This file is indexed.

/usr/share/perl5/Math/PlanePath/HilbertSpiral.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::HilbertSpiral;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'digit_split_lowtohigh';

use Math::PlanePath::BetaOmega 52;
*_y_round_down_len_level = \&Math::PlanePath::BetaOmega::_y_round_down_len_level;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
use constant xy_is_visited => 1;
use constant x_negative_at_n => 4;
use constant y_negative_at_n => 8;


#------------------------------------------------------------------------------

# generated by tools/hilbert-spiral-table.pl
#
my @next_state = (8,0,0,12, 12,4,4,8, 0,8,8,4, 4,12,12,0,
                  20,0,0,12, 16,4,4,8);
my @digit_to_x = (0,1,1,0, 1,0,0,1, 0,0,1,1, 1,1,0,0,
                  0,1,1,0, 1,0,0,1);
my @digit_to_y = (0,0,1,1, 1,1,0,0, 0,1,1,0, 1,0,0,1,
                  0,0,1,1, 1,1,0,0);
my @xy_to_digit = (0,3,1,2, 2,1,3,0, 0,1,3,2, 2,3,1,0,
                   0,3,1,2, 2,1,3,0);
my @min_digit = (0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
                 2,2,3,1, 0,0,1,0, 0,undef,undef,undef,
                 0,0,3,0, 0,2,1,1, 2,undef,undef,undef,
                 2,1,1,2, 0,0,3,0, 0,undef,undef,undef,
                 0,0,1,0, 0,1,3,2, 2,undef,undef,undef,
                 2,2,3,1, 0,0,1,0, 0);
my @max_digit = (0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
                 2,3,3,2, 3,3,1,1, 0,undef,undef,undef,
                 0,3,3,1, 3,3,1,2, 2,undef,undef,undef,
                 2,2,1,3, 3,1,3,3, 0,undef,undef,undef,
                 0,1,1,3, 3,2,3,3, 2,undef,undef,undef,
                 2,3,3,2, 3,3,1,1, 0);
# neg state 20

sub n_to_xy {
  my ($self, $n) = @_;
  ### HilbertSpiral n_to_xy(): $n
  ### hex: sprintf "%#X", $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  my $int = int($n);
  $n -= $int;

  my @digits = digit_split_lowtohigh($int,4);
  my $len = ($n*0 + 2) ** scalar(@digits);   # inherit possible bigint 1

  my $state = ($#digits & 1 ? 4 : 0);
  my $dir = $state + 2; # default if all $digit==3
  ### @digits

  my $x = my $y = 0;

  while (defined (my $digit = pop @digits)) {  # high to low
    $len /= 2;
    $state += $digit;
    if ($digit != 3) {
      $dir = $state;  # lowest non-3 digit
    }

    ### at: "$x,$y len=$len"
    ### $state
    ### $dir
    ### digit_to_x: $digit_to_x[$state]
    ### digit_to_y: $digit_to_y[$state]
    ### next_state: $next_state[$state]

    my $offset = scalar(@digits) & 1;
    $x += $len * ($digit_to_x[$state] - $offset);
    $y += $len * ($digit_to_y[$state] - $offset);
    $state = $next_state[$state];
  }


  ### frac: $n
  ### $dir
  ### dir dx: ($digit_to_x[$dir+1] - $digit_to_x[$dir])
  ### dir dy: ($digit_to_y[$dir+1] - $digit_to_y[$dir])
  ### x: $n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x
  ### y: $n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y

  # with $n fractional part
  return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x,
          $n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### HilbertSpiral xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  my $n = ($x * 0 * $y);

  my ($len, $level) = _y_round_down_len_level ($x);
  {
    my ($ylen, $ylevel) = _y_round_down_len_level ($y);
    ### y len/level: "$ylen  $ylevel"
    if ($ylevel > $level) {
      $level = $ylevel;
      $len = $ylen;
    }
  }
  if (is_infinite($len)) {
    return $len;
  }

  ### $len
  ### $level

  my $state;
  {
    my $offset;
    if ($level & 1) {
      $state = 4;
      $offset = 4*$len;
    } else {
      $state = 0;
      $offset = 2*$len;
    }
    $offset -= 2;
    $offset /= 3;
    $y += $offset;
    $x += $offset;
    # $x,$y now relative to Xmin(level),Ymin(level),
    # so in range 0 <= $x,$y < 2*len
  }
  ### offset x,y to: "$x, $y"

  for (;;) {
    ### at: "$x,$y  len=$len"
    ### assert: $x >= 0
    ### assert: $y >= 0
    ### assert: $x < 2*$len
    ### assert: $y < 2*$len

    my $xo;
    if ($xo = ($x >= $len)) {
      $x -= $len;
    }
    my $yo;
    if ($yo = ($y >= $len)) {
      $y -= $len;
    }
    ### xy bits: ($xo+0).", ".($yo+0)

    my $digit = $xy_to_digit[$state + 2*$xo + $yo];
    $n = 4*$n + $digit;
    $state = $next_state[$state+$digit];

    last if --$level < 0;
    $len /= 2;
  }

  ### assert: $x == 0
  ### assert: $y == 0

  return $n;
}


# This finds the exact minimum/maximum N in the given rectangle.
#
# The strategy is similar to xy_to_n(), except that at each bit position
# instead of taking a bit of x,y from the input instead those bits are
# chosen from among the 4 sub-parts according to which has the maximum N and
# is within the given target rectangle.  The final result is both an $n_max
# and a $x_max,$y_max which is its position, but only the $n_max is
# returned.
#
# At a given sub-part the comparisons ask whether x1 is above or below the
# midpoint, and likewise x2,y1,y2.  Since x2>=x1 and y2>=y1 there's only 3
# combinations of x1>=cmp,x2>=cmp, not 4.

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### HilbertSpiral rect_to_n_range(): "$x1,$y1, $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  # If y1/y2 both positive or both negative then only look at the bigger of
  # the two.  If y1 negative and y2 positive then consider both.
  my $len = 1;
  my $level = 0;
  foreach my $z (($x2 > 0 ? ($x2) : ()),
                 ($x1 < 0 ? ($x1) : ()),
                 ($y2 > 0 ? ($y2) : ()),
                 ($y1 < 0 ? ($y1) : ())) {
    my ($zlen, $zlevel) = _y_round_down_len_level ($z);
    ### y len/level: "$zlen  $zlevel"
    if ($zlevel > $level) {
      $level = $zlevel;
      $len = $zlen;
    }
  }
  if (is_infinite($len)) {
    return (0, $len);
  }

  # At this point an easy over-estimate would be:
  # return (0, $len*$len*4-1);

  my $n_min = my $n_max = 0;
  my $x_min = my $x_max = my $y_min = my $y_max
    = - (4**int(($level+1)/2) - 1) * 2 / 3;
  my $min_state = my $max_state = ($level & 1 ? 20 : 16);
  ### $x_min
  ### $y_min

  while ($level >= 0) {
    ### $level
    ### $len
    {
      my $x_cmp = $x_min + $len;
      my $y_cmp = $y_min + $len;
      my $digit = $min_digit[3*$min_state
                             + ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0)
                             + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)];

      $n_min = 4*$n_min + $digit;
      $min_state += $digit;
      if ($digit_to_x[$min_state]) { $x_min += $len; }
      $y_min += $len * $digit_to_y[$min_state];
      $min_state = $next_state[$min_state];
    }
    {
      my $x_cmp = $x_max + $len;
      my $y_cmp = $y_max + $len;
      my $digit = $max_digit[3*$max_state
                             + ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0)
                             + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)];

      $n_max = 4*$n_max + $digit;
      $max_state += $digit;
      if ($digit_to_x[$max_state]) { $x_max += $len; }
      $y_max += $len * $digit_to_y[$max_state];
      $max_state = $next_state[$max_state];
    }

    $len = int($len/2);
    $level--;
  }

  return ($n_min, $n_max);
}

#------------------------------------------------------------------------------
# levels

use Math::PlanePath::HilbertCurve;
*level_to_n_range = \&Math::PlanePath::HilbertCurve::level_to_n_range;
*n_to_level       = \&Math::PlanePath::HilbertCurve::n_to_level;

#------------------------------------------------------------------------------
1;
__END__


=for stopwords eg Ryde ie Math-PlanePath OEIS

=head1 NAME

Math::PlanePath::HilbertSpiral -- 2x2 self-similar spiral

=head1 SYNOPSIS

 use Math::PlanePath::HilbertSpiral;
 my $path = Math::PlanePath::HilbertSpiral->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is a Hilbert curve variation which fills the plane by spiralling around
into negative X,Y on every second replication level.

    ..--63--62  49--48--47  44--43--42        5
             |   |       |   |       |
        60--61  50--51  46--45  40--41        4
         |           |           |
        59  56--55  52  33--34  39--38        3
         |   |   |   |   |   |       |
        58--57  54--53  32  35--36--37        2
                         |
         5-- 4-- 3-- 2  31  28--27--26        1
         |           |   |   |       |
         6-- 7   0-- 1  30--29  24--25    <- Y=0
             |                   |
         9-- 8  13--14  17--18  23--22       -1
         |       |   |   |   |       |
        10--11--12  15--16  19--20--21       -2

        -2  -1  X=0  1   2   3   4   5

The curve starts with the same N=0 to N=3 as the C<HilbertCurve>, then the
following 2x2 blocks N=4 to N=15 go around in negative X,Y.  The top-left
corner for this negative direction is at Ntopleft=4^level-1 for an odd
numbered level.

The parts of the curve in the X,Y negative parts are the same as the plain
C<HilbertCurve>, just mirrored along the anti-diagonal.  For example. N=4 to
N=15

    HilbertSpiral             HilbertCurve

                  \        5---6   9--10
                   \       |   |   |   |
                    \      4   7---8  11
                     \                 |
      5-- 4           \           13--12
      |                \           |
      6-- 7             \         14--15
          |              \
      9-- 8  13--14       \
      |       |   |        \
     10--11--12  15

This mirroring has the effect of mapping

    HilbertCurve X,Y  ->  -Y,-X for HilbertSpiral

Notice the coordinate difference (-Y)-(-X) = X-Y so that difference,
representing a projection onto the X=-Y opposite diagonal, is the same in
both paths.

=head2 Level Ranges

Reckoning the initial N=0 to N=3 as level 1, a replication level extends to

    Nstart = 0
    Nlevel = 4^level - 1    (inclusive)

    Xmin = Ymin = - (4^floor(level/2) - 1) * 2 / 3
                = binary 1010...10
    Xmax = Ymax = (4^ceil(level/2) - 1) / 3
                = binary 10101...01

    width = height = Xmax - Xmin
                   = Ymax - Ymin
                   = 2^level - 1

The X,Y range doubles alternately above and below, so the result is a 1 bit
going alternately to the max or min, starting with the max for level 1.

    level     X,Ymin   binary      X,Ymax  binary
    -----     ---------------      --------------
      0         0                    0
      1         0          0         1 =       1
      2        -2 =      -10         1 =      01
      3        -2 =     -010         5 =     101
      4       -10 =    -1010         5 =    0101
      5       -10 =   -01010        21 =   10101
      6       -42 =  -101010        21 =  010101
      7       -42 = -0101010        85 = 1010101

The power-of-4 formulas above for Ymin/Ymax have the effect of producing
alternating bit patterns like this.

This is the same sort of level range as C<BetaOmega> has on its Y
coordinate, but on this C<HilbertSpiral> it applies to both X and Y.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::HilbertSpiral-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 4**$level - 1)>.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A059285> (etc)

=back

    A059285    X-Y coordinate diff

The difference X-Y is the same as the C<HilbertCurve>, since the "negative"
spiral parts are mirrored across the X=-Y anti-diagonal, which means
coordinates (-Y,-X) and -Y-(-X) = X-Y.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::BetaOmega>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut