/usr/share/perl5/Math/PlanePath/FlowsnakeCentres.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=FlowsnakeCentres --lines --scale=10
#
# http://80386.nl/projects/flowsnake/
#
package Math::PlanePath::FlowsnakeCentres;
use 5.004;
use strict;
use POSIX 'ceil';
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest',
'xy_is_even';
use Math::PlanePath::Base::Digits
'digit_split_lowtohigh',
'round_down_pow';
use Math::PlanePath::SacksSpiral;
*_rect_to_radius_range = \&Math::PlanePath::SacksSpiral::_rect_to_radius_range;
# uncomment this to run the ### lines
#use Devel::Comments;
use constant n_start => 0;
use constant parameter_info_array => [ { name => 'arms',
share_key => 'arms_3',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 3,
default => 1,
width => 1,
description => 'Arms',
} ];
{
my @x_negative_at_n = (undef, 3, 1, 1);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
{
my @y_negative_at_n = (undef, 8597, 7, 2);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
use constant dx_minimum => -2;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_six;
{
my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 10, 6, 8);
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
}
}
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East
#------------------------------------------------------------------------------
# *
# / \
# / \
# *-----*
#
# (b/2)^2 + h^2 = s
# (1/2)^2 + h^2 = 1
# h^2 = 1 - 1/4
# h = sqrt(3)/2 = 0.866
#
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(3, $self->{'arms'} || 1));
return $self;
}
# # next_state length 84
# my @next_state = (0, 35,49,14, 0,70, 7, 0,21, 7,21,42,28, 7, # 0,7
# 14,49,63,28,14, 0,21, 14,35,21,35,56,42,21, # 14,21
# 28,63,77,42,28,14,35, 28,49,35,49,70,56,35, # 28,35
# 42,77, 7,56,42,28,49, 42,63,49,63, 0,70,49, # 42,49
# 56, 7,21,70,56,42,63, 56,77,63,77,14, 0,63, # 56,63
# 70,21,35, 0,70,56,77, 70, 7,77, 7,28,14,77); # 70,77
# my @digit_to_i = (0, 1, 0,-1,-1, 0, 1, 0, 1, 2, 3, 3, 2, 1, # 0,7
# 0, 0,-1,-1,-2,-2,-1, 0, 0, 1, 1, 0, 0,-1, # 14,21
# 0, -1,-1, 0,-1,-2,-2, 0,-1,-1,-2,-3,-2,-2, # 28,35
# 0, -1, 0, 1, 1, 0,-1, 0,-1,-2,-3,-3,-2,-1, # 42,49
# 0, 0, 1, 1, 2, 2, 1, 0, 0,-1,-1, 0, 0, 1, # 56,63
# 0, 1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 3, 2,2); # 70,77
# my @digit_to_j = (0, 0, 1, 1, 2, 2, 1, 0, 0,-1,-1, 0, 0, 1, # 0,7
# 0, 1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 3, 2, 2, # 14,21
# 0, 1, 0,-1,-1, 0, 1, 0, 1, 2, 3, 3, 2, 1, # 28,35
# 0, 0,-1,-1,-2,-2,-1, 0, 0, 1, 1, 0, 0,-1, # 42,49
# 0, -1,-1, 0,-1,-2,-2, 0,-1,-1,-2,-3,-2,-2, # 56,63
# 0, -1, 0, 1, 1, 0,-1, 0,-1,-2,-3,-3,-2,-1); # 70,77
# my @state_to_di = ( 1, 1, 0, 0,-1,-1, -1,-1, 0, 0, 1,1);
# my @state_to_dj = ( 0, 0, 1, 1, 1, 1, 0, 0,-1,-1,-1,-1);
#
#
# sub n_to_xy {
# my ($self, $n) = @_;
# ### Flowsnake n_to_xy(): $n
#
# if ($n < 0) { return; }
# if (is_infinite($n)) { return ($n,$n); }
#
# my $int = int($n);
# $n -= $int; # fraction part
# ### $int
# ### frac: $n
#
# my $state;
# {
# my $arm = _divrem_mutate ($int, $self->{'arms'});
# $state = 28 * $arm; # initial rotation
#
# # adjust so that for arms=2 point N=1 has $int==1
# # or for arms=3 then points N=1 and N=2 have $int==1
# if ($arm) { $int += 1; }
# }
# ### initial state: $state
#
# my $i = my $j = $int*0; # bignum zero
#
# foreach my $digit (reverse digit_split_lowtohigh($int,7)) { # high to low
# ### at: "state=$state digit=$digit i=$i,j=$j di=".$digit_to_i[$state+$digit]." dj=".$digit_to_j[$state+$digit]
#
# # i,j * (2+w), being 2*(i,j)+rot60(i,j)
# # then add low digit position
# #
# $state += $digit;
# ($i, $j) = (2*$i - $j + $digit_to_i[$state],
# 3*$j + $i + $digit_to_j[$state]);
# $state = $next_state[$state];
# }
# ### integer: "i=$i, j=$j"
#
# # fraction in final $state direction
# if ($n) {
# ### apply: "frac=$n state=$state"
# $state /= 7;
# $i = $n * $state_to_di[$state] + $i;
# $j = $n * $state_to_dj[$state] + $j;
# }
#
# ### ret: "$i, $j x=".(2*$i+$j)." y=$j"
# return (2*$i+$j,
# $j);
#
# }
# 4-->5
# ^ ^
# / \
# 3--- 2 6--
# \
# v
# 0-->1
#
my @digit_reverse = (0,1,1,0,0,0,1); # 1,2,6
sub n_to_xy {
my ($self, $n) = @_;
### FlowsnakeCentres n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
# ENHANCE-ME: work $frac into initial $x,$y somehow
# my $frac;
# {
# my $int = int($n);
# $frac = $n - $int; # inherit possible BigFloat/BigRat
# $n = $int; # BigInt instead of BigFloat
# }
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
# arm as initial rotation
my $rot = _divrem_mutate ($n, $self->{'arms'});
my @digits = digit_split_lowtohigh($n,7);
### @digits
my $x = 0;
my $y = 0;
{
# if (! @n || $digits[0] == 0) {
# $x = 2*$frac;
# } elsif ($digits[0] == 1) {
# $x = $frac;
# $y = -$frac;
# } elsif ($digits[0] == 2) {
# $x = -2*$frac;
# } elsif ($digits[0] == 3) {
# $x = $frac;
# $y = -$frac;
# } elsif ($digits[0] == 4) {
# $x = 2*$frac;
# } elsif ($digits[0] == 5) {
# $x = $frac;
# $y = -$frac;
# } elsif ($digits[0] == 6) {
# $x = -$frac;
# $y = -$frac;
# }
my $rev = 0;
foreach my $digit (reverse @digits) { # high to low
### $digit
if ($rev) {
### reverse: "$digit to ".(6 - $digit)
$digit = 6 - $digit; # mutate the array
}
$rev ^= $digit_reverse[$digit];
### now rev: $rev
}
### reversed n: @n
}
my ($ox,$oy,$sx,$sy);
if ($rot == 0) {
$ox = 0;
$oy = 0;
$sx = 2;
$sy = 0;
} elsif ($rot == 1) {
$ox = -1; # at +120
$oy = 1;
$sx = -1; # rot to +120
$sy = 1;
} else {
$ox = -2; # at 180
$oy = 0;
$sx = -1; # rot to +240
$sy = -1;
}
while (@digits) {
my $digit = shift @digits; # low to high
### digit: "$digit $x,$y side $sx,$sy origin $ox,$oy"
if ($digit == 0) {
$x += (3*$sy - $sx)/2; # at -120
$y += ($sx + $sy)/-2;
} elsif ($digit == 1) {
($x,$y) = ((3*$y-$x)/2, # rotate -120
($x+$y)/-2);
$x += ($sx + 3*$sy)/2; # at -60
$y += ($sy - $sx)/2;
} elsif ($digit == 2) {
# centre
} elsif ($digit == 3) {
($x,$y) = (($x+3*$y)/-2, # rotate +120
($x-$y)/2);
$x -= $sx; # at -180
$y -= $sy;
} elsif ($digit == 4) {
$x += ($sx + 3*$sy)/-2; # at +120
$y += ($sx - $sy)/2;
} elsif ($digit == 5) {
$x += ($sx - 3*$sy)/2; # at +60
$y += ($sx + $sy)/2;
} elsif ($digit == 6) {
($x,$y) = (($x+3*$y)/-2, # rotate +120
($x-$y)/2);
$x += $sx; # at X axis
$y += $sy;
}
$ox += $sx;
$oy += $sy;
# 2*(sx,sy) + rot+60(sx,sy)
($sx,$sy) = ((5*$sx - 3*$sy) / 2,
($sx + 5*$sy) / 2);
}
### digits to: "$x,$y"
### origin sum: "$ox,$oy"
### origin rotated: (($ox-3*$oy)/2).','.(($ox+$oy)/2)
$x += ($ox-3*$oy)/2; # rotate +60
$y += ($ox+$oy)/2;
### final: "$x,$y"
return ($x,$y);
}
# all even points when arms==3
sub xy_is_visited {
my ($self, $x, $y) = @_;
if ($self->{'arms'} == 3) {
return xy_is_even($self,$x,$y);
} else {
return defined($self->xy_to_n($x,$y));
}
}
# 4-->5
# ^ ^ forw
# / \
# 3--- 2 6---
# \
# v
# 0-->1
#
# 5 3
# \ rev
# / \ / v
# --6 4 2
# /
# v
# 0-->1
#
my @modulus_to_digit
= (0,3,1,2,4,6,5, 0,42,14,28, 0,56, 0, # 0 right forw 0
0,5,1,4,6,2,3, 0,42,14,70,14,14,28, # 14 +120 rev 1
6,3,5,4,2,0,1, 28,56,70, 0,28,42,28, # 28 left rev 2
4,5,3,2,6,0,1, 42,42,70,56,14,42,28, # 42 +60 forw 3
2,1,3,4,0,6,5, 56,56,14,42,70,56, 0, # 56 -60 rev 6
6,1,5,2,0,4,3, 28,56,70,14,70,70, 0, # 70 forw
);
sub xy_to_n {
my ($self, $x, $y) = @_;
### FlowsnakeCentres xy_to_n(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
if (($x ^ $y) & 1) {
### odd x,y ...
return undef;
}
my $level_limit = log($x*$x + 3*$y*$y + 1) * 0.835 * 2;
if (is_infinite($level_limit)) { return $level_limit; }
my @digits;
my $arm;
my $state;
for (;;) {
if ($level_limit-- < 0) {
### oops, level limit ...
return undef;
}
if ($x == 0 && $y == 0) {
### found first arm 0,0 ...
$arm = 0;
$state = 0;
last;
}
if ($x == -2 && $y == 0) {
### found second arm -2,0 ...
$arm = 1;
$state = 42;
last;
}
if ($x == -1 && $y == -1) {
### found third arm -1,-1 ...
$arm = 2;
$state = 70;
last;
}
# if ((($x == -1 || $x == 1) && $y == -1)
# || ($x == 0 && $y == -2)) {
# ### below island ...
# return undef;
# }
my $m = ($x + 2*$y) % 7;
### at: "$x,$y digits=".join(',',@digits)
### mod remainder: $m
# 0,0 is m=0
if ($m == 2) { # 2,0 = 2
$x -= 2;
} elsif ($m == 3) { # 1,1 = 1+2 = 3
$x -= 1;
$y -= 1;
} elsif ($m == 1) { # -1,1 = -1+2 = 1
$x += 1;
$y -= 1;
} elsif ($m == 4) { # 0,2 = 0+2*2 = 4
$y -= 2;
} elsif ($m == 6) { # 2,2 = 2+2*2 = 6
$x -= 2;
$y -= 2;
} elsif ($m == 5) { # 3,1 = 3+2*1 = 5
$x -= 3;
$y -= 1;
}
push @digits, $m;
### digit: "$m to $x,$y"
### shrink to: ((3*$y + 5*$x) / 14).','.((5*$y - $x) / 14)
### assert: (3*$y + 5*$x) % 14 == 0
### assert: (5*$y - $x) % 14 == 0
# shrink
($x,$y) = ((3*$y + 5*$x) / 14,
(5*$y - $x) / 14);
}
### @digits
my $arms = $self->{'arms'};
if ($arm >= $arms) {
return undef;
}
my $n = 0;
foreach my $m (reverse @digits) { # high to low
### $m
### digit: $modulus_to_digit[$state + $m]
### state: $state
### next state: $modulus_to_digit[$state+7 + $m]
$n = 7*$n + $modulus_to_digit[$state + $m];
$state = $modulus_to_digit[$state+7 + $m];
}
### final n along arm: $n
return $n*$arms + $arm;
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### FlowsnakeCentres rect_to_n_range(): "$x1,$y1 $x2,$y2"
my ($r_lo, $r_hi) = _rect_to_radius_range ($x1,$y1*sqrt(3), $x2,$y2*sqrt(3));
$r_hi *= 2;
my $level_plus_1 = ceil( log(max(1,$r_hi/4)) / log(sqrt(7)) ) + 2;
# return (0, 7**$level_plus_1);
my $level_limit = $level_plus_1;
### $level_limit
if (is_infinite($level_limit)) { return ($level_limit,$level_limit); }
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
### sorted range: "$x1,$y1 $x2,$y2"
my $rect_dist = sub {
my ($x,$y) = @_;
my $xd = ($x < $x1 ? $x1 - $x
: $x > $x2 ? $x - $x2
: 0);
my $yd = ($y < $y1 ? $y1 - $y
: $y > $y2 ? $y - $y2
: 0);
return ($xd*$xd + 3*$yd*$yd);
};
my $arms = $self->{'arms'};
### $arms
my $n_lo;
{
my @hypot = (6);
my $top = 0;
for (;;) {
ARM_LO: foreach my $arm (0 .. $arms-1) {
my $i = 0;
my @digits;
if ($top > 0) {
@digits = ((0)x($top-1), 1);
} else {
@digits = (0);
}
for (;;) {
my $n = 0;
foreach my $digit (reverse @digits) { # high to low
$n = 7*$n + $digit;
}
$n = $n*$arms + $arm;
### lo consider: "i=$i digits=".join(',',reverse @digits)." is n=$n"
my ($nx,$ny) = $self->n_to_xy($n);
my $nh = &$rect_dist ($nx,$ny);
if ($i == 0 && $nh == 0) {
### lo found inside: $n
if (! defined $n_lo || $n < $n_lo) {
$n_lo = $n;
}
next ARM_LO;
}
if ($i == 0 || $nh > $hypot[$i]) {
### too far away: "nxy=$nx,$ny nh=$nh vs ".$hypot[$i]
while (++$digits[$i] > 6) {
$digits[$i] = 0;
if (++$i <= $top) {
### backtrack up ...
} else {
### not found within this top and arm, next arm ...
next ARM_LO;
}
}
} else {
### lo descend ...
### assert: $i > 0
$i--;
$digits[$i] = 0;
}
}
}
# if an $n_lo was found on any arm within this $top then done
if (defined $n_lo) {
last;
}
### lo extend top ...
if (++$top > $level_limit) {
### nothing below level limit ...
return (1,0);
}
$hypot[$top] = 7 * $hypot[$top-1];
}
}
my $n_hi = 0;
ARM_HI: foreach my $arm (reverse 0 .. $arms-1) {
my @digits = ((6) x $level_limit);
my $i = $#digits;
for (;;) {
my $n = 0;
foreach my $digit (reverse @digits) { # high to low
$n = 7*$n + $digit;
}
$n = $n*$arms + $arm;
### hi consider: "arm=$arm i=$i digits=".join(',',reverse @digits)." is n=$n"
my ($nx,$ny) = $self->n_to_xy($n);
my $nh = &$rect_dist ($nx,$ny);
if ($i == 0 && $nh == 0) {
### hi found inside: $n
if ($n > $n_hi) {
$n_hi = $n;
next ARM_HI;
}
}
if ($i == 0 || $nh > (6 * 7**$i)) {
### too far away: "$nx,$ny nh=$nh vs ".(6 * 7**$i)
while (--$digits[$i] < 0) {
$digits[$i] = 6;
if (++$i < $level_limit) {
### hi backtrack up ...
} else {
### hi nothing within level limit for this arm ...
next ARM_HI;
}
}
} else {
### hi descend
### assert: $i > 0
$i--;
$digits[$i] = 6;
}
}
}
if ($n_hi == 0) {
### oops, lo found but hi not found
$n_hi = $n_lo;
}
return ($n_lo, $n_hi);
}
#------------------------------------------------------------------------------
# levels
# level 7^k points
# or arms*7^k
# counting from 0
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 7**$level * $self->{'arms'} - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n) - 1;
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_down_pow ($n+1, 7);
return $exp + 1;
}
#------------------------------------------------------------------------------
1;
__END__
# if (@n) {
# my $digit = shift @n;
#
# $ox += $sx;
# $oy += $sy;
#
# if ($rev) {
# if ($digit == 0) {
# $x += $sx; # at X axis
# $y += $sy;
# # $x += ($sx + 3*$sy)/2; # at -60
# # $y += ($sy - $sx)/2;
# # $x += ($sx + 3*$sy)/-2; # at +120
# # $y += ($sx - $sy)/2;
# # $x += (3*$sy - $sx)/2; # at -120
# # $y += ($sx + $sy)/-2;
#
# } elsif ($digit == 1) {
# ($x,$y) = ((3*$y-$x)/2, # rotate -120
# ($x+$y)/-2);
# return;
#
# } elsif ($digit == 2) {
# return;
# } elsif ($digit == 3) {
# $x = -$x; # rotate 180
# $y = -$y;
# $x += $sx + ($sx - 3*$sy)/2; # at +60 + X axis
# $y += $sy + ($sx + $sy)/2;
# return;
# } elsif ($digit == 4) {
# ($x,$y) = ((3*$y-$x)/2, # rotate -120
# ($x+$y)/-2);
# $x += ($sx - 3*$sy)/2; # at +60
# $y += ($sx + $sy)/2;
# return;
# } elsif ($digit == 5) {
# ($x,$y) = (($x+3*$y)/-2, # rotate +120
# ($x-$y)/2);
# # centre
# return;
# } elsif ($digit == 6) {
# ($x,$y) = (($x-3*$y)/2, # rotate +60
# ($x+$y)/2);
# return;
# }
#
# } else {
# if ($digit == 0) {
# $x += (3*$sy - $sx)/2; # at -120
# $y += ($sx + $sy)/-2;
#
# } elsif ($digit == 1) {
# ($x,$y) = ((3*$y-$x)/2, # rotate -120
# ($x+$y)/-2);
# $x += ($sx + 3*$sy)/2; # at -60
# $y += ($sy - $sx)/2;
#
# } elsif ($digit == 2) {
# $x = -$x; # rotate 180
# $y = -$y;
# $x += $sx; # at X axis
# $y += $sy;
#
# } elsif ($digit == 3) {
# ($x,$y) = (($x+3*$y)/-2, # rotate +120
# ($x-$y)/2);
# # centre
#
# } elsif ($digit == 4) {
# $x += ($sx + 3*$sy)/-2; # at +120
# $y += ($sx - $sy)/2;
#
# } elsif ($digit == 5) {
# $x += ($sx - 3*$sy)/2; # at +60
# $y += ($sx + $sy)/2;
#
# } elsif ($digit == 6) {
# ($x,$y) = (($x+3*$y)/-2, # rotate +120
# ($x-$y)/2);
# $x += $sx + ($sx - 3*$sy)/2; # at +60 + X axis
# $y += $sy + ($sx + $sy)/2;
# }
# }
#
# # 2*(sx,sy) + rot+60(sx,sy)
# ($sx,$sy) = ((5*$sx - 3*$sy) / 2,
# ($sx + 5*$sy) / 2);
# }
=for stopwords eg Ryde flowsnake Gosper Schouten's lookup Math-PlanePath multi-arm
=head1 NAME
Math::PlanePath::FlowsnakeCentres -- self-similar path of hexagon centres
=head1 SYNOPSIS
use Math::PlanePath::FlowsnakeCentres;
my $path = Math::PlanePath::FlowsnakeCentres->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Gosper, William>This path is a variation of the flowsnake curve by William
Gosper which follows the flowsnake tiling the same way but the centres of
the hexagons instead of corners across. The result is the same overall
shape, but a symmetric base figure.
=cut
# math-image --path=FlowsnakeCentres --all --output=numbers_dash --size=78x45
=pod
39----40 8
/ \
32----33 38----37 41 7
/ \ \ \
31----30 34----35----36 42 47 6
\ / / \
28----29 16----15 43 46 48--... 5
/ / \ \ \
27 22 17----18 14 44----45 4
/ / \ \ \
26 23 21----20----19 13 10 3
\ \ / / \
25----24 4---- 5 12----11 9 2
/ \ /
3---- 2 6---- 7---- 8 1
\
0---- 1 <- Y=0
-5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
The points are spread out on every second X coordinate to make little
triangles with integer coordinates, per L<Math::PlanePath/Triangular
Lattice>.
The base pattern is the seven points 0 to 6,
4---- 5
/ \
3---- 2 6---
\
0---- 1
This repeats at 7-fold increasing scale, with sub-sections rotated according
to the edge direction, and the 1, 2 and 6 sub-sections in reverse. Eg. N=7
to N=13 is the "1" part taking the base figure in reverse and rotated so the
end points towards the "2".
The next level can be seen at the midpoints of each such group, being
N=2,11,18,23,30,37,46.
---- 37
---- ---
30---- ---
| ---
| 46
|
| ----18
| ----- ---
23--- ---
---
--- 11
-----
2 ---
=head2 Arms
The optional C<arms> parameter can give up to three copies of the curve,
each advancing successively. For example C<arms=E<gt>3> is as follows.
Notice the N=3*k points are the plain curve, and N=3*k+1 and N=3*k+2 are
rotated copies of it.
=cut
# math-image --path=FlowsnakeCentres,arms=3 --all --output=numbers_dash
=pod
84---... 48----45 5
/ / \
81 66 51----54 42 4
/ / \ \ \
28----25 78 69 63----60----57 39 30 3
/ \ \ \ / / \
31----34 22 75----72 12----15 36----33 27 2
\ \ / \ /
40----37 19 4 9---- 6 18----21----24 1
/ / / \ \
43 58 16 7 1 0---- 3 77----80 <- Y=0
/ / \ \ \ / \
46 55 61 13----10 2 11 74----71 83 -1
\ \ \ / / \ \ \
49----52 64 73 5---- 8 14 65----68 86 -2
/ / \ / / /
... 67----70 76 20----17 62 53 ... -3
\ / / / / \
85----82----79 23 38 59----56 50 -4
/ / \ /
26 35 41----44----47 -5
\ \
29----32 -6
^
-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9
As described in L<Math::PlanePath::Flowsnake/Arms> the flowsnake essentially
fills a hexagonal shape with wiggly sides. For this Centres variation the
start of each arm corresponds to the centre of a little hexagon. The N=0
little hexagon is at the origin, and the 1 and 2 beside and below,
^ / \ / \
\ \ / \
| \ | |
| 1 | 0--->
| | |
\ / \ /
\ / \ /
| |
| 2 |
| / |
/ /
v \ /
Like the main Flowsnake the sides of the arms mesh perfectly and three arms
fill the plane.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::FlowsnakeCentres-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
In the current code the returned range is exact, meaning C<$n_lo> and
C<$n_hi> are the smallest and biggest in the rectangle, but don't rely on
that yet since finding the exact range is a touch on the slow side. (The
advantage of which though is that it helps avoid very big ranges from a
simple over-estimate.)
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 7**$level - 1)>, or for multiple arms return C<(0, $arms *
7**$level - 1)>.
There are 7^level points in a level, or arms*7^level for multiple arms,
numbered starting from 0.
=back
=head1 FORMULAS
=head2 N to X,Y
The C<n_to_xy()> calculation follows Ed Schouten's method
=over
L<http://80386.nl/projects/flowsnake/>
=back
breaking N into base-7 digits, applying reversals from high to low according
to digits 1, 2, or 6, then applying rotation and position according to the
resulting digits.
Unlike Ed's code, the path here starts from N=0 at the edge of the Gosper
island shape and for that reason doesn't cover the plane. An offset of
N-2*7^21 and suitable X,Y offset can be applied to get the same result.
=head2 X,Y to N
The C<xy_to_n()> calculation also follows Ed Schouten's method. It's based
on a nice observation that the seven cells of the base figure can be
identified from their X,Y coordinates, and the centre of those seven cell
figures then shrunk down a level to be a unit apart, thus generating digits
of N from low to high.
In triangular grid X,Y a remainder is formed
m = (x + 2*y) mod 7
Taking the base figure's N=0 at 0,0 the remainders are
4---- 6
/ \
1---- 3 5
\
0---- 2
The remainders are unchanged when the shape is moved by some multiple of the
next level X=5,Y=1 or the same at 120 degrees X=1,Y=3 or 240 degrees
X=-4,Y=1. Those vectors all have X+2*Y==0 mod 7.
From the m remainder an offset can be applied to move X,Y to the 0 position,
leaving X,Y a multiple of the next level vectors X=5,Y=1 etc. Those vectors
can then be shrunk down with
Xshrunk = (3*Y + 5*X) / 14
Yshrunk = (5*Y - X) / 14
This gives integers since 3*Y+5*X and 5*Y-X are always multiples of 14. For
example the N=35 point at X=2,Y=6 reduces to X = (3*6+5*2)/14 = 2 and Y =
(5*6-2)/14 = 2, which is then the "5" part of the base figure.
The remainders can be mapped to digits and then reversals and rotations
applied, from high to low, according to the edge orientation. Those steps
can be combined in a single lookup table with 6 states (three rotations, and
each one forward or reverse).
For the main curve the reduction ends at 0,0. For the multi-arm form the
second arm ends to the right at -2,0 and the third below at -1,-1. Notice
the modulo and shrink procedure maps those three points back to themselves
unchanged. The calculation can be done without paying attention to which
arms are supposed to be in use. On reaching one of the three ends the "arm"
is determined and the original X,Y can be rejected or accepted accordingly.
The key to this approach is that the base figure is symmetric around a
central point, so the tiling can be broken down first, and the rotations or
reversals in the path applied afterwards. Can it work on a non-symmetric
base figure like the "across" style of the main Flowsnake, or something like
the C<DragonCurve> for that matter?
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::Flowsnake>,
L<Math::PlanePath::GosperIslands>
L<Math::PlanePath::KochCurve>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::ZOrderCurve>
L<http://80386.nl/projects/flowsnake/> -- Ed Schouten's code
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|