/usr/share/perl5/Math/PlanePath/PixelRings.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# ENHANCE-ME: What formula for the cumulative pixel count, and its inverse?
# Not floor(k*4*sqrt(2)).
# ENHANCE-ME: Maybe n_start
package Math::PlanePath::PixelRings;
use 5.004;
use strict;
use Math::Libm 'hypot';
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
# uncomment this to run the ### lines
#use Smart::Comments;
# use constant parameter_info_array =>
# [
# {
# name => 'offset',
# share_key => 'offset_05',
# type => 'float',
# description => 'Radial offset for the centre of each ring.',
# default => 0,
# minimum => -0.5,
# maximum => 0.5,
# page_increment => 0.05,
# step_increment => 0.005,
# width => 7,
# decimals => 4,
# },
# ];
use constant n_frac_discontinuity => 0;
use constant x_negative_at_n => 4;
use constant y_negative_at_n => 5;
use constant dx_minimum => -1;
use constant dx_maximum => 2; # jump N=5 to N=6
use constant dy_minimum => -1;
use constant dy_maximum => 1;
# eight plus ENE
use constant _UNDOCUMENTED__dxdy_list => (1,0, # E N=1
2,1, # ENE N=5 <-- extra
1,1, # NE N=16
0,1, # N N=6
-1,1, # NW N=2
-1,0, # W N=8
-1,-1, # SW N=3
0,-1, # S N=11
1,-1, # SE N=4
);
use constant _UNDOCUMENTED__dxdy_list_at_n => 16;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 3; # dx=2,dy=1 at jump N=5 to N=6
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'offset'} ||= 0;
$self->{'cumul'} = [ 1, 2 ];
$self->{'cumul_x'} = 0;
$self->{'cumul_y'} = 0;
$self->{'cumul_add'} = 0;
return $self;
}
sub _cumul_extend {
my ($self) = @_;
### _cumul_extend(): "length of r=".($#{$self->{'cumul'}})
my $cumul = $self->{'cumul'};
my $r = $#$cumul;
$self->{'cumul_add'} += 4;
if ($self->{'cumul_x'} == $self->{'cumul_y'}) {
### at: "$self->{'cumul_x'},$self->{'cumul_y'}"
### step across and maybe up
$self->{'cumul_x'}++;
### xy hypot: ($self->{'cumul_x'}+.5)**2 + ($self->{'cumul_y'})**2
### r squared: $r*$r
### E: ($self->{'cumul_x'}+.5)**2 + $self->{'cumul_y'}**2 - ($r+$self->{'offset'})**2
if (($self->{'cumul_x'}+.5)**2 + $self->{'cumul_y'}**2 < ($r+$self->{'offset'})**2) {
### midpoint of x,y inside, increment to x,y+1
$self->{'cumul_y'}++;
$self->{'cumul_add'} += 4;
}
} else {
### at: "$self->{'cumul_x'},$self->{'cumul_y'}"
### try y+1 with x or x+1 is: ($self->{'cumul_x'}+.5).",".($self->{'cumul_y'}+1)
$self->{'cumul_y'}++;
### xy hypot: ($self->{'cumul_x'}+.5)**2 + ($self->{'cumul_y'})**2
### r squared: $r*$r
### E: ($self->{'cumul_x'}+.5)**2 + $self->{'cumul_y'}**2 - ($r+$self->{'offset'})**2
if (($self->{'cumul_x'}+.5)**2 + $self->{'cumul_y'}**2 < ($r+$self->{'offset'})**2) {
### midpoint inside, increment x too
$self->{'cumul_x'}++;
$self->{'cumul_add'} += 4;
}
}
### to: "$self->{'cumul_x'},$self->{'cumul_y'}"
### cumul extend: scalar(@$cumul).' = '.($cumul->[-1] + $self->{'cumul_add'})
### cumul_add: $self->{'cumul_add'}
push @$cumul, $cumul->[-1] + $self->{'cumul_add'};
}
sub n_to_xy {
my ($self, $n) = @_;
### PixelRings n_to_xy(): $n
if ($n < 2) {
if ($n < 1) { return; }
return ($n-1, 0);
}
if (is_infinite($n)) {
return ($n,$n);
}
{
# ENHANCE-ME: direction of N+1 from the cumulative lookup
my $int = int($n);
if ($n != $int) {
my $frac = $n - $int;
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
if ($y2 == 0 && $x2 > 0) { $x2 -= 1; }
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
### search cumul for n: $n
my $cumul = $self->{'cumul'};
my $r = 1;
for (;;) {
if ($r >= @$cumul) {
_cumul_extend ($self);
}
if ($cumul->[$r] > $n) {
last;
}
$r++;
}
$r--;
$n -= $cumul->[$r];
my $len = $cumul->[$r+1] - $cumul->[$r];
### cumul: "$cumul->[$r] to $cumul->[$r+1]"
### $len
### n rem: $n
$len /= 4;
my $quadrant = $n / $len;
$n %= $len;
### len of quadrant: $len
### $quadrant
### n into quadrant: $n
my $rev;
if ($rev = ($n > $len/2)) {
$n = $len - $n;
}
### $rev
### $n
my $y = $n;
my $x = int (sqrt (max (0, ($r+$self->{'offset'})**2 - $y*$y)) + .5);
if ($rev) {
($x,$y) = ($y,$x);
}
if ($quadrant & 2) {
$x = -$x;
$y = -$y;
}
if ($quadrant & 1) {
($x,$y) = (-$y, $x);
}
### return: "$x, $y"
return ($x, $y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### PixelRings xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x == 0 && $y == 0) {
return 1;
}
my $r;
{
my $xa = abs($x);
my $ya = abs($y);
if ($xa < $ya) {
($xa,$ya) = ($ya,$xa);
}
$r = int (hypot ($xa+.5,$ya));
### r frac: hypot ($xa+.5,$ya)
### $r
### r < inside frac: hypot ($xa-.5,$ya)
if ($r < hypot ($xa-.5,$ya)) {
### pixel not crossed
return undef;
}
if ($xa == $ya) {
### and pixel below for diagonal
### r < below frac: $r . " < " . hypot ($xa+.5,$ya-1)
if ($r < hypot ($xa+.5,$ya-1)) {
### same loop, no sharp corner
return undef;
}
}
}
if (is_infinite($r)) {
return undef;
}
my $cumul = $self->{'cumul'};
while ($#$cumul <= $r) {
### extend cumul for r: $r
_cumul_extend ($self);
}
my $n = $cumul->[$r];
my $len = $cumul->[$r+1] - $n;
### $r
### n base: $n
### $len
### len/4: $len/4
if ($y < 0) {
### y neg, rotate 180
$y = -$y;
$x = -$x;
$n += $len/2;
}
if ($x < 0) {
$n += $len/4;
($x,$y) = ($y,-$x);
### neg x, rotate 90
### n base now: $n + $len/4
### transpose: "$x,$y"
}
### assert: $x >= 0
### assert: $y >= 0
if ($y > $x) {
### top octant, reverse: "x=$x len/4=".($len/4)." gives ".($len/4 - $x)
$y = $len/4 - $x;
}
### n return: $n + $y
return $n + $y;
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### PixelRings rect_to_n_range(): "$x1,$y1 $x2,$y2"
# ENHANCE-ME: use an estimate from rings no bigger than sqrt(2), so can
# get a range for big x,y
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
my $r_min
= ((($x1<0) ^ ($x2<0)) || (($y1<0) ^ ($y2<0))
? 0
: max (0,
int (hypot (min(abs($x1),abs($x2)), min(abs($y1),abs($y2))))
- 1));
my $r_max = 2 + int (hypot (max(abs($x1),abs($x2)), max(abs($y1),abs($y2))));
### $r_min
### $r_max
if (is_infinite($r_min)) {
return ($r_min, $r_min);
}
my ($n_max, $r_target);
if (is_infinite($r_max)) {
$n_max = $r_max; # infinity
$r_target = $r_min;
} else {
$r_target = $r_max;
}
my $cumul = $self->{'cumul'};
while ($#$cumul < $r_target) {
### extend cumul for r: $r_target
_cumul_extend ($self);
}
if (! defined $n_max) {
$n_max = $cumul->[$r_max];
}
return ($cumul->[$r_min], $n_max);
}
1;
__END__
# # =head1 FORMULAS
#
# # =head2 Pixel Ring Length
#
# When the algorithm crosses the X=Y central diagonal it might include an X=Y
# point or it might not. The case where it doesn't looks like
#
# +-------+ X=Y line
# | | .
# | | .
# | * | ..
# | | ..
# | |.
# +-------.-------+
# .| |
# . | |
# .. % * | <- Y=k-1
# .. | |
# . | |
# +-------+
# ^ ^ ^
# | X=k |
# X=k-.5 X=k+.5
#
# The algorithm draws a pixel when the exact circle line X^2+Y^2=R^2 passes is
# within that pixel, ie. on its side of the midpoint between adjacent pixels.
# This means to the right of the X=k-0.5, Y=k-1 point marked "%" above. So
#
# X^2 + Y^2 < R^2
# (k-.5)^2 + (k-1)^2 < R^2
# 2*k^2 - 3k + 5/4 < R^2
# k = floor (3 + sqrt(3*3 - 4*2*(5/4 - R^2)))
# = floor (3 + sqrt(8*R^2 - 1))
#
# The circle line is never precisely on such a "%" point, as can be seen from
# the formula since 8*R^2-1 is never a perfect square (squares are 0,1,4
# mod 8).
#
# Now in the first octant, up to this k pixel, there's one pixel per row, and
# likewise symmetrically above the line, so the total in a ring passing the
# X=Y this way is
#
# ringlength = 8*k-4
#
# The second case is when the ring includes an X=Y point,
#
# +-------+
# | |
# | | ..
# | * | ..
# | | .
# | | |.
# +-------+-------+-
# | .|
# | X=Y. |
# | * |
# | .. |
# |. |
# -+-------+-------+
# .| | |
# .. | | |
# . % @ * | <- Y=k-1
# .. | | |
# | | |
# +-------+-------+
# | X=k |
# X=k-.5 X=k+.5
#
# The two cases are distinguished by which side of the X=k+.5 midpoint "@" the
# circle line passes. If the circle is outside the "@" then the outer pixel
# is drawn, thus giving this X=Y included case. The test is
#
# X^2 + Y^2 < R^2
# (k+.5)^2 + (k-1)^2 < R^2
# 2*k^2 - k + 5/4 < R^2
#
# The extra X=Y pixel adds 4 to the ringlength above, one on the diagonal in
# each of the four quadrants, so
#
# ringlength = 8*k if X=Y pixel included
# 8*k-4 if X=Y pixel not included
#
# The k calculation above is effectively asking where the circle line
# intersects a diagonal X=Y+.5 and rounding down to integer Y on that
# diagonal. The test at X=k+.5 is asking about a different diagonal X=Y+1.5
# and it doesn't seem there's a particularly easy relation between where the
# circle falls on the first diagonal and where on the second.
=for stopwords Ryde pixellated Math-PlanePath
=head1 NAME
Math::PlanePath::PixelRings -- pixellated concentric circles
=head1 SYNOPSIS
use Math::PlanePath::PixelRings;
my $path = Math::PlanePath::PixelRings->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path puts points on the pixels of concentric circles using the midpoint
ellipse drawing algorithm.
63--62--61--60--59 5
/ \
64 . 40--39--38 . 58 4
/ / \ \
65 . 41 23--22--21 37 . 57 3
/ / / \ \ \
66 . 42 24 10-- 9-- 8 20 36 . 56 2
| / / / \ \ \ |
67 43 25 11 . 3 . 7 19 35 55 1
| | | | / \ | | | |
67 44 26 12 4 1 2 6 18 34 54 Y=0
| | | | \ /
68 45 27 13 . 5 . 17 33 53 80 -1
| \ \ \ / / / |
69 . 46 28 14--15--16 32 52 . 79 -2
\ \ \ / / /
70 . 47 29--30--31 51 . 78 -3
\ \ / /
71 . 48--49--50 . 77 -4
\ /
72--73--74--75--76 -5
-5 -4 -3 -2 -1 X=0 1 2 3 4 5
The way the algorithm works means the rings don't overlap. Each is 4 or 8
pixels longer than the preceding. If the ring follows the preceding tightly
then it's 4 longer, for example N=18 to N=33. If it goes wider then it's 8
longer, for example N=54 to N=80 ring. The average extra is approximately
4*sqrt(2).
The rings can be thought of as part-way between the diagonals like
C<DiamondSpiral> and the corners like C<SquareSpiral>.
* ** *****
* * *
* * *
* * *
* * *
diagonal ring corner
5 points 6 points 9 points
For example the N=54 to N=80 ring has a vertical part N=54,55,56 like a
corner then a diagonal part N=56,57,58,59. In bigger rings the verticals
are intermingled with the diagonals but the principle is the same. The
number of vertical steps determines where it crosses the 45-degree line,
which is at R*sqrt(2) but rounded according to the midpoint algorithm.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::PixelRings-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
For C<$n < 1> the return is an empty list, it being considered there are no
negative points.
The behaviour for fractional C<$n> is unspecified as yet.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return an integer point number for coordinates C<$x,$y>. Each integer N is
considered the centre of a unit square and an C<$x,$y> within that square
returns N.
Not every point of the plane is covered (like those marked by a "." in the
sample above). If C<$x,$y> is not reached then the return is C<undef>.
=back
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::Hypot>,
L<Math::PlanePath::MultipleRings>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|