempted.  If C<$n> is too big then the
return is an empty list.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the N point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y>, such as when they have a common factor, then return C<undef>.

This depends on factorizing C<$y>, or factorizing both C<$x> and C<$y> for
negabinary or revbinary.  In the current code there's a hard limit on the
amount of factorizing attempted.  If the coordinates are too big then the
return is C<undef>.

=back

The current factorizing limits handle anything up to 2^32, and above that
numbers comprised of small factors.  But big numbers with big factors are
not handled.  Is this a good idea?  For large inputs there's no merit in
disappearing into a nearly-infinite loop.  Perhaps the limits could be
configurable and/or some advanced factoring modules attempted for a while
if/when available.

=head1 OEIS

This enumeration of the rationals is in Sloane's Online Encyclopedia of
Integer Sequences in the following forms

=over

L<http://oeis.org/A071974> (etc)

=back

    A071974   X coordinate, numerators
    A071975   Y coordinate, denominators
    A019554   X*Y product
    A102631   N in column X=1, n^2/squarefreekernel(n)
    A072345   X and Y at N=2^k, being alternately 1 and 2^k

    A011262   permutation N at transpose Y/X (exponents mangle odd<->even)

    A060837   permutation DiagonalRationals -> FactorRationals
    A071970   permutation RationalsTree CW -> FactorRationals

The last A071970 is rationals taken in order of the Stern diatomic sequence
stern[i]/stern[i+1] which is the Calkin-Wilf tree rows
(L<Math::PlanePath::RationalsTree/Calkin-Wilf Tree>).

The negabinary representation is

    A053985   index -> signed
    A005351   signed positives -> index
    A039724   signed positives -> index, in binary
    A005352   signed negatives -> index

The reversing binary representation is

    A065620   index -> signed
    A065621   signed positives -> index
    A048724   signed negatives -> index

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::GcdRationals>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::CoprimeColumns>

=head2 Other Ways to Do It

Niven gives another prime factor based construction but encoding N by runs
of 1-bits,

=over

Ivan Niven, "Note on a paper by L. S. Johnston", American Math. Monthly,
volume 55, number 6, June-July 1948, page 358.
L<http://www.jstor.org/stable/2304962>

=back

N is written in binary each 0-bit is considered a separator.  The number of
1-bits between each

    N = 11 0 0 111 0 11  binary
           | |     |
         2  0   3    2   f(e) = run lengths of 1-bits
        -1  0  +2   -1   e exponent by "odd/even" style

    X/Y = 2^(-1) * 3^(+2) * 5^0 * 7^(-1)       

Kevin McCrimmon's note begins with a further possible encoding for N where
the prime powers from numerator are spread out to primes p[2i+1] and with 0
powers sending a p[2i] power to the denominator.  In this form the primes
from X and Y spread out to different primes rather than different exponents.

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut