/usr/share/perl5/Math/PlanePath/GreekKeySpiral.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=GreekKeySpiral --lines --scale=25
# http://gwydir.demon.co.uk/jo/greekkey/corners.htm
package Math::PlanePath::GreekKeySpiral;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest',
'floor';
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant xy_is_visited => 1;
use constant parameter_info_array =>
[ { name => 'turns',
share_key => 'turns_2',
display => 'Turns',
type => 'integer',
minimum => 0,
default => 2,
width => 2,
},
];
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + 4*($self->{'turns'}+1)**2;
}
sub y_negative_at_n {
my ($self) = @_;
return $self->n_start + 6*($self->{'turns'}+1)**2;
}
# 17-- 18--19--20--21
# |
# 16 3t-2 -- 8 -- 2t
# | | |
# 15 4t-5 ---11 6
# | | |
# 14-- 13-----12 5
# |
# 1---- 2----- 3-- t
#
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $self->n_start + ($self->{'turns'} == 0 ? 4 # turns=0
: $self->{'turns'} <= 2 ? 6 # turns=1,2
: 3*$self->{'turns'} - 4);
}
#------------------------------------------------------------------------------
# turns=1
# 2---3
# | |
# 0---1 4
#
# turns=2 |
# 5---6---7 18 15--14
# | | | | |
# 4---3 8 17--16 13 x=1,y=1
# | | |
# 0---1---2 9 10--11--12
#
# turns=3
# 10--11--12--13
# | |
# 9 6---5 14 x=2,y=1
# | | | |
# 8---7 4 15
# | |
# 0---1---2---3 16
#
# turns=4
# 17--18--19--20--21 50 37--36--35--34
# | | | | | 3,3,2,1,1,1,2,3,4,down4
# 16 9---8---7 22 49 38 41--42 33
# | | | | | | | | |
# 15 10--11 6 23 48 39--40 43 32 x=3,y=2
# | | | | | | |
# 14--13--12 5 24 47--46--45--44 31
# | | |
# 0---1---2---3---4 25--26--27--28--29--30 5,4,3,2,1,1,1,2,3,up3
#
# turns=5
# 26--27--28--29--30--31
# | | 4,4,3,2,1,1,1,2,3,4,5,5
# 25 12--11--10---9 32
# | | | |
# 24 13 16--17 8 33 5,4,3,2,1,1,1,2,3,4,5,rem
# | | | | | | |
# 35 23 14--15 18 7 34
# | | | | | x=3,y=3
# 36 22--21--20--19 6 35
# | |
# 0---1---2---3---4---5 36-
#
# turns=6
# 37--38--39--40--41--42--43
# | |
# 36 15--14--13--12--11 44 x=3,y=3
# | | | |
# 35 16 23--24--25 10 45
# | | | | | |
# 34 17 22--21 26 9 46 6,5,4,3,2,1,1,1,2,3,4,5,rem
# | | | | | |
# 33 18--19--20 27 8 47
# | | | |
# 32--31--30--29--28 7 48
# | |
# 0---1---2---3---4---5---6 49-
#
# turns=7
# 50--51--52--53--54--55--56--57
# | |
# 49 18--17--16--15--14--13 58
# | | | |
# 48 19 32--33--34--35 12 59 x=4,y=3
# | | | | | |
# 47 20 31 28--27 36 11 60
# | | | | | | | |
# 46 21 30--29 26 37 10 61 6,5,4,3,2,1,1,1,2,3,4,5,rem
# | | | | | |
# 45 22--23--24--25 38 9 62
# | | | |
# 44--43--42--41--40--39 8 63
# | |
# 0---1---2---3---4---5---6---7 64
#
# turns=8 x=5,y=4
# centre
# 2 1 1
# 3 2 1
# 4 3 2
# 5 3 3
# 6 3 3
# 7 4 3
# 8 5 4
# 9 5 5
# 10 5 5
# 11 6 5
# 12 7 6
# 13 7 7
# 14 7 7
# 15 8 7
#
# turns 2, 3, 4, 5
# midp 4 6, 10, 15, 21 N = (1/2 d^2 + 1/2 d)
#
# 63, 189, 387, 657
# 9*7 9*21, 9*43, 9*73
#
# 82 226 442
# 9*9+1 9*25+1 9*49+1
sub new {
my $self = shift->SUPER::new (@_);
my $turns = $self->{'turns'};
if (! defined $turns) {
$turns = 2;
} elsif ($turns < 0) {
}
$self->{'turns'} = $turns;
my $t1 = $turns + 1;
$self->{'centre_x'} = int($t1/2) + (($turns%4)==0);
$self->{'centre_y'} = int($turns/2) + (($turns%4)==1);
$self->{'midpoint'} = $turns*$t1/2 + 1;
$self->{'side'} = $t1;
$self->{'squared'} = $t1*$t1;
### turns : $self->{'turns'}
### midpoint: $self->{'midpoint'}
### side : $self->{'side'}
### squared : $self->{'squared'}
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
#### GreekKeySpiral n_to_xy: $n
if ($n < 1) {
return;
}
my $turns = $self->{'turns'};
my $squared = $self->{'squared'};
my $side = $turns + 1;
### sqrt of: ($n-1) / $squared
my $d = int (sqrt(($n-1) / $squared));
$n -= $squared*$d*$d;
my $dhalf = int($d/2);
### $d
### $dhalf
### n remainder: $n
my ($x,$y);
my $square_rot = 0;
my $frac;
{ my $int = int($n);
$frac = $n - int($n);
$n = $int;
}
### $frac
### $n
if ($d % 2) {
### odd d, right and top ...
if ($n >= $squared*($d+1)) {
### top ...
$n -= $squared*2*$d;
(my $q, $n) = _divrem ($n, $squared);
$x = (-$dhalf-$q)*$side + 1;
$y = ($dhalf+1)*$side;
$square_rot = 2;
} else {
### right ...
(my $q, $n) = _divrem ($n-$turns-1 + $squared, $squared);
$x = ($dhalf+1)*$side;
$y = ($q-$dhalf-1)*$side;
$square_rot = 1;
}
} else {
### even d, left and bottom ...
if ($d == 0 || $n >= $squared*($d+1)) {
### bottom ...
$n -= $squared*2*$d;
(my $q, $n) = _divrem ($n, $squared);
$x = ($dhalf+$q)*$side-1;
$y = -($dhalf)*$side;
$square_rot = 0;
} else {
### left ...
(my $q, $n) = _divrem ($n-$turns-1 + $squared, $squared);
$x = -($dhalf)*$side;
$y = -($q-$dhalf-1)*$side;
$square_rot = 3;
}
}
### assert: $n >= 0
### assert: $n < $squared
my $rot = $turns;
my $kx = 0;
my $ky = 0;
my $before;
### n-midpoint: $n - $self->{'midpoint'}
if (($n -= $self->{'midpoint'}) >= 0) {
### after middle ...
} elsif ($n += 1) {
### before middle ...
$n = -$n;
if ($frac) {
### fraction ...
$frac = 1-$frac;
$n -= 1;
} else {
### integer ...
$n -= 0;
}
$rot += 2;
$before = 1;
} else {
### centre segment ...
$rot += 1;
$before = 1;
}
### key n: $n
# d: [ 0, 1, 2 ]
# n: [ 0, 3, 10 ]
# d = -1/4 + sqrt(1/2 * $n + 1/16)
# = (-1 + sqrt(8*$n + 1)) / 4
# N = (2*$d + 1)*$d
# rel = (2*$d + 1)*$d + 2*$d+1
# = (2*$d + 3)*$d + 1
#
$d = int((sqrt(8*$n+1) - 1) / 4);
$n -= (2*$d+3)*$d + 1;
### $d
### key signed rem: $n
if ($n < 0) {
### key vertical ...
$kx += $d;
$ky = -$frac-$n-$d - 1 + $ky;
if ($d % 2) {
### key right ...
$rot += 2;
$kx += 1;
} else {
}
} else {
### key horizontal ...
$kx = $frac+$n-$d + $kx;
$ky += $d + 1;
$rot += 2;
if ($d % 2) {
### key bottom ...
$rot += 2;
$kx += -1;
} else {
}
}
### kxy raw: "$kx, $ky"
if ($rot & 2) {
$kx = -$kx;
$ky = -$ky;
}
if ($rot & 1) {
($kx,$ky) = (-$ky,$kx);
}
### kxy rotated: "$kx,$ky"
if ($before) {
if (($turns % 4) == 0) {
$kx -= 1;
}
if (($turns % 4) == 1) {
$ky -= 1;
}
if (($turns % 4) == 2) {
$kx += 1;
}
if (($turns % 4) == 3) {
$ky += 1;
}
}
$kx += $self->{'centre_x'};
$ky += $self->{'centre_y'};
if ($square_rot & 2) {
$kx = $turns-$kx;
$ky = $turns-$ky;
}
if ($square_rot & 1) {
($kx,$ky) = ($turns-$ky,$kx);
}
# kx,ky first to inherit BigRat etc from $frac
return ($kx + $x,
$ky + $y);
}
# t+(t-1)+(t-2)+(t-3) = 4t-6
# y=0 0
# y=2 0+1+2+3 total 6
# y=4 4+5+6+7 total 28
# (2 d^2 - d)
# N=4*t*y/2 - (2y-1)*y
# =(2t - 2y + 1)*y
# x=1 0+1+2 total 3
# x=3 3+4+5+6 total 21
# x=5 7+8+9+10 total 55
# (2 d^2 + d)
# N = 4*t*(x-1)/2 + 3t-3 - (2x+1)*x
# = 2*t*(x-1) + 3t-3 - (2x+1)*x
# = 2tx-2t + 3t-3 - (2x+1)*x
# = (2t-2x-1)x - 2t + 3t-3
# = (2t-2x-1)x + t-3
# y=0 squared-t-t total 0
# y=2 - (t-1)-(t-2)-(t-3)-(t-4) total 10
# y=4 - 5+6+7+8 total 36
# (2 d^2 + d)
# N = squared - 4*t*y/2 - 2t - (2y+1)*y +(x-y)
# = squared - (2t+2y+1)*y - 2t + x
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### xy_to_n: "x=$x, y=$y"
my $turns = $self->{'turns'};
my $side = $turns + 1;
my $squared = $self->{'squared'};
my $xs = floor($x/$side);
my $ys = floor($y/$side);
$x %= $side;
$y %= $side;
my $n;
if ($xs > -$ys) {
### top or right
if ($xs >= $ys) {
### right going upwards
$n = $squared*((4*$xs - 3)*$xs + $ys);
($x,$y) = ($y,$turns-$x); # rotate -90
if ($x == 0) {
$x = $turns;
$n -= $side*$turns; # +$side modulo
} else {
$x -= 1;
$n += $side;
}
} else {
### top going leftwards
$n = $squared*((4*$ys - 1)*$ys - $xs);
$x = $turns-$x; # rotate 180
$y = $turns-$y;
}
} else {
### bottom or left
if ($xs > $ys || ($xs == 0 && $ys == 0)) {
### bottom going rightwards: "$xs,$ys"
$n = $squared*((4*$ys - 3)*$ys + $xs);
} else {
### left going downwards
$n = $squared*((4*$xs - 1)*$xs - $ys);
($x,$y) = ($turns-$y,$x); # rotate +90
if ($x == 0) {
$x = $turns;
$n -= $side*$turns; # +$side modulo
} else {
$x -= 1;
$n += $side;
}
}
}
if ($x + $y >= $turns) {
### key top or right ...
if ($x > $y) {
### key right ...
$x = $turns-$x;
if ($x % 2) {
### forward ...
$n += (2*$turns-2*$x+2)*$x + $y - $turns;
} else {
### backward ...
$n += $squared - (2*$turns-2*$x+2)*$x - $y;
}
} else {
### key top ...
$y = $turns-$y;
if ($y % 2) {
### backward ...
$n += (2*$turns-2*$y)*$y + $turns-$x;
} else {
### forward ...
$n += $squared - (2*$turns - 2*$y)*$y - 2*$turns + $x;
}
}
} else {
### key bottom or left ...
if ($x >= $y) {
### key bottom ...
if ($y % 2) {
### backward ...
$n += $squared - (2*$turns - 2*$y)*$y - $turns - $x - 1;
} else {
### forward ...
$n += (2*$turns-2*$y)*$y + $x + 1;
}
} else {
### key left ...
if ($x % 2) {
### forward ...
$n += (2*$turns-2*$x-2)*$x + 2*$turns - $y;
} else {
### backward ...
$n += $squared - (2*$turns - 2*$x - 2)*$x - 3*$turns + $y;
}
}
}
return $n;
}
use Math::PlanePath::SquareArms;
*_rect_square_range = \&Math::PlanePath::SquareArms::_rect_square_range;
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
# floor divisions to square blocks
{
my $side = $self->{'turns'} + 1;
_divrem_mutate($x1,$side);
_divrem_mutate($y1,$side);
_divrem_mutate($x2,$side);
_divrem_mutate($y2,$side);
}
my ($dlo, $dhi) = _rect_square_range ($x1, $y1,
$x2, $y2);
my $squared = $self->{'squared'};
### d range sides: "$dlo, $dhi"
### right start: ((4*$squared*$dlo - 4*$squared)*$dlo + 10)
return ($dlo == 0 ? 1 # special case Nlo=1 for innermost square
# Nlo at right vertical start
: ((4*$squared*$dlo - 4*$squared)*$dlo + $squared+1),
# Nhi at bottom horizontal end
(4*$squared*$dhi + 4*$squared)*$dhi + $squared);
}
1;
__END__
=for stopwords Ryde Math-PlanePath Edkins
=head1 NAME
Math::PlanePath::GreekKeySpiral -- square spiral with Greek key motif
=head1 SYNOPSIS
use Math::PlanePath::GreekKeySpiral;
my $path = Math::PlanePath::GreekKeySpiral->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path makes a spiral with a Greek key scroll motif,
39--38--37--36 29--28--27 24--23 5
| | | | | |
40 43--44 35 30--31 26--25 22 4
| | | | | |
41--42 45 34--33--32 19--20--21 ... 3
| | |
48--47--46 5---6---7 18 15--14 99 96--95 2
| | | | | | | | |
49 52--53 4---3 8 17--16 13 98--97 94 1
| | | | | | |
50--51 54 1---2 9--10--11--12 91--92--93 <- Y=0
| |
57--56--55 68--69--70 77--78--79 90 87--86 -1
| | | | | | | |
58 61--62 67--66 71 76--75 80 89--88 85 -2
| | | | | | | |
59--60 63--64--65 72--73--74 81--82--83--84 -3
^
-3 -2 -1 X=0 1 2 3 4 5 6 7 8 ...
The repeating figure is a 3x3 pattern
|
* *---*
| | | right vertical
*---* * going upwards
|
*---*---*
|
The turn excursion is to the outside of the 3-wide channel and forward in
the direction of the spiral. The overall spiraling is the same as the
C<SquareSpiral>, but composed of 3x3 sub-parts.
=head2 Sub-Part Joining
The verticals have the "entry" to each figure on the inside edge, as for
example N=90 to N=91 above. The horizontals instead have it on the outside
edge, such as N=63 to N=64 along the bottom. The innermost N=1 to N=9 is a
bottom horizontal going right.
*---*---*
| | bottom horizontal
*---* * going rightwards
| |
--*---* *-->
On the horizontals the excursion part is still "forward on the outside", as
for example N=73 through N=76, but the shape is offset. The way the entry
is alternately on the inside and outside for the vertical and horizontal is
necessary to make the corners join.
=head2 Turn
An optional C<turns =E<gt> $integer> parameter controls the turns within the
repeating figure. The default is C<turns=E<gt>2>. Or for example
C<turns=E<gt>4> begins
=cut
# math-image --path=GreekKeySpiral,turns=4 --all --output=numbers_dash --size=78
=pod
turns => 4
105-104-103-102-101-100 79--78--77--76--75 62--61--60--59
| | | | | |
106 119-120-121-122 99 80 87--88--89 74 63 66--67 58
| | | | | | | | | | | |
107 118 115-114 123 98 81 86--85 90 73 64--65 68 57
| | | | | | | | | | | |
108 117-116 113 124 97 82--83--84 91 72--71--70--69 56
| | | | | |
109-110-111-112 125 96--95--94--93--92 51--52--53--54--55
| |
130-129-128-127-126 17--18--19--20--21 50 37--36--35--34
| | | | | |
131 144-145-146-147 16 9-- 8-- 7 22 49 38 41--42 33
| | | | | | | | | | | |
132 143 140-139 148 15 10--11 6 23 48 39--40 43 32
| | | | | | | | | | | |
133 142-141 138 149 14--13--12 5 24 47--46--45--44 31
| | | | | |
134-135-136-137 150 1-- 2-- 3-- 4 25--26--27--28--29--30
|
..-152-151
The count of turns is chosen to make C<turns=E<gt>0> a straight line, the
same as the C<SquareSpiral>. C<turns=E<gt>1> is a single wiggle,
=cut
# math-image --path=GreekKeySpiral,turns=1 --all --output=numbers_dash --size=78
=pod
turns => 1
66--65--64 61--60 57--56 53--52--51
| | | | | | | |
67--68 63--62 59--58 55--54 49--50
| |
70--69 18--17--16 13--12--11 48--47
| | | | | |
71--72 19--20 15--14 9--10 45--46
| | | |
... 22--21 2-- 3 8-- 7 44--43
| | | | |
23--24 1 4-- 5-- 6 41--42
| |
26--25 30--31 34--35 40--39
| | | | | |
27--28--29 32--33 36--37--38
In general the repeating figure is a square of turns+1 points on each side,
spiralling in and then out again.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::GreekKeySpiral-E<gt>new ()>
=item C<$path = Math::PlanePath::GreekKeySpiral-E<gt>new (turns =E<gt> $integer)>
Create and return a new Greek key spiral object. The default C<turns> is 2.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n E<lt> 1> the return is an empty list, it being considered the path
starts at 1.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each N
in the path as centred in a square of side 1, so the entire plane is
covered.
=back
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::SquareSpiral>
Jo Edkins Greek Key pages C<http://gwydir.demon.co.uk/jo/greekkey/index.htm>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|