/usr/share/perl5/Math/PlanePath/QuadricCurve.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=QuadricCurve --lines --scale=10
# math-image --path=QuadricCurve --all --output=numbers_dash --size=80x50
package Math::PlanePath::QuadricCurve;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh';
# uncomment this to run the ### lines
#use Devel::Comments;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant y_negative_at_n => 5;
use constant sumxy_minimum => 0; # triangular X>=-Y
use constant diffxy_minimum => 0; # triangular Y<=X so X-Y>=0
#------------------------------------------------------------------------------
# 2---3
# | |
# 0---1 4 7---8
# | |
# 5---6
#
sub n_to_xy {
my ($self, $n) = @_;
### QuadricCurve n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $x;
{
my $int = int($n);
$x = $n - $int; # frac
$n = $int; # BigFloat/BigRat int() gives BigInt, use that
}
my $y = $x * 0; # inherit bignum 0
my $len = $y + 1; # inherit bignum 1
foreach my $digit (digit_split_lowtohigh($n,8)) {
### at: "$x,$y digit=$digit"
if ($digit == 0) {
} elsif ($digit == 1) {
($x,$y) = (-$y + $len, # rotate +90 and offset
$x);
} elsif ($digit == 2) {
$x += $len; # offset
$y += $len;
} elsif ($digit == 3) {
($x,$y) = ($y + 2*$len, # rotate -90 and offset
-$x + $len);
} elsif ($digit == 4) {
($x,$y) = ($y + 2*$len, # rotate -90 and offset
-$x);
} elsif ($digit == 5) {
$x += 2*$len; # offset
$y -= $len;
} elsif ($digit == 6) {
($x,$y) = (-$y + 3*$len, # rotate +90 and offset
$x - $len);
} elsif ($digit == 7) {
### assert: $digit==7
$x += 3*$len; # offset
}
$len *= 4;
}
### final: "$x,$y"
return ($x,$y);
}
# 8
# |
# 7---6
# |
# 3---4---5
# |
# 2---1
# |
# 0
#
# |
# * 11--12--13
# / \ |
# 2---3 10---9
# / | | \ |
# 0---1 4 7---8
# \ | | /
# 5---6
# \ /
# *
#
sub xy_to_n {
my ($self, $x, $y) = @_;
### QuadricCurve xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 0) {
### neg x ...
return undef;
}
my ($len,$level) = round_down_pow (($x+abs($y)) || 1, 4);
### $level
### $len
if (is_infinite($level)) {
return $level;
}
my $diamond_p = sub {
### diamond_p(): "$x,$y len=$len is ".(($x == 0 && $y == 0) || ($y <= $x && $y > -$x && $y < $len-$x && $y >= $x-$len))
return (($x == 0 && $y == 0)
|| ($y <= $x
&& $y > -$x
&& $y < $len-$x
&& $y >= $x-$len));
};
my $n = 0;
foreach (0 .. $level) {
$n *= 8;
### at: "level=$level len=$len x=$x,y=$y n=$n"
if (&$diamond_p()) {
# digit 0 ...
} else {
($x,$y) = ($y, -($x-$len)); # shift and rotate -90
if (&$diamond_p()) {
# digit 1 ...
$n += 1;
} else {
($x,$y) = (-$y, $x-$len); # shift and rotate +90
if (&$diamond_p()) {
# digit 2 ...
$n += 2;
} else {
($x,$y) = (-$y, $x-$len); # shift and rotate +90
if (&$diamond_p()) {
# digit 3 ...
$n += 3;
} else {
$x -= $len;
if (&$diamond_p()) {
# digit 4 ...
$n += 4;
} else {
($x,$y) = ($y, -($x-$len)); # shift and rotate -90
if (&$diamond_p()) {
# digit 5 ...
$n += 5;
} else {
($x,$y) = ($y, -($x-$len)); # shift and rotate -90
if (&$diamond_p()) {
# digit 6 ...
$n += 6;
} else {
($x,$y) = (-$y, $x-$len); # shift and rotate +90
if (&$diamond_p()) {
# digit 7 ...
$n += 7;
} else {
return undef;
}
}
}
}
}
}
}
}
$len /= 4;
}
### end at: "x=$x,y=$y n=$n"
if ($x != 0 || $y != 0) {
return undef;
}
return $n;
}
# level extends to x= 4^level
# level = log4(x)
#
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### QuadricCurve rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$x2 = round_nearest ($x2);
if ($x2 < $x1) {
$x2 = $x1; # x2 bigger
}
if ($x2 < 0) {
return (1,0); # rect all x negative, no points
}
$y1 = abs (round_nearest ($y1));
$y2 = abs (round_nearest ($y2));
if ($y2 < $y1) {
$y2 = $y1; # y2 bigger abs
}
my $p4 = $x2+$y2+1;
### $p4
return (0, $p4*$p4);
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 8**$level);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
my ($pow, $exp) = round_down_pow ($n-1, 8);
return $exp + 1;
}
#------------------------------------------------------------------------------
1;
__END__
# 0 1 2 3 4 5 6 7 8
#
# 8 @
# |
# 7 +---+
# |
# 6 +---+---+
# |
# 5 +---+
# |
# 4 @---+ + +---@
# |
# 3 +---+ +
# | |
# 2 @---+ + +---@ +
# | | |
# 1 +---+ +---+ +---+ +
# | | |
# 0 +---+---+ @---+ + +---@---+ + +---@
# | | | |
# +---+ +---+ + +---+
# | | |
# @---+ + +---@ +
# | |
# +---+ +
# |
# @---+ + +---@
# |
# +
#
# +
#
# +
# |
# @
=for stopwords eg Ryde Math-PlanePath zig-zag OEIS
=head1 NAME
Math::PlanePath::QuadricCurve -- eight segment zig-zag
=head1 SYNOPSIS
use Math::PlanePath::QuadricCurve;
my $path = Math::PlanePath::QuadricCurve->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is a self-similar zig-zag of eight segments,
18-19 5
| |
16-17 20 23-24 4
| | | |
15-14 21-22 25-26 3
| |
11-12-13 29-28-27 2
| |
2--3 10--9 30-31 58-59 ... 1
| | | | | | |
0--1 4 7--8 32 56-57 60 63-64 <- Y=0
| | | | | |
5--6 33-34 55-54 61-62 -1
| |
37-36-35 51-52-53 -2
| |
38-39 42-43 50-49 -3
| | | |
40-41 44 47-48 -4
| |
45-46 -5
^
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
The base figure is the initial N=0 to N=8,
2---3
| |
0---1 4 7---8
| |
5---6
It then repeats, turned to follow edge directions, so N=8 to N=16 is the
same shape going upwards, then N=16 to N=24 across, N=24 to N=32 downwards,
etc.
The result is the base at ever greater scale extending to the right and with
wiggly lines making up the segments. The wiggles don't overlap.
=head2 Level Ranges
A given replication extends to
Nlevel = 8^level
X = 4^level
Y = 0
Ymax = 4^0 + 4^1 + ... + 4^level # 11...11 in base 4
= (4^(level+1) - 1) / 3
Ymin = - Ymax
=head2 Turn
The sequence of turns made by the curve is straightforward. In the base 8
(octal) representation of N, the lowest non-zero digit gives the turn
low digit turn (degrees)
--------- --------------
1 +90
2 -90
3 -90
4 0
5 +90
6 +90
7 -90
When the least significant digit is non-zero it determines the turn, to make
the base N=0 to N=8 shape. When the low digit is zero it's instead the next
level up, the N=0,8,16,24,etc shape which is in control, applying a turn for
the subsequent base part. So for example at N=16 = 20 octal 20 is a turn
-90 degrees.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::QuadricCurve-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 8**$level)>.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include
=over
L<http://oeis.org/A133851> (etc)
=back
A133851 Y at N=2^k, being successive powers 2^j at k=1mod4
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::QuadricIslands>,
L<Math::PlanePath::KochCurve>
L<Math::Fractal::Curve> -- its F<examples/generator4.pl> is this curve
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|