/usr/share/perl5/Math/PlanePath/KochCurve.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=KochCurve --lines --scale=10
# math-image --path=KochCurve --all --scale=10
# continuous but nowhere differentiable
#
# Sur une courbe continue sans tangente, obtenue par une construction
# géométrique élémentaire
#
# http://www.nku.edu/~curtin/grenouille.html
# http://www.nku.edu/~curtin/koch_171.jpg
#
# Cesàro, "Remarques sur la courbe de von Koch." Atti della
# R. Accad. della Scienze fisiche e matem. Napoli 12, No. 15, 1-12,
# 1905. Reprinted as §228 in Opere scelte, a cura dell'Unione matematica
# italiana e col contributo del Consiglio nazionale delle ricerche, Vol. 2:
# Geometria, analisi, fisica matematica. Rome: Edizioni Cremonese,
# pp. 464-479, 1964.
#
# Thue-Morse count 1s mod 2 is net direction
# Toeplitz first diffs is turn sequence +1 or -1
#
# J. Ma and J.A. Holdener. When Thue-Morse Meets Koch. In Fractals:
# Complex Geometry, Patterns, and Scaling in Nature and Society, volume 13,
# pages 191-206, 2005.
# http://personal.kenyon.edu/holdenerj/StudentResearch/WhenThueMorsemeetsKochJan222005.pdf
#
# F.M. Dekking. On the distribution of digits in arithmetic sequences. In
# Seminaire de Theorie des Nombres de Bordeaux, volume 12, pages 3201-3212,
# 1983.
#
package Math::PlanePath::KochCurve;
use 5.004;
use strict;
use List::Util 'sum','first';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
# use Smart::Comments;
# undocumented previous name for this ...
*_round_down_pow = \&round_down_pow;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant diffxy_minimum => 0; # X>=Y octant so X-Y>=0
use constant dx_minimum => -2;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_six;
use constant absdx_minimum => 1; # never vertical
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East
#------------------------------------------------------------------------------
sub n_to_xy {
my ($self, $n) = @_;
### KochCurve n_to_xy(): $n
# secret negatives to -.5
if (2*$n < -1) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $x;
my $y;
{
my $int = int($n);
$x = 2 * ($n - $int); # usually positive, but n=-0.5 gives x=-0.5
$y = $x * 0; # inherit possible bigrat 0
$n = $int; # BigFloat int() gives BigInt, use that
}
my $len = $y+1; # inherit bignum 1
foreach my $digit (digit_split_lowtohigh($n,4)) {
### at: "$x,$y digit=$digit"
if ($digit == 0) {
} elsif ($digit == 1) {
($x,$y) = (($x-3*$y)/2 + 2*$len, # rotate +60
($x+$y)/2);
} elsif ($digit == 2) {
($x,$y) = (($x+3*$y)/2 + 3*$len, # rotate -60
($y-$x)/2 + $len);
} else {
### assert: $digit==3
$x += 4*$len;
}
$len *= 3;
}
### final: "$x,$y"
return ($x,$y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### KochPeaks xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($y < 0 || $x < 0 || (($x ^ $y) & 1)) {
### neg y or parity different ...
return undef;
}
my ($len,$level) = round_down_pow(($x/2)||1, 3);
### $level
### $len
if (is_infinite($level)) {
return $level;
}
my $n = 0;
foreach (0 .. $level) {
$n *= 4;
### at: "level=$level len=$len x=$x,y=$y n=$n"
if ($x < 3*$len) {
if ($x < 2*$len) {
### digit 0 ...
} else {
### digit 1 ...
$x -= 2*$len;
($x,$y) = (($x+3*$y)/2, # rotate -60
($y-$x)/2);
$n += 1;
}
} else {
$x -= 4*$len;
### digit 2 or 3 to: "x=$x"
if ($x < $y) { # before diagonal
### digit 2...
$x += $len;
$y -= $len;
($x,$y) = (($x-3*$y)/2, # rotate +60
($x+$y)/2);
$n += 2;
} else {
#### digit 3...
$n += 3;
}
}
$len /= 3;
}
### end at: "x=$x,y=$y n=$n"
if ($x != 0 || $y != 0) {
return undef;
}
return $n;
}
# level extends to x= 2*3^level
# level = log3(x/2)
#
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### KochCurve rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$x2 = round_nearest ($x2);
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }
if ($x2 < 0 || $y2 < 0
|| 3*$y1 > $x2 ) { # above line Y=X/3
return (1,0);
}
# \
# \
# * \
# / \ \
# o-+-* *-+-e \
# 0 3 6
#
# 3*Y+X/2 - (Y!=0)
#
# /
# *-+-*
# \
# * *
# / \ /
# o-+-* *-+-*
# 0 3 6 X/2
#
my ($len, $level) = round_down_pow ($x2/2, 3);
return _rect_to_n_range_rot ($len, $level, 0, $x1,$y1, $x2,$y2);
# (undef, my $level) = round_down_pow ($x2/2, 3);
# ### $level
# return (0, 4**($level+1)-1);
}
my @dir6_to_dx = (2, 1,-1,-2, -1, 1);
my @dir6_to_dy = (0, 1, 1, 0, -1,-1);
my @max_digit_to_rot = (1, -2, 1, 0);
my @min_digit_to_rot = (0, 1, -2, 1);
my @max_digit_to_offset = (-1, -1, -1, 2);
sub _rect_to_n_range_rot {
my ($initial_len, $level_max, $initial_rot, $x1,$y1, $x2,$y2) = @_;
### KochCurve _rect_to_n_range_rot(): "$x1,$y1 $x2,$y2 len=$initial_len level=$level_max rot=$initial_rot"
my ($rot, $len, $x, $y);
my $overlap = sub {
### overlap: "$x,$y len=$len rot=$rot"
if ($len == 1) {
return ($x >= $x1 && $x <= $x2
&& $y >= $y1 && $y <= $y2);
}
my $len = $len / 3;
if ($rot < 3) {
if ($rot == 0) {
# *
# / \
# o-+-* *-+-.
return ($y <= $y2 # bottom before end
&& $y+$len >= $y1
&& $x <= $x2
&& $x+6*$len > $x1); # right before end, exclusive
} elsif ($rot == 1) {
# .
# /
# *-+-*
# \
# * +-----
# / |x1,y2
# o
return ($x <= $x2 # left before end
&& $y+3*$len > $y1 # top after start, exclusive
&& $y-$x <= $y2-$x1); # diag before corner
} else {
# . |x1,y1
# \ +-----
# *
# /
# *-+-*
# \
# o
return ($y <= $y2 # bottom before end
&& $x-3*$len <=$x2 # left before end
&& $y+$x >= $y1+$x1); # diag after corner
}
} else {
if ($rot == 3) {
# .-+-* *-+-o
# \ /
# *
return ($y >= $y1 # top after start
&& $y-$len <= $y2 # bottom before end
&& $x >= $x1 # right after start
&& $x-6*$len < $x2); # left before end, exclusive
} elsif ($rot == 4) {
# x2,y1| o
# -----+ /
# *
# \
# *-+-*
# /
# .
return ($x >= $x1 # right after start
&& $y-3*$len < $y2 # bottom before end, exclusive
&& $y-$x >= $y1-$x2); # diag after corner
} else {
# o
# \
# *-+-*
# /
# *
# -----+ \
# x2,y2| .
return ($y >= $y1 # top after start
&& $x+3*$len >= $x1 # right after start
&& $y+$x <= $y2+$x2); # diag before corner
}
}
};
my $zero = 0*$x1*$x2*$y1*$y2;
my @lens = ($initial_len);
my $n_hi;
$rot = $initial_rot;
$len = $initial_len;
$x = $zero;
$y = $zero;
my @digits = (4);
for (;;) {
my $digit = --$digits[-1];
### max at: "digits=".join(',',@digits)." xy=$x,$y len=$len"
if ($digit < 0) {
pop @digits;
if (! @digits) {
### nothing found to level_max ...
return (1, 0);
}
### end of digits, backtrack ...
$len = $lens[$#digits];
next;
}
my $offset = $max_digit_to_offset[$digit];
$rot = ($rot - $max_digit_to_rot[$digit]) % 6;
$x += $dir6_to_dx[$rot] * $offset * $len;
$y += $dir6_to_dy[$rot] * $offset * $len;
### $offset
### $rot
if (&$overlap()) {
if ($#digits >= $level_max) {
### yes overlap, found n_hi ...
### digits: join(',',@digits)
### n_hi: _digit_join_hightolow (\@digits, 4, $zero)
$n_hi = _digit_join_hightolow (\@digits, 4, $zero);
last;
}
### yes overlap, descend ...
push @digits, 4;
$len = ($lens[$#digits] ||= $len/3);
} else {
### no overlap, next digit ...
}
}
$rot = $initial_rot;
$x = $zero;
$y = $zero;
$len = $initial_len;
@digits = (-1);
for (;;) {
my $digit = ++$digits[-1];
### min at: "digits=".join(',',@digits)." xy=$x,$y len=$len"
if ($digit > 3) {
pop @digits;
if (! @digits) {
### oops, n_lo not found to level_max ...
return (1, 0);
}
### end of digits, backtrack ...
$len = $lens[$#digits];
next;
}
### $digit
### rot increment: $min_digit_to_rot[$digit]
$rot = ($rot + $min_digit_to_rot[$digit]) % 6;
if (&$overlap()) {
if ($#digits >= $level_max) {
### yes overlap, found n_lo ...
### digits: join(',',@digits)
### n_lo: _digit_join_hightolow (\@digits, 4, $zero)
return (_digit_join_hightolow (\@digits, 4, $zero),
$n_hi);
}
### yes overlap, descend ...
push @digits, -1;
$len = ($lens[$#digits] ||= $len/3);
} else {
### no overlap, next digit ...
$x += $dir6_to_dx[$rot] * $len;
$y += $dir6_to_dy[$rot] * $len;
}
}
}
# $aref->[0] high digit
sub _digit_join_hightolow {
my ($aref, $radix, $zero) = @_;
my @lowtohigh = reverse @$aref;
return digit_join_lowtohigh(\@lowtohigh, $radix, $zero);
}
my @digit_to_dir = (0, 1, -1, 0);
my @digit_to_nextturn = (1, # digit=1 (with +1 for "next" N)
-2, # digit=2
1); # digit=3
sub n_to_dxdy {
my ($self, $n) = @_;
### n_to_dxdy(): $n
if ($n < 0) {
return; # first direction at N=0
}
if (is_infinite($n)) {
return ($n,$n);
}
my $int = int($n);
$n -= $int;
my @ndigits = digit_split_lowtohigh($int,4);
my $dir6 = sum(0, map {$digit_to_dir[$_]} @ndigits) % 6;
my $dx = $dir6_to_dx[$dir6];
my $dy = $dir6_to_dy[$dir6];
if ($n) {
# fraction part
# lowest non-3 digit, or zero if all 3s (0 above high digit)
$dir6 += $digit_to_nextturn[ first {$_!=3} @ndigits, 0 ];
$dir6 %= 6;
$dx += $n*($dir6_to_dx[$dir6] - $dx);
$dy += $n*($dir6_to_dy[$dir6] - $dy);
}
return ($dx, $dy);
}
sub _UNTESTED__n_to_dir6 {
my ($self, $n) = @_;
if ($n < 0) {
return undef; # first direction at N=0
}
if (is_infinite($n)) {
return ($n,$n);
}
return (sum (map {$digit_to_dir[$_]} digit_split_lowtohigh($n,4))
|| 0) # if empty
% 6;
}
my @n_to_turn6 = (undef,
1, # +60 degrees
-2, # -120 degrees
1); # +60 degrees
sub _UNTESTED__n_to_turn6 {
my ($self, $n) = @_;
if (is_infinite($n)) {
return undef;
}
while ($n) {
my $digit = _divrem_mutate($n,4);
if ($digit) {
# lowest non-zero digit
return $n_to_turn6[$digit];
}
}
return 0;
}
sub _UNTESTED__n_to_turn_LSR {
my ($self, $n) = @_;
my $turn6 = $self->_UNTESTED__n_to_turn6($n) || return undef;
return ($turn6 > 0 ? 1 : -1);
}
sub _UNTESTED__n_to_turn_left {
my ($self, $n) = @_;
my $turn6 = $self->_UNTESTED__n_to_turn6($n) || return undef;
return ($turn6 > 0 ? 1 : 0);
}
sub _UNTESTED__n_to_turn_right {
my ($self, $n) = @_;
my $turn6 = $self->_UNTESTED__n_to_turn6($n) || return undef;
return ($turn6 < 0 ? 1 : 0);
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 4**$level);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
my ($pow, $exp) = round_down_pow ($n-1, 4);
return $exp + 1;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Helge von Koch Math-PlanePath Nlevel differentiable ie OEIS Xlevel floorlevel Nhi Nlo Ndigit Une thode trique mentaire tude de Certaines orie des Courbes Acta Arithmetica
=head1 NAME
Math::PlanePath::KochCurve -- horizontal Koch curve
=head1 SYNOPSIS
use Math::PlanePath::KochCurve;
my $path = Math::PlanePath::KochCurve->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Koch, Helge von>This is an integer version of the self-similar Koch curve,
=over 4
Helge von Koch, "Une ME<233>thode GE<233>omE<233>trique
E<201>lE<233>mentaire pour l'E<201>tude de Certaines Questions de la
ThE<233>orie des Courbes Planes", Acta Arithmetica, volume 30, 1906, pages
145-174. L<http://archive.org/details/actamathematica11lefgoog>
=back
It goes along the X axis and makes triangular excursions upwards.
8 3
/ \
6---- 7 9----10 18-... 2
\ / \
2 5 11 14 17 1
/ \ / \ / \ /
0----1 3---- 4 12----13 15----16 <- Y=0
^
X=0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
The replicating shape is the initial N=0 to N=4,
*
/ \
*---* *---*
which is rotated and repeated 3 times in the same pattern to give sections
N=4 to N=8, N=8 to N=12, and N=12 to N=16. Then that N=0 to N=16 is itself
replicated three times at the angles of the base pattern, and so on
infinitely.
The X,Y coordinates are arranged on a square grid using every second point,
per L<Math::PlanePath/Triangular Lattice>. The result is flattened
triangular segments with diagonals at a 45 degree angle.
=head2 Level Ranges
Each replication adds 3 copies of the existing points and is thus 4 times
bigger, so if N=0 to N=4 is reckoned as level 1 then a given replication
level goes from
Nstart = 0
Nlevel = 4^level (inclusive)
Each replication is 3 times the width. The initial N=0 to N=4 figure is 6
wide and in general a level runs from
Xstart = 0
Xlevel = 2*3^level at N=Nlevel
The highest Y is 3 times greater at each level similarly. The peak is at
the midpoint of each level,
Npeak = (4^level)/2
Ypeak = 3^level
Xpeak = 3^level
It can be seen that the N=6 point backtracks horizontally to the same X as
the start of its section N=4 to N=8. This happens in the further
replications too and is the maximum extent of the backtracking.
The Nlevel is multiplied by 4 to get the end of the next higher level. The
same 4*N can be applied to all points N=0 to N=Nlevel to get the same shape
but a factor of 3 bigger X,Y coordinates. The in-between points 4*N+1,
4*N+2 and 4*N+3 are then new finer structure in the higher level.
=head2 Fractal
Koch conceived the curve as having a fixed length and infinitely fine
structure, making it continuous everywhere but differentiable nowhere. The
code here can be pressed into use for that sort of construction for a given
level of granularity by scaling
X/3^level
Y/3^level
which makes it a fixed 2 wide by 1 high. Or for unit-side equilateral
triangles then apply further factors 1/2 and sqrt(3)/2, as noted in
L<Math::PlanePath/Triangular Lattice>.
(X/2) / 3^level
(Y*sqrt(3)/2) / 3^level
=head2 Area
The area under the curve to a given level can be calculated from its
self-similar nature. The curve at level+1 is 3 times wider and higher and
adds a triangle of unit area onto each line segment. So reckoning the line
segment N=0 to N=1 as level=0 (which is area[0]=0),
area[level] = 9*area[level-1] + 4^(level-1)
= 4^(level-1) + 9*4^(level-2) + ... + 9^(level-1)*4^0
9^level - 4^level
= -----------------
5
= 0, 1, 13, 133, 1261, 11605, 105469, ... (A016153)
The sides are 6 different angles. The triangles added on the sides are
always the same shape either pointing up or down. Base width=2 and height=1
gives area=1.
* *-----* ^
/ \ \ / | height=1
/ \ \ / |
*-----* * v triangle area = 2*1/2 = 1
<-----> width=2
If the Y coordinates are stretched to make equilateral triangles then the
number of triangles is not changed and so the area increases by a factor of
the area of the equilateral triangle, sqrt(3)/4.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::KochCurve-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 4**$level)>.
=back
=head1 FORMULAS
=head2 N to Turn
The curve always turns either +60 degrees or -120 degrees, it never goes
straight ahead. In the base 4 representation of N the lowest non-zero digit
gives the turn. The first turn is at N=1 so there's always a non-zero digit
in N.
low digit
base 4 turn
--------- ------------
1 +60 degrees (left)
2 -120 degrees (right)
3 +60 degrees (left)
For example N=8 is 20 base 4, so lowest nonzero "2" means turn -120 degrees
for the next segment.
If the least significant digit is non-zero then it determines the turn,
making the base N=0 to N=4 shape. If the least significant is zero then the
next level up is in control, eg. N=0,4,8,12,16, making a turn according to
the base shape again at that higher level. The first and last segments of
the base shape are "straight" so there's no extra adjustment to apply in
those higher digits.
This base 4 digit rule is equivalent to counting low 0-bits. A low base-4
digit 1 or 3 is an even number of low 0-bits and a low digit 2 is an odd
number of low 0-bits.
count low 0-bits turn
---------------- ------------
even +60 degrees (left)
odd -120 degrees (right)
For example N=8 in binary "1000" has 3 low 0-bits and 3 is odd so turn -120
degrees (right).
See L<Math::PlanePath::GrayCode/Turn> for a similar turn sequence arising
from binary Gray code.
=head2 N to Next Turn
The turn at N+1, ie the next turn, can be found from the base-4 digits by
considering how the digits of N change when 1 is added, and the low-digit
turn calculation is applied on those changed digits.
Adding 1 means low digit 0, 1 or 2 will become non-zero. Any low 3s wrap
around to become low 0s. So the turn at N+1 can be found from the digits of
N by seeking the lowest non-3
lowest non-3 turn
digit of N at N+1
------------ ------------
0 +60 degrees (left)
1 -120 degrees (right)
2 +60 degrees (left)
=head2 N to Direction
The total turn at a given N can be found by counting digits 1 and 2 in
base 4.
direction = ((count of 1-digits in base 4)
- (count of 2-digits in base 4)) * 60 degrees
For example N=11 is "23" in base 4, so 60*(0-1) = -60 degrees.
In this formula the count of 1s and 2s can go past 360 degrees, representing
a spiralling around which occurs at progressively higher replication levels.
The direction can be taken mod 360 degrees, or the count mod 6, for a
direction 0 to 5 if desired.
=head2 N to abs(dX),abs(dY)
The direction expressed as abs(dX) and abs(dY) can be calculated simply from
N modulo 3. abs(dX) is a repeating pattern 2,1,1 and abs(dY) repeating
0,1,1.
N mod 3 abs(dX),abs(dY)
------- ---------------
0 2,0 horizontal, East or West
1 1,1 slope North-East or South-West
2 1,1 slope North-West or South-East
This works because the direction calculation above corresponds to N mod 3.
Each N digit in base 4 becomes
N digit
base 4 direction add
------- -------------
0 0
1 1
2 -1
3 0
Notice that direction == Ndigit mod 3. Then because 4==1 mod 3 the
power-of-4 for each digit reduces down to 1,
N = 4^k * digit_k + ... 4^0 * digit_0
N mod 3 = 1 * digit_k + ... 1 * digit_0
= digit_k + ... digit_0
same as
direction = digit_k + ... + digit_0 taken mod 3
=head2 Rectangle to N Range -- Level
An easy over-estimate of the N values in a rectangle can be had from the
Xlevel formula above. If XlevelE<gt>rectangleX then Nlevel is past the
rectangle extent.
X = 2*3^level
so
floorlevel = floor log_base_3(X/2)
Nhi = 4^(floorlevel+1) - 1
For example a rectangle extending to X=13 has floorlevel =
floor(log3(13/2))=1 and so Nhi=4^(1+1)-1=15.
The rounding-down of the log3 ensures a point such as X=18 which is the
first in the next Nlevel will give that next level. So
floorlevel=log3(18/2)=2 (exactly) and Nhi=4^(2+1)-1=63.
The worst case for this over-estimate is when rectangleX==Xlevel, ie. the
rectangle is just into the next level. In that case Nhi is nearly a factor
4 bigger than it needs to be.
=head2 Rectangle to N Range -- Exact
The exact Nlo and Nhi in a rectangle can be found by searching along the
curve. For Nlo search forward from the origin N=0. For Nhi search backward
from the Nlevel over-estimate described above.
At a given digit position in the prospective N the sub-part of the curve
comprising the lower digits has a certain triangular extent. If it's
outside the target rectangle then step to the next digit value, and to the
next of the digit above when past digit=3 (or below digit=0 when searching
backwards).
There's six possible orientations for the curve sub-part. In the following
pictures "o" is the start and the surrounding lines show the triangular
extent. There's just four curve parts shown in each, but these triangles
bound a sub-curve of any level.
rot=0 -+- +-----------------+
-- -- - .-+-* *-+-o -
-- * -- -- \ / --
-- / \ -- -- * --
- o-+-* *-+-. - -- --
+-----------------+ rot=3 -+-
rot=1
+---------+ rot=4 /+
| . / / |
| / / / o|
|*-+-* / / / |
| \ / / * |
| * / / \ |
| / / / *-+-*|
|o / / / |
| / / . |
+/ +---------+
+\ rot=2 +---------+
| \ \ o |
|. \ \ \ |
| \ \ \ *-+-*|
| * \ \ / |
| / \ \ * |
|*-+-* \ \ \ |
| \ \ \ .|
| o \ rot=5 \ |
+---------+ \+
The "." is the start of the next sub-curve. It belongs to the next digit
value and so can be excluded. For rot=0 and rot=3 this means simply
shortening the X range permitted. For rot=1 and rot=4 similarly the Y
range. For rot=2 and rot=5 it would require a separate test.
Tight sub-part extent checking reduces the sub-parts which are examined, but
it works perfectly well with a looser check, such as a square box for the
sub-curve extents. Doing that might be easier if the target region is not a
rectangle but instead some trickier shape.
=head1 OEIS
The Koch curve is in Sloane's Online Encyclopedia of Integer Sequences in
various forms,
=over
L<http://oeis.org/A035263> (etc)
=back
A177702 abs(dX) from N=1 onwards, being 1,1,2 repeating
A011655 abs(dY), being 0,1,1 repeating
A035263 turn 1=left,0=right, by morphism
A096268 turn 0=left,1=right, by morphism
A056832 turn 1=left,2=right, by replicate and flip last
A029883 turn +/-1=left,0=right, Thue-Morse first differences
A089045 turn +/-1=left,0=right, by +/- something
A003159 N positions of left turns, ending even number 0 bits
A036554 N positions of right turns, ending odd number 0 bits
A020988 number of left turns N=0 to N < 4^k, being 2*(4^k-1)/3
A002450 number of right turns N=0 to N < 4^k, being (4^k-1)/3
A016153 area under the curve, (9^n-4^n)/5
For reference, A217586 is not quite the same as A096268 right turn. A217586
differs by a 0E<lt>-E<gt>1 flip at N=2^k due to different initial a(1)=1.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::HilbertCurve>,
L<Math::PlanePath::KochPeaks>,
L<Math::PlanePath::KochSnowflakes>,
L<Math::PlanePath::CCurve>
L<Math::Fractal::Curve>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|