/usr/share/perl5/Math/PlanePath/HilbertSpiral.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::HilbertSpiral;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'digit_split_lowtohigh';
use Math::PlanePath::BetaOmega 52;
*_y_round_down_len_level = \&Math::PlanePath::BetaOmega::_y_round_down_len_level;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant xy_is_visited => 1;
use constant x_negative_at_n => 4;
use constant y_negative_at_n => 8;
#------------------------------------------------------------------------------
# generated by tools/hilbert-spiral-table.pl
#
my @next_state = (8,0,0,12, 12,4,4,8, 0,8,8,4, 4,12,12,0,
20,0,0,12, 16,4,4,8);
my @digit_to_x = (0,1,1,0, 1,0,0,1, 0,0,1,1, 1,1,0,0,
0,1,1,0, 1,0,0,1);
my @digit_to_y = (0,0,1,1, 1,1,0,0, 0,1,1,0, 1,0,0,1,
0,0,1,1, 1,1,0,0);
my @xy_to_digit = (0,3,1,2, 2,1,3,0, 0,1,3,2, 2,3,1,0,
0,3,1,2, 2,1,3,0);
my @min_digit = (0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
2,2,3,1, 0,0,1,0, 0,undef,undef,undef,
0,0,3,0, 0,2,1,1, 2,undef,undef,undef,
2,1,1,2, 0,0,3,0, 0,undef,undef,undef,
0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
2,2,3,1, 0,0,1,0, 0);
my @max_digit = (0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
2,3,3,2, 3,3,1,1, 0,undef,undef,undef,
0,3,3,1, 3,3,1,2, 2,undef,undef,undef,
2,2,1,3, 3,1,3,3, 0,undef,undef,undef,
0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
2,3,3,2, 3,3,1,1, 0);
# neg state 20
sub n_to_xy {
my ($self, $n) = @_;
### HilbertSpiral n_to_xy(): $n
### hex: sprintf "%#X", $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $int = int($n);
$n -= $int;
my @digits = digit_split_lowtohigh($int,4);
my $len = ($n*0 + 2) ** scalar(@digits); # inherit possible bigint 1
my $state = ($#digits & 1 ? 4 : 0);
my $dir = $state + 2; # default if all $digit==3
### @digits
my $x = my $y = 0;
while (defined (my $digit = pop @digits)) { # high to low
$len /= 2;
$state += $digit;
if ($digit != 3) {
$dir = $state; # lowest non-3 digit
}
### at: "$x,$y len=$len"
### $state
### $dir
### digit_to_x: $digit_to_x[$state]
### digit_to_y: $digit_to_y[$state]
### next_state: $next_state[$state]
my $offset = scalar(@digits) & 1;
$x += $len * ($digit_to_x[$state] - $offset);
$y += $len * ($digit_to_y[$state] - $offset);
$state = $next_state[$state];
}
### frac: $n
### $dir
### dir dx: ($digit_to_x[$dir+1] - $digit_to_x[$dir])
### dir dy: ($digit_to_y[$dir+1] - $digit_to_y[$dir])
### x: $n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x
### y: $n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y
# with $n fractional part
return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x,
$n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### HilbertSpiral xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
my $n = ($x * 0 * $y);
my ($len, $level) = _y_round_down_len_level ($x);
{
my ($ylen, $ylevel) = _y_round_down_len_level ($y);
### y len/level: "$ylen $ylevel"
if ($ylevel > $level) {
$level = $ylevel;
$len = $ylen;
}
}
if (is_infinite($len)) {
return $len;
}
### $len
### $level
my $state;
{
my $offset;
if ($level & 1) {
$state = 4;
$offset = 4*$len;
} else {
$state = 0;
$offset = 2*$len;
}
$offset -= 2;
$offset /= 3;
$y += $offset;
$x += $offset;
# $x,$y now relative to Xmin(level),Ymin(level),
# so in range 0 <= $x,$y < 2*len
}
### offset x,y to: "$x, $y"
for (;;) {
### at: "$x,$y len=$len"
### assert: $x >= 0
### assert: $y >= 0
### assert: $x < 2*$len
### assert: $y < 2*$len
my $xo;
if ($xo = ($x >= $len)) {
$x -= $len;
}
my $yo;
if ($yo = ($y >= $len)) {
$y -= $len;
}
### xy bits: ($xo+0).", ".($yo+0)
my $digit = $xy_to_digit[$state + 2*$xo + $yo];
$n = 4*$n + $digit;
$state = $next_state[$state+$digit];
last if --$level < 0;
$len /= 2;
}
### assert: $x == 0
### assert: $y == 0
return $n;
}
# This finds the exact minimum/maximum N in the given rectangle.
#
# The strategy is similar to xy_to_n(), except that at each bit position
# instead of taking a bit of x,y from the input instead those bits are
# chosen from among the 4 sub-parts according to which has the maximum N and
# is within the given target rectangle. The final result is both an $n_max
# and a $x_max,$y_max which is its position, but only the $n_max is
# returned.
#
# At a given sub-part the comparisons ask whether x1 is above or below the
# midpoint, and likewise x2,y1,y2. Since x2>=x1 and y2>=y1 there's only 3
# combinations of x1>=cmp,x2>=cmp, not 4.
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### HilbertSpiral rect_to_n_range(): "$x1,$y1, $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
# If y1/y2 both positive or both negative then only look at the bigger of
# the two. If y1 negative and y2 positive then consider both.
my $len = 1;
my $level = 0;
foreach my $z (($x2 > 0 ? ($x2) : ()),
($x1 < 0 ? ($x1) : ()),
($y2 > 0 ? ($y2) : ()),
($y1 < 0 ? ($y1) : ())) {
my ($zlen, $zlevel) = _y_round_down_len_level ($z);
### y len/level: "$zlen $zlevel"
if ($zlevel > $level) {
$level = $zlevel;
$len = $zlen;
}
}
if (is_infinite($len)) {
return (0, $len);
}
# At this point an easy over-estimate would be:
# return (0, $len*$len*4-1);
my $n_min = my $n_max = 0;
my $x_min = my $x_max = my $y_min = my $y_max
= - (4**int(($level+1)/2) - 1) * 2 / 3;
my $min_state = my $max_state = ($level & 1 ? 20 : 16);
### $x_min
### $y_min
while ($level >= 0) {
### $level
### $len
{
my $x_cmp = $x_min + $len;
my $y_cmp = $y_min + $len;
my $digit = $min_digit[3*$min_state
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0)
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)];
$n_min = 4*$n_min + $digit;
$min_state += $digit;
if ($digit_to_x[$min_state]) { $x_min += $len; }
$y_min += $len * $digit_to_y[$min_state];
$min_state = $next_state[$min_state];
}
{
my $x_cmp = $x_max + $len;
my $y_cmp = $y_max + $len;
my $digit = $max_digit[3*$max_state
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0)
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)];
$n_max = 4*$n_max + $digit;
$max_state += $digit;
if ($digit_to_x[$max_state]) { $x_max += $len; }
$y_max += $len * $digit_to_y[$max_state];
$max_state = $next_state[$max_state];
}
$len = int($len/2);
$level--;
}
return ($n_min, $n_max);
}
#------------------------------------------------------------------------------
# levels
use Math::PlanePath::HilbertCurve;
*level_to_n_range = \&Math::PlanePath::HilbertCurve::level_to_n_range;
*n_to_level = \&Math::PlanePath::HilbertCurve::n_to_level;
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde ie Math-PlanePath OEIS
=head1 NAME
Math::PlanePath::HilbertSpiral -- 2x2 self-similar spiral
=head1 SYNOPSIS
use Math::PlanePath::HilbertSpiral;
my $path = Math::PlanePath::HilbertSpiral->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is a Hilbert curve variation which fills the plane by spiralling around
into negative X,Y on every second replication level.
..--63--62 49--48--47 44--43--42 5
| | | | |
60--61 50--51 46--45 40--41 4
| | |
59 56--55 52 33--34 39--38 3
| | | | | | |
58--57 54--53 32 35--36--37 2
|
5-- 4-- 3-- 2 31 28--27--26 1
| | | | |
6-- 7 0-- 1 30--29 24--25 <- Y=0
| |
9-- 8 13--14 17--18 23--22 -1
| | | | | |
10--11--12 15--16 19--20--21 -2
-2 -1 X=0 1 2 3 4 5
The curve starts with the same N=0 to N=3 as the C<HilbertCurve>, then the
following 2x2 blocks N=4 to N=15 go around in negative X,Y. The top-left
corner for this negative direction is at Ntopleft=4^level-1 for an odd
numbered level.
The parts of the curve in the X,Y negative parts are the same as the plain
C<HilbertCurve>, just mirrored along the anti-diagonal. For example. N=4 to
N=15
HilbertSpiral HilbertCurve
\ 5---6 9--10
\ | | | |
\ 4 7---8 11
\ |
5-- 4 \ 13--12
| \ |
6-- 7 \ 14--15
| \
9-- 8 13--14 \
| | | \
10--11--12 15
This mirroring has the effect of mapping
HilbertCurve X,Y -> -Y,-X for HilbertSpiral
Notice the coordinate difference (-Y)-(-X) = X-Y so that difference,
representing a projection onto the X=-Y opposite diagonal, is the same in
both paths.
=head2 Level Ranges
Reckoning the initial N=0 to N=3 as level 1, a replication level extends to
Nstart = 0
Nlevel = 4^level - 1 (inclusive)
Xmin = Ymin = - (4^floor(level/2) - 1) * 2 / 3
= binary 1010...10
Xmax = Ymax = (4^ceil(level/2) - 1) / 3
= binary 10101...01
width = height = Xmax - Xmin
= Ymax - Ymin
= 2^level - 1
The X,Y range doubles alternately above and below, so the result is a 1 bit
going alternately to the max or min, starting with the max for level 1.
level X,Ymin binary X,Ymax binary
----- --------------- --------------
0 0 0
1 0 0 1 = 1
2 -2 = -10 1 = 01
3 -2 = -010 5 = 101
4 -10 = -1010 5 = 0101
5 -10 = -01010 21 = 10101
6 -42 = -101010 21 = 010101
7 -42 = -0101010 85 = 1010101
The power-of-4 formulas above for Ymin/Ymax have the effect of producing
alternating bit patterns like this.
This is the same sort of level range as C<BetaOmega> has on its Y
coordinate, but on this C<HilbertSpiral> it applies to both X and Y.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::HilbertSpiral-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 4**$level - 1)>.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include
=over
L<http://oeis.org/A059285> (etc)
=back
A059285 X-Y coordinate diff
The difference X-Y is the same as the C<HilbertCurve>, since the "negative"
spiral parts are mirrored across the X=-Y anti-diagonal, which means
coordinates (-Y,-X) and -Y-(-X) = X-Y.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::BetaOmega>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|