This file is indexed.

/usr/share/perl5/Math/PlanePath/HIndexing.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# http://theinf1.informatik.uni-jena.de/~niedermr/publications.html
#
# Rolf Niedermeier
# http://fpt.akt.tu-berlin.de/niedermr/publications.html
#
#
# H second part down per paper
# |
# | *--*  *  *-
# | |  |  |  |
# | *  *--*  *
# | |        |
# | *  *--*  *
# | |  |  |  |
# | O  *  *--*
# |
# +------------
#
# eight similar to AlternatePaper
#
#                |
#    *--*  *--*  *  *-
#    |  |  |  |  |  |
#  --*  *  *  *--*  *--*
#       |  |           |
#       *  *  *--*--*--*
#    |  |  |
# *--*  *  O  *--*--*--*
# |                    |
# *--*--*--*  *  *  *--*
#             |  |  |
# *--*--*--*  *  *  *-
# |           |  |
# *--*  *--*  *  *  *-
#    |  |  |  |  |  |
#          *--*  *--*
#

package Math::PlanePath::HIndexing;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 117;

use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;


use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant diffxy_maximum => 0; # upper octant X<=Y so X-Y<=0
use constant _UNDOCUMENTED__dxdy_list_at_n => 9;


#------------------------------------------------------------------------------

sub n_to_xy {
  my ($self, $n) = @_;
  ### HIndexing n_to_xy(): $n

  if ($n < 0) {            # negative
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  {
    # ENHANCE-ME: get direction without full N+1 calculation
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int; # BigFloat int() gives BigInt, use that
  }

  my $low = _divrem_mutate ($n, 2);
  ### $low
  ### $n

  my @digits = digit_split_lowtohigh($n,4);
  my $len = ($n*0 + 2) ** scalar(@digits);  # inherit bignum 2

  my $x = 0;
  my $y = 0;
  my $rev = 0;
  my $xinvert = 0;
  my $yinvert = 0;
  while (@digits) {
    my $digit = pop @digits;

    ### $len
    ### $rev
    ### $digit

    my $new_xinvert = $xinvert;
    my $new_yinvert = $yinvert;
    my $xo = 0;
    my $yo = 0;
    if ($rev) {
      if ($digit == 1) {
        $xo = $len-1;
        $yo = $len-1;
        $rev ^= 1;
        $new_yinvert = $yinvert ^ 1;
      } elsif ($digit == 2) {
        $xo = 2*$len-2;
        $yo = 0;
        $rev ^= 1;
        $new_xinvert = $xinvert ^ 1;
      } elsif ($digit == 3) {
        $xo = $len;
        $yo = $len;
      }

    } else {
      if ($digit == 1) {
        $xo = $len-2;
        $yo = $len;
        $rev ^= 1;
        $new_xinvert = $xinvert ^ 1;
      } elsif ($digit == 2) {
        $xo = 1;
        $yo = 2*$len-1;
        $rev ^= 1;
        $new_yinvert = $yinvert ^ 1;
      } elsif ($digit == 3) {
        $xo = $len;
        $yo = $len;
      }
    }

    ### $xo
    ### $yo

    if ($xinvert) {
      $x -= $xo;
    } else {
      $x += $xo;
    }
    if ($yinvert) {
      $y -= $yo;
    } else {
      $y += $yo;
    }

    $xinvert = $new_xinvert;
    $yinvert = $new_yinvert;
    $len /= 2;
  }

  ### final: "$x,$y"

  if ($yinvert) {
    $y -= $low;
  } else {
    $y += $low;
  }

  ### is: "$x,$y"
  return ($x, $y);
}

# uncomment this to run the ### lines
#use Smart::Comments;

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### HIndexing xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ($x < 0 || $y < 0 || $x > $y - ($y&1)) {
    return undef;
  }
  if (is_infinite($x)) {
    return $x;
  }
  my ($len, $level) = round_down_pow (int($y/1), 2);
  ### $len
  ### $level
  if (is_infinite($level)) {
    return $level;
  }

  my $n = 0;
  my $npower = $len*$len/2;
  my $rev = 0;
  while (--$level >= 0) {
    ### at: "$x,$y rev=$rev  len=$len n=$n"
    my $digit;
    my $new_rev = $rev;
    if ($y >= $len) {
      $y -= $len;
      if ($x >= $len) {
        ### digit 3 ...
        $digit = 3;
        $x -= $len;
      } else {
        my $yinv = $len-1-$y;
        ### digit 1 or 2: "y reduce to $y,  x cmp ".($yinv-($yinv&1))
        if ($x > $yinv-($yinv&1)) {
          ### digit 2, x invert to: $len-1-$x
          $digit = 2;
          $x = $len-1-$x;
        } else {
          ### digit 1, y invert to: $yinv
          $digit = 1;
          $y = $yinv;
        }
        $new_rev ^= 1;
      }
    } else {
      ### digit 0 ...
      $digit = 0;
    }

    if ($rev) {
      $digit = 3 - $digit;
      ### reversed digit: $digit
    }
    $rev = $new_rev;

    ### add n: $npower*$digit
    $n += $npower*$digit;
    $len /= 2;
    $npower /= 4;
  }

  ### end at: "$x,$y  n=$n rev=$rev"
  ### assert: $x == 0
  ### assert: $y == 0 || $y == 1

  return $n + $y^$rev;
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### HIndexing rect_to_n_range(): "$x1,$y1 to $x2,$y2"

  # y2 & 1 excluding the X=Y diagonal on odd Y rows
  if ($x2 < 0 || $y2 < 0 || $x1 > $y2 - ($y2&1)) {
    return (1, 0);
  }

  my ($len, $level) = round_down_pow (($y2||1), 2);
  return (0, 2*$len*$len-1);
}


#------------------------------------------------------------------------------

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, 2*4**$level - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, 2);
  my ($pow,$exp) = round_down_pow ($n, 4);
  return $exp + 1;
}

sub _UNDOCUMENTED__level_to_area {
  my ($self, $level) = @_;
  return (2**$level - 1)**2;
}
sub _UNDOCUMENTED__level_to_area_Y {
  my ($self, $level) = @_;
  if ($level == 0) { return 0; }
  return 2**(2*$level-1)  - 2**$level;
}
sub _UNDOCUMENTED__level_to_area_up {
  my ($self, $level) = @_;
  if ($level == 0) { return 0; }
  return 2**(2*$level-1)  - 2**$level + 1;
}

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde ie Math-PlanePath Rolf Niedermeier octant Indexings OEIS

=head1 NAME

Math::PlanePath::HIndexing -- self-similar right-triangle traversal

=head1 SYNOPSIS

 use Math::PlanePath::HIndexing;
 my $path = Math::PlanePath::HIndexing->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Niedermeier, Rolf>X<Reinhardt, Klaus>X<Sanders, Peter>This is an infinite
integer version of H-indexing per

=over

Rolf Niedermeier, Klaus Reinhardt and Peter Sanders, "Towards Optimal
Locality In Mesh Indexings", Discrete Applied Mathematics, volume 117, March
2002, pages 211-237.
L<http://theinf1.informatik.uni-jena.de/publications/dam01a.pdf>

=back

It traverses an eighth of the plane by self-similar right triangles.  Notice
the "H" shapes that arise from the backtracking, for example N=8 to N=23,
and repeating above it.

        |                                                           |
     15 |  63--64  67--68  75--76  79--80 111-112 115-116 123-124 127
        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
     14 |  62  65--66  69  74  77--78  81 110 113-114 117 122 125-126
        |   |           |   |           |   |           |   |
     13 |  61  58--57  70  73  86--85  82 109 106-105 118 121
        |   |   |   |   |   |   |   |   |   |   |   |   |   |
     12 |  60--59  56  71--72  87  84--83 108-107 104 119-120
        |           |           |                   |
     11 |  51--52  55  40--39  88  91--92  99-100 103
        |   |   |   |   |   |   |   |   |   |   |   |
     10 |  50  53--54  41  38  89--90  93  98 101-102
        |   |           |   |           |   |
      9 |  49  46--45  42  37  34--33  94  97
        |   |   |   |   |   |   |   |   |   |
      8 |  48--47  44--43  36--35  32  95--96
        |                           |
      7 |  15--16  19--20  27--28  31
        |   |   |   |   |   |   |   |
      6 |  14  17--18  21  26  29--30
        |   |           |   |
      5 |  13  10-- 9  22  25
        |   |   |   |   |   |
      4 |  12--11   8  23--24
        |           |
      3 |   3-- 4   7
        |   |   |   |
      2 |   2   5-- 6
        |   |
      1 |   1
        |   |
    Y=0 |   0
        +-------------------------------------------------------------
           X=0  1   2   3   4   5   6   7   8   9  10  11  12  13  14

The tiling is essentially the same as the Sierpinski curve (see
L<Math::PlanePath::SierpinskiCurve>).  The following is with two points per
triangle.  Or equally well it could be thought of with those triangles
further divided to have one point each, a little skewed.

    +---------+---------+--------+--------/
    |  \      |      /  | \      |       /
    | 15 \  16| 19  /20 |27\  28 |31    /
    |  |  \  ||  | /  | | | \  | | |  /
    | 14   \17| 18/  21 |26  \29 |30 /
    |       \ | /       |     \  |  /
    +---------+---------+---------/
    |       / |  \      |       /
    | 13  /10 | 9 \  22 | 25   /
    |  | /  | | |  \  | |  |  /
    | 12/  11 | 8   \23 | 24/
    |  /      |      \  |  /
    +-------------------/
    |  \      |       /
    | 3 \   4 | 7    /
    | |  \  | | |  /
    | 2   \ 5 | 6 /
    |       \ |  /
    +----------/
    |         /
    | 1     /
    | |   /
    | 0  /
    |  /
    +/

The correspondence to the C<SierpinskiCurve> path is as follows.  The
4-point verticals like N=0 to N=3 are a Sierpinski horizontal, and the
4-point "U" parts like N=4 to N=7 are a Sierpinski vertical.  In both cases
there's an X,Y transpose and bit of stretching.


    3                                       7
    |                                      /
    2         1--2             5--6       6
    |  <=>   /    \            |  |  <=>  |
    1       0      3           4  7       5
    |                                      \
    0                                       4

=head2 Level Ranges

Counting the initial N=0 to N=7 section as level 1, the X,Y ranges for a
given level is

    Nlevel = 2*4^level - 1
    Xmax = 2*2^level - 2
    Ymax = 2*2^level - 1

For example level=3 is N through to Nlevel=2*4^3-1=127 and X,Y ranging up to
Xmax=2*2^3-2=14 and Xmax=2*2^3-1=15.

On even Y rows, the N on the X=Y diagonal is found by duplicating each bit
in Y except the low zero (which is unchanged).  For example Y=10 decimal is
1010 binary, duplicate to binary 1100110 is N=102.

It would be possible to take a level as N=0 to N=4^k-1 too, which would be a
triangle against the Y axis.  The 2*4^level - 1 is per the paper above.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::HIndexing-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2*4**$level - 1)>.

=back

=head1 FORMULAS

=head2 Area

The area enclosed by curve in its triangular level k is

    A[k] = (2^k-1)^2
         = 0, 1, 9, 49, 225, 961, 3969, 16129, ...  (A060867)

=for Test-Pari-DEFINE  A(k) = (2^k-1)^2

=for Test-Pari-DEFINE  A_samples = [ 0, 1, 9, 49, 225, 961, 3969, 16129 ]

=for Test-Pari  vector(length(A_samples),k,my(k=k-1); A(k)) == A_samples

For example level k=2 enclosed area marked by "@" signs,

      7 |   *---*---*---*---*---*---31
        |   |   | @ |   | @ |   | @ |
      6 |   *   *---*   *   *   *---*
        |   |           | @ |
      5 |   *   *---*   *   *
        |   |   | @ |   | @ |
      4 |   *---*   *   *---*         level k=2
        |   | @   @ |                 N=0 to N=31
      3 |   *-- *   *
        |   |   | @ |                 A[2] = 9
      2 |   *   *-- *
        |   |
      1 |   *
        |   |
    Y=0 |   0
        +------------------------------
           X=0  1   2   3   4   5   6

The block breakdowns are

    +---------------+     ^
    | \  ^ |  | ^  /      |
    |\ \ 2 |  | 3 /       | = 2^k - 1
    | \ \  |  |  /        |
    | 1\ \ |  | /         |
    | v \ \+--+/          v
    +----+
    |    |
    +----+
    | ^  /
    | 0 /
    |  /
    | /
    +/

    <---->  = 2^k - 2

Parts 0 and 3 are identical.  Parts 1 and 2 are mirror images of 0 and 3
respectively.  Parts 0 and 1 have an area in between 1 high and 2^k-2 wide
(eg. 2^2-2=2 wide in the k=2 above).  Parts 2 and 3 have an area in between
1 wide 2^k-1 high (eg. 2^2-1=3 high in the k=2 above).  So the total area is

    A[k] = 4*A[k-1] + 2^k-2 + 2^k-1     starting A[0] = 0
         =    4^0     * (2*2^k - 3)
            + 4^1     * (2*2^(k-1) - 3)
            + 4^2     * (2*2^(k-2) - 3)
            + ...
            + 4^(k-1) * (2*2^1 - 3)
            + 4^k * A[0]
         = 2*2*(4^k - 2^k)/(4-2) - 3*(4^k - 1)/(4-1)
         = (2^k - 1)^2

=for Test-Pari  A(0) == 0

=for Test-Pari  vector(50,k, 4*A(k-1) + 2^k-2 + 2^k-1) == vector(50,k, A(k))

=for Test-Pari  vector(50,k, sum(i=0,k-1, 4^i*(2*2^(k-i) - 3))) == vector(50,k, A(k))

=for Test-Pari  vector(50,k, 2*2*(4^k - 2^k)/(4-2) - 3*(4^k - 1)/(4-1)) == vector(50,k, A(k))

=cut

# = 2*2*( 2^(k-1) + 4*2^(k-2) + ... + 4^(k-1)
#    - 3*( 1 + 4 + ... + 4^*(k-1) )
#
# 2*(2^(k-1)*2^(k-1) - 2*2^(k-1) + 1) + 2^k - 2
# = 2*(2^(k-1)*2^(k-1) - 2*2^(k-1)) + 2*2^(k-1)
# = 2*2^(k-1)*(2^(k-1)*2^(k-1) - 2)
# = 2^k * (2^(k-1) - 2)
#
# vector(10,k,my(k=k-1); A(k))
# vector(10,k,my(k=k-1); Afirst(k))

=pod

=head2 Half Level Areas

Block 1 ends at the top-left corner and block 2 start there.  The area
before that midpoint enclosed to the Y axis can be calculated.  Likewise the
area after that midpoint to the top line.  Both are two blocks, and with
either 2^k-2 or 2^k-1 in between.  They're therefore half the total area
A[k], with the extra unit square going to the top AT[k].

    AY[k] = floor(A[k]/2)
          = 0, 0, 4, 24, 112, 480, 1984, 8064, 32512, ...  (A059153)

    AT[k] = ceil(A[k]/2)
          = 0, 1, 5, 25, 113, 481, 1985, 8065, 32513, ...  (A092440)

=for Test-Pari-DEFINE  AY(k) = floor(A(k)/2)

=for Test-Pari-DEFINE  AT(k) = ceil(A(k)/2)

=for Test-Pari-DEFINE  AY_samples = [0, 0, 4, 24, 112, 480, 1984, 8064, 32512, 130560]

=for Test-Pari-DEFINE  AT_samples = [0, 1, 5, 25, 113, 481, 1985, 8065, 32513, 130561]

=for Test-Pari  vector(length(AY_samples),k,my(k=k-1); AY(k)) == AY_samples

=for Test-Pari  vector(length(AT_samples),k,my(k=k-1); AT(k)) == AT_samples

=for Test-Pari-DEFINE  AY(k) = 2*(2^(k-1)*2^(k-1) - 2*2^(k-1)) + 2*2^(k-1)

=for Test-Pari-DEFINE  AY(k) = 2*(2^(k-1)*2^(k-1) - 2^(k-1))

=for Test-Pari-DEFINE  AY(k) = 2^k * (2^(k-1) - 1)

=for Test-Pari-DEFINE  AY(k) = 4^k + 2^k * (2^(k-1) - 1 - 2^k)

=for Test-Pari-DEFINE  AY(k) = 4^k + 2^k * (-2^(k-1) - 1)

=for Test-Pari-DEFINE  AY(k) = (2^k-1)^2 - (2^k-1)^2 + 2^k * (2^(k-1) - 1)

=for Test-Pari  vector(50,k, AY(k)) == vector(50,k, 2*A(k-1)+2^k-2)

=for Test-Pari  vector(50,k, AT(k)) == vector(50,k, 2*A(k-1)+2^k-1)


                                     15
                                      |
                                     14
                                      |
                                     13  10-- 9
                                      |   | @ |
                                     12--11   8
                                        @   @ |
                      3               3-- 4   7
                      |               |   | @ |
                      2               2   5-- 6
                      |               |
                      1               1
                      |               |
        0             0               0

    AY[0] = 0     AY[1] = 0       AY[2] = 4

=cut

=pod

       1       3-- 4   7       15--16  19--20  27--28  31
                   | @ |            | @ |   | @ |   | @ |
                   5-- 6           17--18  21  26  29--30
                                            | @ |
                                           22  25
                                            | @ |
                                           23--24

    AT[0] = 0   AT[1] = 1      AT[2] = 5

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A097110> (etc)

=back

    A097110    Y at N=2^k, being successively 2^j-1, 2^j

    A060867    area of level
    A059153    area of level first half
    A092440    area of level second half

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SierpinskiCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut