/usr/share/perl5/Math/PlanePath/PowerArray.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 | # Copyright 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# area
package Math::PlanePath::PowerArray;
use 5.004;
use strict;
use List::Util 'max';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'parameter_info_array';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1;
sub absdx_minimum {
my ($self) = @_;
return ($self->{'radix'} == 2
? 1
: 0); # at N=1 dX=0,dY=1
}
sub absdy_minimum {
my ($self) = @_;
return ($self->{'radix'} == 2
? 0 # at N=1 dX=1,dY=0
: 1); # always different Y
}
sub dir_minimum_dxdy {
my ($self) = @_;
return ($self->{'radix'} == 2
? (1,0) # East
: (0,1)); # North
}
sub dir_maximum_dxdy {
my ($self) = @_;
my $radix = $self->{'radix'};
return $self->n_to_dxdy($radix==2 ? 3 : $radix-1);
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
$self->{'radix'} = max ($self->{'radix'} || 0, 2); # default 2
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### PowerArray n_to_xy(): $n
if ($n < 1) { return; }
if (is_infinite($n) || $n == 0) { return ($n,$n); }
{
# fractions on straight line ?
my $int = int($n);
if ($n != $int) {
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
my $x = $n*0;
my $radix = $self->{'radix'};
until ($n % $radix) {
$x++;
$n /= $radix;
}
### $x
### $n
return ($x,
$n - int($n/$radix) - 1); # collapse out multiples of radix
}
# | 9
# | 8
# | 7
# 4 | 6 30
# 3 | 4 20
# 2 | 3 15
# 1 | 2 10
# 0 | 1 5 25 125
# +------------
#
sub xy_to_n {
my ($self, $x, $y) = @_;
### PowerArray xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 0 || $y < 0) {
return undef;
}
my $radix = $self->{'radix'};
return ($radix + 0*$y) ** $x # $y*0 to inherit bignum in power
* ($y+1 + int($y/($radix-1))); # stretch multiples of radix
}
# N=..004 X=0 Y=N-floor(N/5)
# N=..010 X=1 Y=N/5-floor(N/25) dX=1 dY=...
# N=..011 X=0 Y=(N-1)/5-floor((N-1)/25) dX=-1 dY=0
# sub n_to_dxdy {
# my ($self, $n) = @_;
# }
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### PowerArray rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x2 < 0 || $y2 < 0) {
### all outside first quadrant ...
return (1, 0);
}
# bottom left into first quadrant
if ($x1 < 0) { $x1 *= 0; } # *=0 to preserve bigint
if ($y1 < 0) { $y1 *= 0; }
return ($self->xy_to_n($x1,$y1), # bottom left
$self->xy_to_n($x2,$y2)); # top right
}
1;
__END__
=for stopwords Ryde Math-PlanePath Radix radix ie OEIS DOI
=head1 NAME
Math::PlanePath::PowerArray -- array by powers
=head1 SYNOPSIS
use Math::PlanePath::PowerArray;
my $path = Math::PlanePath::PowerArray->new (radix => 2);
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is a split of N into an odd part and power of 2,
=cut
# math-image --path=PowerArray --output=numbers --all --size=60x15
=pod
14 | 29 58 116 232 464 928 1856 3712 7424 14848
13 | 27 54 108 216 432 864 1728 3456 6912 13824
12 | 25 50 100 200 400 800 1600 3200 6400 12800
11 | 23 46 92 184 368 736 1472 2944 5888 11776
10 | 21 42 84 168 336 672 1344 2688 5376 10752
9 | 19 38 76 152 304 608 1216 2432 4864 9728
8 | 17 34 68 136 272 544 1088 2176 4352 8704
7 | 15 30 60 120 240 480 960 1920 3840 7680
6 | 13 26 52 104 208 416 832 1664 3328 6656
5 | 11 22 44 88 176 352 704 1408 2816 5632
4 | 9 18 36 72 144 288 576 1152 2304 4608
3 | 7 14 28 56 112 224 448 896 1792 3584
2 | 5 10 20 40 80 160 320 640 1280 2560
1 | 3 6 12 24 48 96 192 384 768 1536
Y=0 | 1 2 4 8 16 32 64 128 256 512
+-----------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9
For N=odd*2^k the coordinates are X=k, Y=(odd-1)/2. The X coordinate is how
many factors of 2 can be divided out. The Y coordinate counts odd integers
1,3,5,7,etc as 0,1,2,3,etc. This is clearer by writing N values in binary,
N values in binary
6 | 1101 11010 110100 1101000 11010000 110100000
5 | 1011 10110 101100 1011000 10110000 101100000
4 | 1001 10010 100100 1001000 10010000 100100000
3 | 111 1110 11100 111000 1110000 11100000
2 | 101 1010 10100 101000 1010000 10100000
1 | 11 110 1100 11000 110000 1100000
Y=0 | 1 10 100 1000 10000 100000
+----------------------------------------------------------
X=0 1 2 3 4 5
=head2 Radix
The C<radix> parameter can do the same dividing out in a higher base. For
example radix 3 divides out factors of 3,
=cut
# math-image --path=PowerArray --output=numbers --all --size=50x10
=pod
radix => 3
9 | 14 42 126 378 1134 3402 10206 30618
8 | 13 39 117 351 1053 3159 9477 28431
7 | 11 33 99 297 891 2673 8019 24057
6 | 10 30 90 270 810 2430 7290 21870
5 | 8 24 72 216 648 1944 5832 17496
4 | 7 21 63 189 567 1701 5103 15309
3 | 5 15 45 135 405 1215 3645 10935
2 | 4 12 36 108 324 972 2916 8748
1 | 2 6 18 54 162 486 1458 4374
Y=0 | 1 3 9 27 81 243 729 2187
+------------------------------------------------
X=0 1 2 3 4 5 6 7
N=1,3,9,27,etc on the X axis is the powers of 3.
N=1,2,4,5,7,etc on the Y axis is the integers N=1or2 mod 3, ie. those not a
multiple of 3. Notice if Y=1or2 mod 4 then the N values in that row are all
even, or if Y=0or3 mod 4 then the N values are all odd.
radix => 3, N values in ternary
6 | 101 1010 10100 101000 1010000 10100000
5 | 22 220 2200 22000 220000 2200000
4 | 21 210 2100 21000 210000 2100000
3 | 12 120 1200 12000 120000 1200000
2 | 11 110 1100 11000 110000 1100000
1 | 2 20 200 2000 20000 200000
Y=0 | 1 10 100 1000 10000 100000
+----------------------------------------------------
X=0 1 2 3 4 5
=head2 Boundary Length
The points N=1 to N=2^k-1 inclusive have a boundary length
boundary = 2^k + 2k
For example N=1 to N=7 is
+---+
| 7 |
+ +
| 5 |
+ +---+
| 3 6 |
+ +---+
| 1 2 4 |
+---+---+---+
The height is the odd numbers, so 2^(k-1). The width is the power k. So
total boundary 2*height+2*width = 2^k + 2k.
If N=2^k is included then it's on the X axis and so add 2, for boundary =
2^k + 2k + 2.
For other radix the calculation is similar
boundary = 2 * (radix-1) * radix^(k-1) + 2*k
For example radix=3, N=1 to N=8 is
8
7
5
4
2 6
1 3
The height is the non-multiples of the radix, so (radix-1)/radix * radix^k.
The width is the power k again. So total boundary = 2*height+2*width.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.
=over 4
=item C<$path = Math::PlanePath::PowerArray-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 1 and if C<$n E<lt> 0> then the return is an empty list.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the N point number at coordinates C<$x,$y>. If C<$xE<lt>0> or
C<$yE<lt>0> then there's no N and the return is C<undef>.
N values grow rapidly with C<$x>. Pass in a number type such as
C<Math::BigInt> to preserve precision.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head1 FORMULAS
=head2 Rectangle to N Range
Within each row increasing X is increasing N, and in each column increasing
Y is increasing N. So in a rectangle the lower left corner is the minimum N
and the upper right is the maximum N.
| N max
| ----------+
| | ^ |
| | | |
| | ----> |
| +----------
| N min
+-------------------
=head2 N to Turn Left or Right
The turn left or right is given by
radix = 2 left at N==0 mod radix and N==1mod4, right otherwise
radix >= 3 left at N==0 mod radix
right at N=1 or radix-1 mod radix
straight otherwise
The points N!=0 mod radix are on the Y axis and those N==0 mod radix are off
the axis. For that reason the turn at N==0 mod radix is to the left,
|
C--
---
A--__ -- point B is N=0 mod radix,
| --- B turn left A-B-C is left
For radix>=3 the turns at A and C are to the right, since the point before A
and after C is also on the Y axis. For radix>=4 there's of run of points on
the Y axis which are straight.
For radix=2 the "B" case N=0 mod 2 applies, but for the A,C points in
between the turn alternates left or right.
1-- N=1 mod 4 3-- N=3 mod 4
\ -- turn left \ -- turn right
\ -- \ --
2 -- 2 --
-- --
-- --
0 4
Points N=2 mod 4 are X=1 and Y=N/2 whereas N=0 mod 4 has 2 or more trailing
0 bits so XE<gt>1 and YE<lt>N/2.
N mod 4 turn
------- ------
0 left for radix=2
1 left
2 left
3 right
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include
=over
L<http://oeis.org/A007814> (etc)
=back
radix=2
A007814 X coordinate, count low 0-bits of N
A006519 2^X
A025480 Y coordinate of N-1, ie. seq starts from N=0
A003602 Y+1, being k for which N=(2k-1)*2^m
A153733 2*Y of N-1, strip low 1 bits
A000265 2*Y+1, strip low 0 bits
A094267 dX, change count low 0-bits
A050603 abs(dX)
A108715 dY, change in Y coordinate
A000079 N on X axis, powers 2^X
A057716 N not on X axis, the non-powers-of-2
A005408 N on Y axis (X=0), the odd numbers
A003159 N in X=even columns, even trailing 0 bits
A036554 N in X=odd columns
A014480 N on X=Y diagonal, (2n+1)*2^n
A118417 N on X=Y+1 diagonal, (2n-1)*2^n
(just below X=Y diagonal)
A054582 permutation N by diagonals, upwards
A135764 permutation N by diagonals, downwards
A075300 permutation N-1 by diagonals, upwards
A117303 permutation N at transpose X,Y
A100314 boundary length for N=1 to N=2^k-1 inclusive
being 2^k+2k
A131831 same, after initial 1
A052968 half boundary length N=1 to N=2^k inclusive
being 2^(k-1)+k+1
radix=3
A007949 X coordinate, power-of-3 dividing N
A000244 N on X axis, powers 3^X
A001651 N on Y axis (X=0), not divisible by 3
A007417 N in X=even columns, even trailing 0 digits
A145204 N in X=odd columns (extra initial 0)
A141396 permutation, N by diagonals down from Y axis
A191449 permutation, N by diagonals up from X axis
A135765 odd N by diagonals, deletes the Y=1,2mod4 rows
A000975 Y at N=2^k, being binary "10101..101"
radix=4
A000302 N on X axis, powers 4^X
radix=5
A112765 X coordinate, power-of-5 dividing N
A000351 N on X axis, powers 5^X
radix=6
A122841 X coordinate, power-of-6 dividing N
radix=10
A011557 N on X axis, powers 10^X
A067251 N on Y axis, not a multiple of 10
A151754 Y coordinate of N=2^k, being floor(2^k*9/10)
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::WythoffArray>,
L<Math::PlanePath::ZOrderCurve>
David M. Bradley "Counting Ordered Pairs", Mathematics Magazine, volume 83,
number 4, October 2010, page 302, DOI 10.4169/002557010X528032.
L<http://www.math.umaine.edu/~bradley/papers/JStor002557010X528032.pdf>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|