This file is indexed.

/usr/share/perl5/Math/PlanePath/ImaginaryHalf.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# Copyright 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::ImaginaryHalf;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

use Math::PlanePath::ImaginaryBase;
*_negaradix_range_digits_lowtohigh
  = \&Math::PlanePath::ImaginaryBase::_negaradix_range_digits_lowtohigh;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;
use constant class_y_negative => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad12;

use constant parameter_info_array =>
  [ Math::PlanePath::Base::Digits::parameter_info_radix2(),
    {
     name      => 'digit_order',
     share_key => 'digit_order_XYX',
     display   => 'Digit Order',
     type      => 'enum',
     default   => 'XYX',
     choices   => ['XYX',
                   'XXY',
                   'YXX',
                   'XnYX',
                   'XnXY',
                   'YXnX',
                  ],
    },
  ];

{
  my %x_negative_at_n = (XYX => 2,
                         XXY => 1,
                         YXX => 2,
                         XnYX => 0,
                         XnXY => 0,
                         YXnX => 1,
                        );
  sub x_negative_at_n {
    my ($self) = @_;
    return $self->{'radix'} ** $x_negative_at_n{$self->{'digit_order'}};
  }
}

# ENHANCE-ME: prove dY range
use constant dy_maximum => 1;

{
  my %absdx_minimum = (XYX => 1,
                       XXY => 1,
                       YXX => 0,   # dX=0 at N=0
                       XnYX => 2,  # dX=-2 at N=0
                       XnXY => 1,
                       YXnX => 0,  # dX=0 at N=0
                      );
  sub absdx_minimum {
    my ($self) = @_;
    return $absdx_minimum{$self->{'digit_order'}};
  }
}
{
  my %absdy_minimum = (XYX => 0,   # dY=0 at N=0
                       XXY => 0,   # dY=0 at N=0
                       YXX => 1,
                       XnYX => 0,   # dY=0 at N=0
                       XnXY => 0,   # dY=0 at N=0
                       YXnX => 1,
                      );
  sub absdy_minimum {
    my ($self) = @_;
    return $absdy_minimum{$self->{'digit_order'}};
  }
}

# was this anything?
#
# sub dir4_minimum {
#   my ($self) = @_;
#   if ($self->{'digit_order'} eq 'zzXYX') {
#     return Math::NumSeq::PlanePathDelta::_delta_func_Dir4
#       ($self->{'radix'}-1,-2);
#   } else {
#     return 0;
#   }
# }

#------------------------------------------------------------------------------
my %digit_permutation = (XYX => [0,2,1],
                         YXX => [2,0,1],
                         XXY => [0,1,2],

                         XnYX => [1,2,0],
                         YXnX => [2,1,0],
                         XnXY => [1,0,2],
                        );

sub new {
  my $self = shift->SUPER::new(@_);

  my $radix = $self->{'radix'};
  if (! defined $radix || $radix <= 2) { $radix = 2; }
  $self->{'radix'} = $radix;

  my $digit_order = ($self->{'digit_order'} ||= 'XYX');
  $self->{'digit_permutation'} = $digit_permutation{$digit_order}
    || croak "Unrecognised digit_order: ",$digit_order;

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### ImaginaryHalf n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;       # BigFloat int() gives BigInt, use that
  }

  my $radix = $self->{'radix'};
  my $zero = ($n*0); # inherit bignum 0

  my @xydigits = ([],[0],[]);
  my $digit_permutation = $digit_permutation{$self->{'digit_order'}};
  my @ndigits = digit_split_lowtohigh($n, $radix);
  foreach my $i (0 .. $#ndigits) {
    my $p = $digit_permutation->[$i%3];
    push @{$xydigits[$p]}, $ndigits[$i], ($p < 2 ? (0) : ());
  }

  return (digit_join_lowtohigh ($xydigits[0], $radix, $zero)
          - digit_join_lowtohigh ($xydigits[1], $radix, $zero),
          digit_join_lowtohigh ($xydigits[2], $radix, $zero));
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### ImaginaryHalf xy_to_n(): "$x, $y"

  $y = round_nearest ($y);
  if (is_infinite($y)) { return $y; }
  if ($y < 0) { return undef; }

  $x = round_nearest ($x);
  if (is_infinite($x)) { return $x; }

  my $zero = ($x * 0 * $y);  # inherit bignum 0
  my $radix = $self->{'radix'};
  my @ydigits = digit_split_lowtohigh($y, $radix);
  my $digit_permutation = $digit_permutation{$self->{'digit_order'}};

  my @ndigits; # digits low to high
  my @nd;
  while ($x || @ydigits) {
    $nd[0] = _divrem_mutate ($x, $radix);
    $x = -$x;
    $nd[1] = _divrem_mutate ($x, $radix);
    $x = -$x;
    $nd[2] = shift @ydigits || 0;

    push @ndigits,
      $nd[$digit_permutation->[0]],
        $nd[$digit_permutation->[1]],
          $nd[$digit_permutation->[2]];
  }
  return digit_join_lowtohigh (\@ndigits, $radix, $zero);
}

# Nlevel=2^level-1
#    66666666 55 55 5555 7.[16].7
#    66666666 55 55 5555 7.[16].7
#    66666666 33 22 4444 7.[16].7
#  9 66666666 33 01 4444 7.[16].7
#  ^        ^  ^  ^ ^    ^        ^
# -11      -3 -1  1 2    6       22
#
# X=1     when level=1
# X=1+1=2 when level=4
# X=2+4=6 when level=7
# X=6+16=22 when level=10
#
# X=0-2=-2 when level=3
# X=-2-8=-10  when level=6
# X=-10-32=-42 when level=9
#
# Y=1 k=0 want level=2
# Y=2 k=1 want level=5
# Y=4 k=2 want level=8
#
# X = 1 + 1 + 4 + 16 + 4^k
#   = 1 + (4^(k+1) - 1) / (4-1)
# X*(R2-1) = (R2-1) + R2^(k+1) - 1
# X*(R2-1) + 1 - (R2-1) = R2^(k+1)
# R2^(k+1) = (X-1)*(R2-1) + 1
# k+1 = round down pow (X-1)*(R2-1) + 1
# (1-1)*3+1=1    k+1=0   want level=1
# (2-1)*3+1=4    k+1=1   want level=4
# (6-1)*3+1=16   k+1=2   want level=7
# (22-1)*3+1=64  k+1=3   want level=10
#
# X = 1 + 2 + 8 + 32 + ... 2*4^k
#   = 1 + 2*(4^(k+1) - 1) / (4-1)
# X = 1 + R*(R2^(k+1) - 1) / (R2-1)
# R*(R2^(k+1) - 1) / (R2-1) = X-1
# R2^(k+1) - 1 = (X-1)*(R2-1)/R
# R2^(k+2) - R2 = (X-1)*(R2-1)*R
# R2^(k+2) = (X-1)*(R2-1)*R + R2
# (1-1)*3*2+4=4   k+2=1 want level=3
# (3-1)*3*2+4=16  k+2=2 want level=6
# (11-1)*3*2+4=64 k+2=3 want level=9

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### ImaginaryBase rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my $zero = $x1 * 0 * $x2 * $y1 * $y2;

  $y1 = round_nearest($y1);
  $y2 = round_nearest($y2);
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  if ($y2 < 0) {
    ### rectangle all Y negative, no points ...
    return (1, 0);
  }
  if (is_infinite($y2)) {
    return (0, $y2);
  }
  if ($y1 < 0) { $y1 *= 0; }   # "*=" to preserve bigint y1

  $x1 = round_nearest($x1);
  $x2 = round_nearest($x2);

  my $radix = $self->{'radix'};

  my ($min_xdigits, $max_xdigits)
    = _negaradix_range_digits_lowtohigh($x1,$x2, $radix);
  unless (defined $min_xdigits) {
    return (0, $max_xdigits); # infinity
  }

  my @min_ydigits = digit_split_lowtohigh ($y1, $radix);
  my @max_ydigits = digit_split_lowtohigh ($y2, $radix);

  my $digit_permutation = $digit_permutation{$self->{'digit_order'}};
  my @min_ndigits
    = _digit_permutation_interleave ($digit_permutation,
                                     $min_xdigits, \@min_ydigits);
  my @max_ndigits
    = _digit_permutation_interleave ($digit_permutation,
                                     $max_xdigits, \@max_ydigits);

  return (digit_join_lowtohigh (\@min_ndigits, $radix, $zero),
          digit_join_lowtohigh (\@max_ndigits, $radix, $zero));
}

sub _digit_permutation_interleave {
  my ($digit_permutation, $xaref, $yaref) = @_;
  my @ret;
  my @d;
  foreach (0 .. max($#$xaref,2*$#$yaref)) {
    $d[0] = shift @$xaref || 0;
    $d[1] = shift @$xaref || 0;
    $d[2] = shift @$yaref || 0;
    push @ret,
      $d[$digit_permutation->[0]],
        $d[$digit_permutation->[1]],
          $d[$digit_permutation->[2]];
  }
  return @ret;
}

#------------------------------------------------------------------------------
# levels

*level_to_n_range = \&Math::PlanePath::ImaginaryBase::level_to_n_range;
*n_to_level = \&Math::PlanePath::ImaginaryBase::n_to_level;

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Math-PlanePath quater-imaginary radix Radix ie radix-1 Proth XYX XXY Xn

=head1 NAME

Math::PlanePath::ImaginaryHalf -- half-plane replications in three directions

=head1 SYNOPSIS

 use Math::PlanePath::ImaginaryBase;
 my $path = Math::PlanePath::ImaginaryBase->new (radix => 4);
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is a half-plane variation on the C<ImaginaryBase> path.

=cut

# math-image --path=ImaginaryHalf --all --output=numbers_dash --size=85x10

=pod

     54-55 50-51 62-63 58-59 22-23 18-19 30-31 26-27       3
       \     \     \     \     \     \     \     \
     52-53 48-49 60-61 56-57 20-21 16-17 28-29 24-25       2

     38-39 34-35 46-47 42-43  6--7  2--3 14-15 10-11       1
       \     \     \     \     \     \     \     \
     36-37 32-33 44-45 40-41  4--5  0--1 12-13  8--9   <- Y=0

    -------------------------------------------------
    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5

The pattern can be seen by dividing into blocks,

    +---------------------------------+
    | 22  23  18  19   30  31  26  27 |
    |                                 |
    | 20  21  16  17   28  29  24  25 |
    +--------+-------+----------------+
    |  6   7 | 2   3 | 14  15  10  11 |
    |        +---+---+                |
    |  4   5 | 0 | 1 | 12  13   8   9 |  <- Y=0
    +--------+---+---+----------------+
               ^
              X=0

N=0 is at the origin, then N=1 replicates it to the right.  Those two repeat
above as N=2 and N=3.  Then that 2x2 repeats to the left as N=4 to N=7, then
4x2 repeats to the right as N=8 to N=15, and 8x2 above as N=16 to N=31, etc.
The replications are successively to the right, above, left.  The relative
layout within a replication is unchanged.

This is similar to the C<ImaginaryBase>, but where it repeats in 4
directions there's just 3 directions here.  The C<ZOrderCurve> is a 2
direction replication.

=head2 Radix

The C<radix> parameter controls the radix used to break N into X,Y.  For
example C<radix =E<gt> 4> gives 4x4 blocks, with radix-1 replications of the
preceding level at each stage.

     radix => 4  

     60 61 62 63 44 45 46 47 28 29 30 31 12 13 14 15      3
     56 57 58 59 40 41 42 43 24 25 26 27  8  9 10 11      2
     52 53 54 55 36 37 38 39 20 21 22 23  4  5  6  7      1
     48 49 50 51 32 33 34 35 16 17 18 19  0  1  2  3  <- Y=0

    --------------------------------------^-----------
    -12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3

Notice for X negative the parts replicate successively towards -infinity, so
the block N=16 to N=31 is first at X=-4, then N=32 at X=-8, N=48 at X=-12,
and N=64 at X=-16 (not shown).

=head2 Digit Order

The C<digit_order> parameter controls the order digits from N are applied to
X and Y.  The default above is "XYX" so the replications go X then Y then
negative X.

"XXY" goes to negative X before Y, so N=2,N=3 goes to negative X before
repeating N=4 to N=7 in the Y direction.

=cut

# math-image --path=ImaginaryHalf,digit_order=XXY --all --output=numbers --size=55x4

=pod

    digit_order => "XXY"

    38  39  36  37  46  47  44  45
    34  35  32  33  42  43  40  41
     6   7   4   5  14  15  12  13
     2   3   0   1  10  11   8   9
    ---------^--------------------
    -2  -1  X=0  1   2   3   4   5

The further options are as follows, for six permutations of each 3 digits
from N.

=cut

# math-image --path=ImaginaryHalf,digit_order=YXX --all --output=numbers --size=55x4

=pod

    digit_order => "YXX"               digit_order => "XnYX"   
    38 39 36 37 46 47 44 45            19 23 18 22 51 55 50 54
    34 35 32 33 42 43 40 41            17 21 16 20 49 53 48 52
     6  7  4  5 14 15 12 13             3  7  2  6 35 39 34 38
     2  3  0  1 10 11  8  9             1  5  0  4 33 37 32 36

    digit_order => "XnXY"              digit_order => "YXnX"   
    37 39 36 38 53 55 52 54            11 15  9 13 43 47 41 45
    33 35 32 34 49 51 48 50            10 14  8 12 42 46 40 44
     5  7  4  6 21 23 20 22             3  7  1  5 35 39 33 37
     1  3  0  2 17 19 16 18             2  6  0  4 34 38 32 36

"Xn" means the X negative direction.  It's still spaced 2 apart (or whatever
radix), so the result is not simply a -X,Y.

=head2 Axis Values

N=0,1,4,5,8,9,etc on the X axis (positive and negative) are those integers
with a 0 at every third bit starting from the second least significant bit.
This is simply demanding that the bits going to the Y coordinate must be 0.

    X axis Ns = binary ...__0__0__0_     with _ either 0 or 1
    in octal, digits 0,1,4,5 only

N=0,1,8,9,etc on the X positive axis have the highest 1-bit in the first
slot of a 3-bit group.  Or N=0,4,5,etc on the X negative axis have the high
1 bit in the third slot,

    X pos Ns = binary    1_0__0__0...0__0__0_
    X neg Ns = binary  10__0__0__0...0__0__0_
                       ^^^
                       three bit group

    X pos Ns in octal have high octal digit 1
    X neg Ns in octal high octal digit 4 or 5

N=0,2,16,18,etc on the Y axis are conversely those integers with a 0 in two
of each three bits, demanding the bits going to the X coordinate must be 0.

    Y axis Ns = binary ..._00_00_00_0    with _ either 0 or 1
    in octal has digits 0,2 only

For a radix other than binary the pattern is the same.  Each "_" is any
digit of the given radix, and each 0 must be 0.  The high 1 bit for X
positive and negative become a high non-zero digit.

=head2 Level Ranges

Because the X direction replicates twice for each once in the Y direction
the width grows at twice the rate, so after each 3 replications

    width = height*height

For this reason N values for a given Y grow quite rapidly.

=head2 Proth Numbers

The Proth numbers, k*2^n+1 for S<kE<lt>2^n>, fall in columns on the path.

=cut

# math-image --path=ImaginaryHalf --values=ProthNumbers --text --size=70x25

=pod

    *                               *                               *



    *                               *                               *



    *                               *                               *



    *               *               *               *               *



    *               *               *               *               *

                            *       *       *       *

    *       *       *       *       *       *       *       *       *

                            *   *   *   *   *       *
                                    *
    *       *       *       *   * *   * *   *       *       *       *

    -----------------------------------------------------------------
    -31    -23     -15     -7  -3-1 0 3 5   9      17       25     33

The height of the column is from the zeros in X ending binary ...1000..0001
since this limits the "k" part of the Proth numbers which can have N ending
suitably.  Or for X negative ending ...10111...11.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::ImaginaryBase-E<gt>new ()>

=item C<$path = Math::PlanePath::ImaginaryBase-E<gt>new (radix =E<gt> $r, digit_order =E<gt> $str)>

Create and return a new path object.  The choices for C<digit_order> are

    "XYX"
    "XXY"
    "YXX"
    "XnYX"
    "XnXY"
    "YXnX"

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, $radix**$level - 1)>.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::ImaginaryBase>,
L<Math::PlanePath::ZOrderCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut