/usr/share/perl5/Math/PlanePath/ImaginaryBase.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=ImaginaryBase --lines --scale=10
# math-image --path=ImaginaryBase --all --output=numbers_dash --size=80x50
#
# cf A005351 positives as negabinary index
# A005352 negatives as negabinary index
# A039724 positives as negabinary index, in binary
# A027615 negabinary bit count
# = 3 * A072894(n+1) - 2n - 3
# A098725 first diffs of A072894
# A000695 same value binary and negabinary, being base 4 digits 0,1
# A001045 abs(negabinary) of 0b11111 all ones (2^n-(-1)^n)/3
# A185269 negabinary primes
#
# A073785 positives as -3 index
# A007608 positives as -4 index
# A073786 -5
# A073787 -6
# A073788 -7
# A073789 -8
# A073790 -9
# A039723 positives as negadecimal index
# A051022 same value integer and negadecimal, 0s between digits
#
# http://mathworld.wolfram.com/Negabinary.html
# http://mathworld.wolfram.com/Negadecimal.html
package Math::PlanePath::ImaginaryBase;
use 5.004;
use strict;
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'parameter_info_array', # radix parameter
'round_down_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
use Math::PlanePath::ZOrderCurve;
*_digit_interleave = \&Math::PlanePath::ZOrderCurve::_digit_interleave;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant xy_is_visited => 1;
use constant absdx_minimum => 1; # X coord always changes
sub x_negative_at_n {
my ($self) = @_;
return $self->{'radix'}**2;
}
sub y_negative_at_n {
my ($self) = @_;
return $self->{'radix'}**3;
}
sub dir_maximum_dxdy {
my ($self) = @_;
return ($self->{'radix'}-1, -2);
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
my $radix = $self->{'radix'};
if (! defined $radix || $radix <= 2) { $radix = 2; }
$self->{'radix'} = $radix;
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### ImaginaryBase n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
# ENHANCE-ME: lowest non-(r-1) digit determines direction to next, or
# something like that
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
my $radix = $self->{'radix'};
my $x = 0;
my $y = 0;
my $len = ($n*0)+1; # inherit bignum 1
if (my @digits = digit_split_lowtohigh($n, $radix)) {
$radix = -$radix;
for (;;) {
$x += (shift @digits) * $len; # digits low to high
@digits || last;
$y += (shift @digits) * $len; # digits low to high
@digits || last;
$len *= $radix; # $radix negative negates each time
}
}
### final: "$x,$y"
return ($x,$y);
}
# ($x-$digit) and ($y-$digit) are multiples of $radix, but apply int() in
# case floating point rounding
#
sub xy_to_n {
my ($self, $x, $y) = @_;
### ImaginaryBase xy_to_n(): "$x, $y"
$x = round_nearest ($x);
if (is_infinite($x)) { return ($x); }
$y = round_nearest ($y);
if (is_infinite($y)) { return ($y); }
my $radix = $self->{'radix'};
my $zero = ($x * 0 * $y); # inherit bignum 0
my @n; # digits low to high
while ($x || $y) {
### at: "x=$x,y=$y n=".join(',',@n)
push @n, _divrem_mutate ($x, $radix);
$x = -$x;
push @n, _divrem_mutate ($y, $radix);
$y = -$y;
}
return digit_join_lowtohigh (\@n,$radix, $zero);
}
# left xmax = (r-1) + (r^2 -r) + (r^3-r^2) + ... + (r^k - r^(k-1))
# = r^(k-1) - 1
#
# right xmin = - (r + r^3 + ... + r^(2k+1))
# = -r * (1 + r^2 + ... + r^2k)
# = -r * ((r^2)^(k+1) -1) / (r^2 - 1)
#
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### ImaginaryBase rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest($x1);
$y1 = round_nearest($y1);
$x2 = round_nearest($x2);
$y2 = round_nearest($y2);
my $zero = $x1 * 0 * $y1 * $x2 * $y2;
my $radix = $self->{'radix'};
my ($min_xdigits, $max_xdigits)
= _negaradix_range_digits_lowtohigh($x1,$x2, $radix);
unless (defined $min_xdigits) {
return (0, $max_xdigits); # infinity
}
my ($min_ydigits, $max_ydigits)
= _negaradix_range_digits_lowtohigh($y1,$y2, $radix);
unless (defined $min_ydigits) {
return (0, $max_ydigits); # infinity
}
### $min_xdigits
### $max_xdigits
### min_x: digit_join_lowtohigh ($min_xdigits, $radix, $zero)
### max_x: digit_join_lowtohigh ($max_xdigits, $radix, $zero)
### $min_ydigits
### $max_ydigits
### min_y: digit_join_lowtohigh ($min_ydigits, $radix, $zero)
### max_y: digit_join_lowtohigh ($max_ydigits, $radix, $zero)
my @min_digits = _digit_interleave ($min_xdigits, $min_ydigits);
my @max_digits = _digit_interleave ($max_xdigits, $max_ydigits);
### final ...
### @min_digits
### @max_digits
return (digit_join_lowtohigh (\@min_digits, $radix, $zero),
digit_join_lowtohigh (\@max_digits, $radix, $zero));
}
# Return arrayrefs ($min_digits, $max_digits) which are the digits making
# up the index range for negaradix values $x1 to $x2 inclusive.
# The arrays are lowtohigh, so $min_digits->[0] is the least significant digit.
#
sub _negaradix_range_digits_lowtohigh {
my ($x1,$x2, $radix) = @_;
### _negaradix_range_digits(): "$x1,$x2 radix=$radix"
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } # make x1 <= x2
my $radix_minus_1 = $radix - 1;
### $radix
### $radix_minus_1
my ($len, $level, $min_base) = _negaradix_range_level ($x1,$x2, $radix);
### $len
### $level
if (is_infinite($level)) {
return (undef, $level);
}
my $max_base = $min_base;
### assert: $min_base <= $x1
### assert: $min_base + $len > $x2
my @min_digits; # digits formed high to low, stored low to high
my @max_digits;
while (--$level > 0) {
$len /= $radix;
### at: "len=$len reverse"
# reversed digits, x1 low end for max, x2 high end for min
{
my $digit = max (0,
min ($radix_minus_1,
int (($x2 - $min_base) / $len)));
### min base: $min_base
### min diff: $x2-$min_base
### min digit raw: $digit
### min digit reversed: $radix_minus_1 - $digit
$min_base += $digit * $len;
$min_digits[$level] = $radix_minus_1 - $digit;
}
{
my $digit = max (0,
min ($radix_minus_1,
int (($x1 - $max_base) / $len)));
### max base: $max_base
### max diff: $x1-$max_base
### max digit raw: $digit
### max digit reversed: $radix_minus_1 - $digit
$max_base += $digit * $len;
$max_digits[$level--] = $radix_minus_1 - $digit;
}
$len /= $radix;
### at: "len=$len plain"
# plain digits, x1 low end for min, x2 high end for max
{
my $digit = max (0,
min ($radix_minus_1,
int (($x1 - $min_base) / $len)));
### min base: $min_base
### min diff: $x1-$min_base
### min digit: $digit
$min_base += $digit * $len;
$min_digits[$level] = $digit;
}
{
my $digit = max (0,
min ($radix_minus_1,
int (($x2 - $max_base) / $len)));
### max base: $max_base
### max diff: $x2-$max_base
### max digit: $digit
$max_base += $digit * $len;
$max_digits[$level] = $digit;
}
}
### @min_digits
### @max_digits
return (\@min_digits, \@max_digits);
}
# return ($len,$level,$base)
# $level = number of digits in the bigest integer in negaradix $x1..$x2,
# rounded up to be $level even
# $len = $radix**$level
# $base = lowest negaradix reached by indexes from 0 to $len-1
#
# have $base <= $x1, $x2 < $base+$len
# and $level is the smallest even number with that coverage
#
# negabinary
# 0,1,5,21
#
# negaternary
# 1 3 9 27 81 243
# 0,2, 20 182
# -6 -60 -546
#
sub _negaradix_range_level {
my ($x1,$x2, $radix) = @_;
### _negaradix_range_level(): "$x1,$x2 radix=$radix"
### assert: $x1 <= $x2
my ($len, $level)
= round_down_pow (max($radix - $x1*($radix + 1),
(($radix+1)*$x2 - 1) * $radix),
$radix);
if ($level & 1) {
### increase level to even ...
$len *= $radix;
$level += 1;
}
### $len
### $level
# because level is even r^2k-1 is a multiple of r^2-1 and therefore of r+1
### assert: ($len-1) % ($radix+1) == 0
return ($len,
$level,
((1-$len) / ($radix+1)) * $radix); # base
}
#------------------------------------------------------------------------------
# levels
# shared by ImaginaryHalf and CubicBase
sub level_to_n_range {
my ($self, $level) = @_;
return (0, $self->{'radix'}**$level - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
$n = round_nearest($n);
my ($pow, $exp) = round_down_pow ($n, $self->{'radix'});
return $exp;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Math-PlanePath quater-imaginary Radix radix ie Negabinary negabinary negaternary negadecimal NX negaradix Nmin Nmax Nmin,Nmax NX NX,NY OEIS Seminumerical CACM
=head1 NAME
Math::PlanePath::ImaginaryBase -- replications in four directions
=head1 SYNOPSIS
use Math::PlanePath::ImaginaryBase;
my $path = Math::PlanePath::ImaginaryBase->new (radix => 4);
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is a simple pattern arising from complex numbers expressed in a base
i*sqrt(2) or other i*sqrt(r) base. Or equivalently by negabinary encoded
X,Y digits interleaved. The default radix=2 is
38 39 34 35 54 55 50 51 5
36 37 32 33 52 53 48 49 4
46 47 42 43 62 63 58 59 3
44 45 40 41 60 61 56 57 2
6 7 2 3 22 23 18 19 1
4 5 0 1 20 21 16 17 <- Y=0
14 15 10 11 30 31 26 27 -1
12 13 8 9 28 29 24 25 -2
^
-2 -1 X=0 1 2 3 4 5
The pattern can be seen by dividing into blocks as follows,
+---------------------------------------+
| 38 39 34 35 54 55 50 51 |
| |
| 36 37 32 33 52 53 48 49 |
| |
| 46 47 42 43 62 63 58 59 |
| |
| 44 45 40 41 60 61 56 57 |
+---------+---------+-------------------+
| 6 7 | 2 3 | 22 23 18 19 |
| +----+----+ |
| 4 5 | 0 | 1 | 20 21 16 17 |
+---------+----+----+ |
| 14 15 10 11 | 30 31 26 27 |
| | |
| 12 13 8 9 | 28 29 24 25 |
+-------------------+-------------------+
After N=0 at the origin, N=1 replicates that single point to the right.
Then that pair repeats above as N=2 and N=3. Then that 2x2 block repeats to
the left as N=4 to N=7, then 4x2 repeated below as N=8 to N=16. Then 4x4 to
the right as N=16 to N=31, etc. Each repeat is 90 degrees further around.
The relative layout and orientation of a sub-part is unchanged when
replicated.
=head2 Complex Base
This pattern arises from representing a complex number in "base" i*sqrt(r).
For an integer X,Y,
b = i*sqrt(r)
a[i] = 0 to r-1 digits
X+Y*i*sqrt(r) = a[k]*b^k + ... + a[2]*b^2 + a[1]*b + a[0]
and N is the a[i] digits in base r
N = a[k]*r^k + ... + a[2]*r^2 + a[1]*r + a[0]
X<Knuth, Donald>The factor sqrt(r) makes the generated Y an integer. For
actual use as a number base that factor can be omitted and instead
fractional digits a[-1]*r^-1 etc used to reach smaller Y values, as for
example in Knuth's "quater-imaginary" system of base 2*i, being i*sqrt(4),
with digits 0,1,2,3. (Knuth Seminumerical Algorithms section 4.1 and CACM
1960 pp245-247.)
The powers of i in the base give the replication direction, so i^0=1 right,
i^1=i up, i^2=-1 right, i^3=-i down, etc. The power of sqrt(r) then spreads
the replication in the respective direction. It takes two steps to repeat
horizontally and sqrt(r)^2=r hence the doubling of 1x1 to the right, 2x2 to
the left, 4x4 to the right, etc, and similarly vertically.
=head2 Negabinary
The way blocks repeat horizontally first to the right and then to the left
is per the negabinary system base b=-2.
X = x[k]*(-2)^k + ... + x[2]*(-2)^2 + x[1]*(-2) + x[0]
The effect is to represent any positive or negative X by a positive integer
index NX.
X, negabinary: ... -1 -2 0 1 2 3 4 5 ...
index NX: 2 3 0 1 6 7 4 5
Notice how the 0 point replicates to the right as 1 and then that pair 0,1
replicates to the left as 2,3. Then the block 2,3,0,1 repeats to the right
as 6,7,4,5 which the same order with 4 added to each. Then the resulting
block of eight repeats to the left similarly, in the same order with 8 added
to each.
The C<ImaginaryBase> takes the indexes NX and NY of these negabinary forms
and forms N by interleaving the digits (bits) of NX and NY. That
interleaving is in the style of the C<ZOrderCurve>.
zX,zY = ZOrderCurve n_to_xy(N)
X = to_negabinary(zX)
Y = to_negabinary(zY)
X,Y equals ImaginaryBase n_to_xy(N)
The C<ZOrderCurve> replicates blocks alternately right and up, whereas for
C<ImaginaryBase> here it's right,up,left,down repeating.
=head2 Radix
The C<radix> parameter controls the radix used to break N into X,Y. For
example radix 3 replicates to make 3x1, 3x3, 9x3, 9x9, etc blocks. The
replications are radix-1=2 copies of the preceding level at each stage,
radix => 3
+------------------------+-----------+
| 24 25 26 15 16 17 | 6 7 8 | 2
| | |
| 21 22 23 12 13 14 | 3 4 5 | 1
| +-----------+
| 18 19 20 9 10 11 | 0 1 2 | <- Y=0
+------------------------+-----------+
| 51 52 53 42 43 44 33 34 35 | -1
| |
| 48 49 50 39 40 41 30 31 32 | -2
| |
| 45 46 47 36 37 38 27 28 29 | -3
| |
| 78 79 80 69 70 71 60 61 62 | -4
| |
| 75 76 77 66 67 68 57 58 59 | -5
| |
| 72 73 74 63 64 65 54 55 56 | -6
+------------------------------------+
^
-6 -5 -4 -3 -2 -1 X=0 1 2
X,Y are "negaternary" in this case, and similar negaradix base=-radix for
higher values.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::ImaginaryBase-E<gt>new ()>
=item C<$path = Math::PlanePath::ImaginaryBase-E<gt>new (radix =E<gt> $r)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, $radix**$level - 1)>.
=back
=head1 FORMULAS
=head2 Rectangle to N Range
The X and Y ranges can be treated separately and then interleaved,
NXmin,NXmax = negaradix range to cover x1..x2
NYmin,NYmax = negaradix range to cover y1..y2
Nmin = interleave digits NXmin, NYmin
Nmax = interleave digits NXmax, NYmax
If the NX,NY ranges are exact then the resulting Nmin,Nmax range is exact.
An exact negaradix range can be calculated by digits high to low by
considering the range taken by the negaradix form. For example two
negaternary digits,
N digit 2 1 0
+---------+---------+---------+
N index | 6 7 8 | 3 4 5 | 0 1 2 |
+---------+---------+---------+
X negaternary -6 -5 -4 -3 -2 -1 0 1 2
^
base
Taking the base=-90909...90 which is the lowest taken (where 9 is the radix
digit R-1), then the next digit of N is the position from X-base, taken
alternately reverse 2,1,0 as shown here or forward 0,1,2.
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include,
=over
L<http://oeis.org/A057300> (etc)
=back
radix=2
A057300 permutation N at transpose Y,X (swap bit pairs)
radix=3
A163327 permutation N at transpose Y,X (swap trit pairs)
radix=4
A126006 permutation N at transpose Y,X (swap digit pairs)
radix=16
A217558 permutation N at transpose Y,X (swap digit pairs)
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::ImaginaryHalf>,
L<Math::PlanePath::CubicBase>,
L<Math::PlanePath::ZOrderCurve>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|