/usr/share/perl5/Math/PlanePath/RationalsTree.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# SB,CW N with same X,Y is those N which are palindromes below high 1-bit
# as noted Claudio Bonanno and Stefano Isola, ``Orderings of the Rationals
# and Dynamical Systems'', May 16, 2008.
# cf A006995 binary palindromes, so always odd
# A178225 characteristic of binary palindromes
# A048700 binary palindromes odd length
# A048701 binary palindromes even length
# A044051 binary palindromes (B+1)/2, B odd so B+1 even
# A044051-1 = (B-1)/2 strips low 1-bit to be palindromes below high 1-bit
# Boyko B. Bantchev, "Fraction Space Revisited"
# http://www.math.bas.bg/bantchev/articles/fractions.pdf
# cf Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete
# Mathematics: A Foundation for Computer Science, Second
# Edition. Addison-Wesley. 1994.
# On Stern-Brocot tree.
# cf A054429 permutation reverse within binary row
# A065249 - permutation SB X -> X/2
# A065250 - permutation SB X -> 2X
# A057114 - permutation SB X -> X+1
# A057115 - permutation SB X -> X-1
#
# high-to-low low-to-high
# (X+Y)/Y Y/(X+Y) HCS AYT
# X/(X+Y) (X+Y)/Y CW SB \ alt bit flips
# Y/(X+Y) (X+Y)/X Drib Bird /
#
# 9 10 12 10
# 8 11 8 14
# 12 13 9 13
# 14 11
# 15 15
#
# Stern-Brocot Calkin-Wilf
#------------------------------------------------------------------------------
# HCS turn left when even number of 1-bits in N+1
# turn right when odd number of 1-bits in N+1
#
# A010059 start=0: 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0
# match 1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0
# PlanePathTurn planepath=RationalsTree,tree_type=HCS, turn_type=Left
#
# A010060 start=0: 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1
# match 0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1
# PlanePathTurn planepath=RationalsTree,tree_type=HCS, turn_type=Right
#
# 10 | 768 50 58 896
# 9 | 384 49 52 60 57 448 640
# 8 | 192 27 31 224 320
# 7 | 96 25 26 30 29 112 160 41 42
# 6 | 48 56 80
# 5 | 24 13 15 28 40 21 23 44
# 4 | 12 14 20 22 36
# 3 | 6 7 10 11 18 19 34
# 2 | 3 5 9 17 33
# 1 | 1 2 4 8 16 32 64 128 256 512
# Y=0 |
# +-----------------------------------------------------
# X=0 1 2 3 4 5 6 7 8 9 10
#
# 1/1
# /------------- -------------\
# 2/1 1/2 2,3 L,R
# /---- ----\ /---- ----\
# 3/1 3/2 1/3 2/3 4,5,6,7 L,L,R,R
# / \ / \ / \ / \ 8 12
# 4/1 5/2 4/3 5/3 1/4 2/5 3/4 3/5 L,L,R,L, R,R,L,R
# / \ / \ / \ / \ / \ / \ / \ / \
# 5/1 7/2 7/3 8/3 5/4 7/5 7/4 8/5 1/5 2/7 3/7 3/8 4/5 5/7 4/7 5/8
#
# *
# / \ U=0 = X+Y, Y shear
# / * D=1 = Y, X+Y shear+transpose
# / \a = 0.1^k.1
# N
# \ /b = 1.0^k.0
# \ *
# \ / \c = 1.0^k.1 c=even bits, left
# *
#
# F[-1]=1 F[0]=0 F[1]=1 F[2]=1 F[3]=2 F[4]=3 F[5]=5 ...
# 1^k is F[k-1]*X+F[k]*Y, F[k]*X+F[k+1]*Y
# X , Y 0
# Y, X+ Y 1
# X+ Y, X+2Y 2
# X+2Y, 2X+3Y 3
# 2X+3Y, 3X+5Y 4
#
# then aX = F[k]*X+F[k+1]*Y + F[k+1]*X+F[k+2]*Y
# = (F[k]+F[k+1])*X + (F[k+1]+F[k+2])*Y
# = F[k+2]*X + F[k+3]*Y
# aY = F[k+1]*X + F[k+2]*Y near X=phi*Y big
#
# 0^k is X+k*Y, Y
# so bX = Y
# bY = X+k*Y + Y = X+(k+1)*Y near Y axis
#
# c1X = Y
# c1Y = X+Y
# c2X = Y + k*(X+Y) = k*X + (k+1)*Y
# c2Y = X+Y
# cX = X+Y
# cY = k*X + (k+1)*Y + X+Y = (k+1)X + (k+2)Y near X=Y
#
# *
# / \ /a = 0.1^k.0
# / *
# / \b = 0.1^k.1
# N
# \ /c = 1.0^k.1 c=even bits, left
# \ *
# \ /
# *
#------------------------------------------------------------------------------
package Math::PlanePath::RationalsTree;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'bit_split_lowtohigh',
'digit_join_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;
use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant parameter_info_array =>
[ { name => 'tree_type',
share_key => 'tree_type_rationalstree',
display => 'Tree Type',
type => 'enum',
default => 'SB',
choices => ['SB','CW','AYT','HCS','Bird','Drib','L',],
choices_display => ['SB','CW','AYT','HCS','Bird','Drib','L',],
},
];
use constant class_x_negative => 0;
use constant class_y_negative => 0;
sub x_minimum {
my ($self) = @_;
return ($self->{'tree_type'} eq 'L' ? 0 : 1);
}
use constant y_minimum => 1;
use constant gcdxy_maximum => 1; # no common factor
use constant tree_num_children_list => (2); # complete binary tree
use constant tree_n_to_subheight => undef; # complete tree, all infinity
{
my %absdy_minimum = (# SB => 0,
CW => 1,
# AYT => 0,
# Bird => 0,
# Drib => 0,
L => 1);
sub absdy_minimum {
my ($self) = @_;
return $absdy_minimum{$self->{'tree_type'}} || 0;
}
}
{
# Drib apparent minimum dX=k dY=2*k+1 approaches dX=1,dY=2
my %dir_minimum_dxdy = (CW => [0,1],
Drib => [1,2],
L => [1,1], # at N=0 dX=1,dY=1
);
sub dir_minimum_dxdy {
my ($self) = @_;
return @{$dir_minimum_dxdy{$self->{'tree_type'}} || [1,0]};
}
}
{
my %dir_maximum_dxdy
= (SB => [1,-1],
# CW => [0,0],
Bird => [1,-1],
# Drib => [0,0],
HCS => [2,-1],
# AYT => [0,0],
# L => [0,0], # at 2^k-1 dX=k+1,dY=-1 so approach Dir=4
);
sub dir_maximum_dxdy {
my ($self) = @_;
return @{$dir_maximum_dxdy{$self->{'tree_type'}} || [0,0]};
}
}
#------------------------------------------------------------------------------
my %attributes = (CW => [ n_start => 1, ],
SB => [ n_start => 1, reverse_bits => 1 ],
Drib => [ n_start => 1, alternating => 1 ],
Bird => [ n_start => 1, alternating => 1, reverse_bits => 1 ],
AYT => [ n_start => 1, sep1s => 1 ],
HCS => [ n_start => 1, sep1s => 1, reverse_bits => 1 ],
L => [ n_start => 0 ],
);
sub new {
my $self = shift->SUPER::new(@_);
my $tree_type = ($self->{'tree_type'} ||= 'SB');
my $attributes = $attributes{$tree_type}
|| croak "Unrecognised tree type: ",$tree_type;
%$self = (%$self, @$attributes);
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### RationalsTree n_to_xy(): "$n"
if ($n < $self->{'n_start'}) { return; }
if (is_infinite($n)) { return ($n,$n); }
# what to do for fractional $n?
{
my $int = int($n);
if ($n != $int) {
### frac ...
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
### x1,y1: "$x1, $y1"
### x2,y2: "$x2, $y2"
### dx,dy: "$dx, $dy"
### result: ($frac*$dx + $x1).', '.($frac*$dy + $y1)
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
my $zero = ($n * 0); # inherit bignum 0
my $one = $zero + 1; # inherit bignum 1
if ($self->{'n_start'} == 0) {
# L tree adjust;
$n += 2;
}
my @nbits = bit_split_lowtohigh($n);
pop @nbits;
### lowtohigh sans high: @nbits
if (! $self->{'reverse_bits'}) {
@nbits = reverse @nbits;
### reverse to: @nbits
}
my $x = $one;
my $y = $one;
if ($self->{'sep1s'}) {
foreach my $nbit (@nbits) {
$x += $y;
if ($nbit) {
($x,$y) = ($y,$x);
}
}
} elsif ($self->{'alternating'}) {
foreach my $nbit (@nbits) {
($x,$y) = ($y,$x);
if ($nbit) {
$x += $y; # (x,y) -> (x+y,x), including swap
} else {
$y += $x; # (x,y) -> (y,x+y), including swap
}
}
} elsif ($self->{'tree_type'} eq 'L') {
my $sub = 2;
foreach my $nbit (@nbits) {
if ($nbit) {
$y += $x; # (x,y) -> (x,x+y)
$sub = 0;
} else {
$x += $y; # (x,y) -> (x+y,y)
}
}
$x -= $sub; # -2 at N=00...000 all zero bits
} else {
### nbits apply CW: @nbits
foreach my $nbit (@nbits) { # high to low
if ($nbit) {
$x += $y; # (x,y) -> (x+y,y)
} else {
$y += $x; # (x,y) -> (x,x+y)
}
}
}
### result: "$x, $y"
return ($x,$y);
}
sub xy_is_visited {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($self->{'tree_type'} eq 'L' && $x == 0 && $y == 1) {
return 1;
}
if ($x < 1
|| $y < 1
|| ! _coprime($x,$y)) {
return 0;
}
return 1;
}
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
### RationalsTree xy_to_n(): "$x,$y $self->{'tree_type'}"
if ($x < $self->{'n_start'} || $y < 1) {
return undef;
}
if (is_infinite($x)) {
return $x;
}
if (is_infinite($y)) {
return $y;
}
my @quotients = _xy_to_quotients($x,$y)
or return undef; # $x,$y have a common factor
### @quotients
my @nbits;
if ($self->{'sep1s'}) {
$quotients[0]++; # the integer part, making it 1 or more
foreach my $q (@quotients) {
push @nbits, (0) x ($q-1), 1; # runs of "000..0001"
}
pop @nbits; # no high 1-bit separator
} else {
if ($quotients[0] < 0) { # X=0,Y=1 in tree_type="L"
return $self->{'n_start'};
}
my $bit = 1;
foreach my $q (@quotients) {
push @nbits, ($bit) x $q;
$bit ^= 1; # alternate runs of "00000" or "11111"
}
### nbits in quotient order: @nbits
if ($self->{'alternating'}) {
# Flip every second bit, starting from the second lowest.
for (my $i = 1; $i <= $#nbits; $i += 2) {
$nbits[$i] ^= 1;
}
}
if ($self->{'tree_type'} eq 'L') {
# Flip all bits.
my $anyones = 0;
foreach my $nbit (@nbits) {
$nbit ^= 1; # mutate array
$anyones ||= $nbit;
}
unless ($anyones) {
push @nbits, 0,0;
}
}
}
if ($self->{'reverse_bits'}) {
@nbits = reverse @nbits;
}
push @nbits, 1; # high 1-bit
### @nbits
my $n = digit_join_lowtohigh (\@nbits, 2,
$x*0*$y); # inherit bignum 0
if ($self->{'tree_type'} eq 'L') {
return $n-2;
} else {
return $n;
}
}
# Return a list of the quotients from Euclid's greatest common divisor
# algorithm on X,Y. This is also the terms of the continued fraction
# expansion of rational X/Y.
#
# The last term, the last in the list, is decremented since this is what the
# code above requires. This term is the top-most quotient in for example
# gcd(7,1) is 7=7*1+0 with q=7 returned as 6.
#
# If $x,$y have a common factor then the return is an empty list.
# If $x,$y have no common factor then the returned list is always one or
# more quotients.
#
sub _xy_to_quotients {
my ($x,$y) = @_;
my @ret;
for (;;) {
my ($q, $r) = _divrem($x,$y);
push @ret, $q;
last unless $r;
$x = $y;
$y = $r;
}
if ($y > 1) {
### found Y>1 common factor, no N at this X,Y ...
return;
}
$ret[-1]--;
return @ret;
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### rect_to_n_range()
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
### $x2
### $y2
if ($x2 < 1 || $y2 < 1) {
### no values, rect below first quadrant
if ($self->{'n_start'}) {
return (1,0);
} else {
return (0,0);
}
}
my $zero = ($x1 * 0 * $y1 * $x2 * $y2); # inherit bignum
### $zero
if ($x1 < 1) { $x1 = 1; }
if ($y1 < 1) { $y1 = 1; }
# # big x2, small y1
# # big y2, small x1
# my $level = _bingcd_max ($y2,$x1);
# ### $level
# {
# my $l2 = _bingcd_max ($x2,$y1);
# ### $l2
# if ($l2 > $level) { $level = $l2; }
# }
my $level = max($x1,$x2,$y1,$y2);
return ($self->{'n_start'},
$self->{'n_start'} + (2+$zero) ** ($level + 3));
}
sub _bingcd_max {
my ($x,$y) = @_;
### _bingcd_max(): "$x,$y"
if ($x < $y) { ($x,$y) = ($y,$x) }
### div: int($x/$y)
### bingcd: int($x/$y) + $y
return int($x/$y) + $y + 1;
}
# ### fib: _fib_log($y)
# # ENHANCE-ME: log base PHI, or something close for BigInt
# # 2*log2() means log base sqrt(2)=1.4 instead of PHI=1.6
# #
# # use constant 1.02; # for leading underscore
# # use constant _PHI => (1 + sqrt(5)) / 2;
# #
# sub _fib_log {
# my ($x) = @_;
# ### _fib_log(): $x
# my $f0 = ($x * 0);
# my $f1 = $f0 + 1;
# my $count = 0;
# while ($x > $f0) {
# $count++;
# ($f0,$f1) = ($f1,$f0+$f1);
# }
# return $count;
# }
#------------------------------------------------------------------------------
use constant tree_num_roots => 1;
# N=1 basis children 2N,2N+1
# N=S basis 2(N-(S-1))+(S-1)
# = 2N - 2(S-1) + (S-1)
# = 2N - (S-1)
sub tree_n_children {
my ($self, $n) = @_;
my $n_start = $self->{'n_start'};
if ($n >= $n_start) {
$n = 2*$n - $n_start;
return ($n+1, $n+2);
} else {
return;
}
}
sub tree_n_num_children {
my ($self, $n) = @_;
return ($n >= $self->{'n_start'} ? 2 : undef);
}
sub tree_n_parent {
my ($self, $n) = @_;
$n = $n - $self->{'n_start'}; # N=0 basis, and warn if $n==undef
if ($n > 0) {
return int(($n-1)/2) + $self->{'n_start'};
} else {
return undef;
}
}
sub tree_n_to_depth {
my ($self, $n) = @_;
### RationalsTree tree_n_to_depth(): $n
$n = $n - $self->{'n_start'}; # N=0 basis, and warn if $n==undef
unless ($n >= 0) {
return undef;
}
my ($pow, $exp) = round_down_pow ($n+1, 2);
return $exp;
}
sub tree_depth_to_n {
my ($self, $depth) = @_;
return ($depth >= 0
? 2**$depth + $self->{'n_start'}-1
: undef);
}
# (2^(d+1)+s-1)-1 = 2^(d+1)+s-2
sub tree_depth_to_n_end {
my ($self, $depth) = @_;
return ($depth >= 0
? 2**($depth+1) + $self->{'n_start'}-2
: undef);
}
sub tree_depth_to_n_range {
my ($self, $depth) = @_;
if ($depth >= 0) {
my $pow = 2**$depth;
return ($pow + $self->{'n_start'}-1, 2*$pow + $self->{'n_start'}-2);
}
return; # no such $depth
}
sub tree_depth_to_width {
my ($self, $depth) = @_;
return ($depth >= 0
? 2**$depth
: undef);
}
1;
__END__
# xy_to_n() post-processing CW to make AYT
#
# if ($self->{'tree_type'} eq 'AYT') {
# # AYT shift-xor "N xor (N<<1)" each bit xor with the one below it. But
# # the high 1-bit is left unchanged, hence "$#nbits-1". At the low end
# # for "N<<1" a 1-bit is shifted in, which is arranged by letting $i-1
# # become -1 to get the endmost array element which is the high 1-bit.
# foreach my $i (reverse 0 .. $#nbits-1) {
# $nbits[$i] ^= $nbits[$i-1];
# }
# }
=for stopwords eg Ryde OEIS ie Math-PlanePath coprime encodings Moritz Achille Brocot Stern-Brocot mediant Calkin Wilf Calkin-Wilf 1abcde 1edcba Andreev Yu-Ting Shen AYT Ralf Hinze Haskell subtrees xoring Drib RationalsTree unflipped GCD Luschny Jerzy Czyz Minkowski Nstart Shallit's HCS Ndepth N-Ndepth Nparent subtree LRRL parameterization parameterized Jacobsthal Thue-Morse ceil Matematicheskoe Prosveshchenie Ser DOI
=head1 NAME
Math::PlanePath::RationalsTree -- rationals by tree
=head1 SYNOPSIS
use Math::PlanePath::RationalsTree;
my $path = Math::PlanePath::RationalsTree->new (tree_type => 'SB');
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path enumerates reduced rational fractions X/Y E<gt> 0, ie. X and Y
having no common factor.
The rationals are traversed by rows of a binary tree which represents a
coprime pair X,Y by steps of a subtraction-only greatest common divisor
algorithm which proves them coprime. Or equivalently by bit runs with
lengths which are the quotients in the division-based Euclidean GCD
algorithm and which are also the terms in the continued fraction
representation of X/Y.
The SB, CW, AYT, HCS, Bird and Drib trees all have the same set of X/Y
rationals in a row, but in a different order due to different encodings of
the N value. See the author's mathematical write-up for a proof that these
are the only trees with a fixed set of matrices.
=over
L<http://user42.tuxfamily.org/rationals/index.html>
=back
The bit runs mean that N values are quite large for relatively modest sized
rationals. For example in the SB tree 167/3 is N=288230376151711741, a
58-bit number. The tendency is for the tree to make excursions out to large
rationals while only slowly filling in small ones. The worst is the integer
X/1 for which N has X many bits, and similarly 1/Y is Y bits.
See F<examples/rationals-tree.pl> in the Math-PlanePath sources for a
printout of all the trees.
=head2 Stern-Brocot Tree
X<Stern, Moritz>X<Brocot, Achille>The default C<tree_type=E<gt>"SB"> is the
tree of Moritz Stern and Achille Brocot.
depth N
----- -------
0 1 1/1
------ ------
1 2 to 3 1/2 2/1
/ \ / \
2 4 to 7 1/3 2/3 3/2 3/1
| | | | | | | |
3 8 to 15 1/4 2/5 3/5 3/4 4/3 5/3 5/2 4/1
Within a row the fractions increase in value. Each row of the tree is a
repeat of the previous row as first X/(X+Y) and then (X+Y)/Y. For example
depth=1 1/2, 2/1
depth=2 1/3, 2/3 X/(X+Y) of previous row
3/2, 3/1 (X+Y)/Y of previous row
Plotting the N values by X,Y is as follows. The unused X,Y positions are
where X and Y have a common factor. For example X=6,Y=2 has common factor 2
so is never reached.
tree_type => "SB"
10 | 512 35 44 767
9 | 256 33 39 40 46 383 768
8 | 128 18 21 191 384
7 | 64 17 19 20 22 95 192 49 51
6 | 32 47 96
5 | 16 9 10 23 48 25 26 55
4 | 8 11 24 27 56
3 | 4 5 12 13 28 29 60
2 | 2 6 14 30 62
1 | 1 3 7 15 31 63 127 255 511 1023
Y=0 |
----------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
The X=1 vertical is the fractions 1/Y which is at the left of each tree row,
at N value
Nstart = 2^depth
The Y=1 horizontal is the X/1 integers at the end each row which is
Nend = 2^(depth+1)-1
Numbering nodes of the tree by rows starting from 1 means N without the high
1 bit is the offset into the row. For example binary N="1011" is "011"=3
into the row. Those bits after the high 1 are also the directions to follow
down the tree to a node, with 0=left and 1=right. So N="1011" binary goes
from the root 0=left then twice 1=right to reach X/Y=3/4 at N=11 decimal.
=cut
# O/O O/E E/O X/(X+Y) -> O/E O/O E/O A B C -> B A C
# (X+Y)/Y -> E/O O/E O/O -> C B A
=pod
=head2 Stern-Brocot Mediant
Writing the parents between the children as an "in-order" tree traversal to
a given depth has all values in increasing order (the same as each row
individually is in increasing order).
1/1
1/2 | 2/1
1/3 | 2/3 | 3/2 | 3/1
| | | | | | |
1/3 1/2 2/3 1/1 3/2 2/1 3/1
^
|
next level (1+3)/(1+2) = 4/3 mediant
New values at the next level of this flattening are a "mediant"
(x1+x2)/(y1+y2) formed from the left and right parent. So the next level
4/3 shown is left parent 1/1 and right parent 3/2 giving mediant
(1+3)/(1+2)=4/3. At the left end a preceding 0/1 is imagined. At the right
end a following 1/0 is imagined, so as to have 1/(depth+1) and (depth+1)/1
at the ends for a total 2^depth many new values.
The turn sequence left or right along the row depth E<gt>= 2 is by a
repeating LRRL pattern, except the first and last are always R. (See the
author's mathematical write-up for details.)
RRRL,LRRL,LRRL,LRRL,LRRL,LRRL,LRRL,LRRR # row N=32 to N=63
=head2 Calkin-Wilf Tree
X<Calkin, Neil>X<Wilf, Herbert>C<tree_type=E<gt>"CW"> selects the tree of
Calkin and Wilf,
=over
Neil Calkin and Herbert Wilf, "Recounting the Rationals", American
Mathematical Monthly, volume 107, number 4, April 2000, pages 360-363.
L<http://www.math.upenn.edu/~wilf/reprints.html>
L<http://www.math.upenn.edu/~wilf/website/recounting.pdf>
L<http://www.jstor.org/stable/2589182>
=back
As noted above, the values within each row are the same as the Stern-Brocot,
but in a different order.
N=1 1/1
------ ------
N=2 to N=3 1/2 2/1
/ \ / \
N=4 to N=7 1/3 3/2 2/3 3/1
| | | | | | | |
N=8 to N=15 1/4 4/3 3/5 5/2 2/5 5/3 3/4 4/1
Going by rows the denominator of one value becomes the numerator of the
next. So at 4/3 the denominator 3 becomes the numerator of 3/5 to the
right. These values are Stern's diatomic sequence.
Each row is symmetric in reciprocals, ie. reading from right to left is the
reciprocals of reading left to right. The numerators read left to right are
the denominators read right to left.
A node descends as
X/Y
/ \
X/(X+Y) (X+Y)/Y
Taking these formulas in reverse up the tree shows how it relates to a
subtraction-only greatest common divisor. At a given node the smaller of P
or Q is subtracted from the bigger,
P/(Q-P) (P-Q)/P
/ or \
P/Q P/Q
Plotting the N values by X,Y is as follows. The X=1 vertical and Y=1
horizontal are the same as the SB above, but the values in between are
re-ordered.
tree_type => "CW"
10 | 512 56 38 1022
9 | 256 48 60 34 46 510 513
8 | 128 20 26 254 257
7 | 64 24 28 18 22 126 129 49 57
6 | 32 62 65
5 | 16 12 10 30 33 25 21 61
4 | 8 14 17 29 35
3 | 4 6 9 13 19 27 39
2 | 2 5 11 23 47
1 | 1 3 7 15 31 63 127 255 511 1023
Y=0 |
-------------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
At each node the left leg is S<X/(X+Y) E<lt> 1> and the right leg is
S<(X+Y)/Y E<gt> 1>, which means N is even above the X=Y diagonal and odd
below. In general each right leg increments the integer part of the
fraction,
X/Y right leg each time
(X+Y)/Y = 1 + X/Y
(X+2Y)/Y = 2 + X/Y
(X+3Y)/Y = 3 + X/Y
etc
This means the integer part is the trailing 1-bits of N,
floor(X/Y) = count trailing 1-bits of N
eg. 7/2 is at N=23 binary "10111"
which has 3 trailing 1-bits for floor(7/2)=3
N values for the SB and CW trees are converted by reversing bits except the
highest. So at a given X,Y position
SB N = 1abcde SB <-> CW by reversing bits
CW N = 1edcba except the high 1-bit
For example at X=3,Y=4 the SB tree has N=11 = "1011" binary and the CW has
N=14 binary "1110", a reversal of the bits below the high 1.
N to X/Y in the CW tree can be calculated keeping track of just an X,Y pair
and descending to X/(X+Y) or (X+Y)/Y using the bits of N from high to low.
The relationship between the SB and CW N's means the same can be used to
calculate the SB tree by taking the bits of N from low to high instead.
See also L<Math::PlanePath::ChanTree> for a generalization of CW to ternary
or higher trees, ie. descending to 3 or more children at each node.
=head2 Yu-Ting and Andreev Tree
X<Andreev, D.N.>X<Yu-Ting, Shen>C<tree_type=E<gt>"AYT"> selects the tree
described independently by Yu-Ting and Andreev.
=over
Shen Yu-Ting, "A Natural Enumeration of Non-Negative Rational Numbers
-- An Informal Discussion", American Mathematical Monthly, 87, 1980,
pages 25-29. L<http://www.jstor.org/stable/2320374>
D. N. Andreev, "On a Wonderful Numbering of Positive Rational Numbers",
Matematicheskoe Prosveshchenie, Ser. 3, 1, 1997, pages 126-134
L<http://mi.mathnet.ru/mp12>
=back
=cut
# Andreev also at
# L<http://files.school-collection.edu.ru/dlrstore/d62f7b96-a780-11dc-945c-d34917fee0be/i2126134.pdf>
=pod
Their constructions are a one-to-one mapping between integer N and rational
X/Y as a way of enumerating the rationals. This is not designed to be a
tree as such, but the result is the same 2^level rows as the above trees.
The X/Y values within each row are the same, but in a different order.
N=1 1/1
------ ------
N=2 to N=3 2/1 1/2
/ \ / \
N=4 to N=7 3/1 1/3 3/2 2/3
| | | | | | | |
N=8 to N=15 4/1 1/4 4/3 3/4 5/2 2/5 5/3 3/5
Each fraction descends as follows. The left is an increment and the right
is reciprocal of the increment.
X/Y
/ \
X/Y + 1 1/(X/Y + 1)
which means
X/Y
/ \
(X+Y)/Y Y/(X+Y)
The left leg (X+Y)/Y is the same the CW has on its right leg. But Y/(X+Y)
is not the same as the CW (the other there being X/(X+Y)).
The left leg increments the integer part, so the integer part is given by
(in a fashion similar to CW 1-bits above)
floor(X/Y) = count trailing 0-bits of N
plus one extra if N=2^k
N=2^k is one extra because its trailing 0-bits started from N=1 where
floor(1/1)=1 whereas any other odd N starts from some floor(X/Y)=0.
X<Fibonacci numbers>The Y/(X+Y) right leg forms the Fibonacci numbers
F(k)/F(k+1) at the end of each row, ie. at Nend=2^(level+1)-1. And as noted
by Andreev, successive right leg fractions N=4k+1 and N=4k+3 add up to 1,
X/Y at N=4k+1 + X/Y at N=4k+3 = 1
Eg. 2/5 at N=13 and 3/5 at N=15 add up to 1
Plotting the N values by X,Y gives
=cut
# math-image --path=RationalsTree,tree_type=AYT --all --output=numbers_xy --size=70x11
=pod
tree_type => "AYT"
10 | 513 41 43 515
9 | 257 49 37 39 51 259 514
8 | 129 29 31 131 258
7 | 65 25 21 23 27 67 130 50 42
6 | 33 35 66
5 | 17 13 15 19 34 26 30 38
4 | 9 11 18 22 36
3 | 5 7 10 14 20 28 40
2 | 3 6 12 24 48
1 | 1 2 4 8 16 32 64 128 256 512
Y=0 |
----------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
N=1,2,4,8,etc on the Y=1 horizontal is the X/1 integers at
Nstart=2^level=2^X. N=1,3,5,9,etc in the X=1 vertical is the 1/Y
fractions. Those fractions always immediately follow the
corresponding integer, so N=Nstart+1=2^(Y-1)+1 in that column.
In each node the left leg (X+Y)/Y E<gt> 1 and the right leg Y/(X+Y) E<lt> 1,
which means odd N is above the X=Y diagonal and even N is below.
X<Kepler, Johannes>The tree structure corresponds to Johannes Kepler's tree
of fractions (see L<Math::PlanePath::FractionsTree>). That tree starts from
1/2 and makes fractions A/B with AE<lt>B by descending to A/(A+B) and
B/(A+B). Those descents are the same as the AYT tree and the two are
related simply by
A = Y AYT denominator is Kepler numerator
B = X+Y AYT sum num+den is the Kepler denominator
X = B-A inverse
Y = A
=head2 HCS Continued Fraction
X<Hanna, Paul D.>X<Czyz, Jerzy>X<Self, Will>C<tree_type=E<gt>"HCS"> selects
continued fraction terms coded as bit runs 1000...00 from high to low, as
per Paul D. Hanna and independently Czyz and Self.
=over
L<http://oeis.org/A071766>
Jerzy Czyz and William Self, "The Rationals Are Countable: Euclid's
Proof", The College Mathematics Journal, volume 34, number 5,
November 2003, page 367.
L<http://www.jstor.org/stable/3595818>
L<http://www.cut-the-knot.org/do_you_know/countRatsCF.shtml>
L<http://www.dm.unito.it/~cerruti/doc-html/tremattine/tre_mattine.pdf>
=back
This arises also in a radix=1 variation of Jeffrey Shallit's digit-based
continued fraction encoding. See L<Math::PlanePath::CfracDigits/Radix 1>.
If the continued fraction of X/Y is
1
X/Y = a + ------------ a >= 0
1
b + ----------- b,c,etc >= 1
1
c + -------
... + 1
--- z >= 2
z
then the N value is bit runs of lengths a,b,c etc.
N = 1000 1000 1000 ... 1000
\--/ \--/ \--/ \--/
a+1 b c z-1
Each group is 1 or more bits. The +1 in "a+1" makes the first group 1 or
more bits, since a=0 occurs for any X/YE<lt>=1. The -1 in "z-1" makes the
last group 1 or more since zE<gt>=2.
N=1 1/1
------ ------
N=2 to N=3 2/1 1/2
/ \ / \
N=4 to N=7 3/1 3/2 1/3 2/3
| | | | | | | |
N=8 to N=15 4/1 5/2 4/3 5/3 1/4 2/5 3/4 3/5
The result is a bit reversal of the N values in the AYT tree.
AYT N = binary "1abcde" AYT <-> HCS bit reversal
HCS N = binary "1edcba"
For example at X=4,Y=7 the AYT tree is N=11 binary "10111" whereas HCS there
has N=30 binary "11110", a reversal of the bits below the high 1.
Plotting by X,Y gives
=cut
# math-image --path=RationalsTree,tree_type=HCS --all --output=numbers_xy --size=70x11
=pod
tree_type => "HCS"
10 | 768 50 58 896
9 | 384 49 52 60 57 448 640
8 | 192 27 31 224 320
7 | 96 25 26 30 29 112 160 41 42
6 | 48 56 80
5 | 24 13 15 28 40 21 23 44
4 | 12 14 20 22 36
3 | 6 7 10 11 18 19 34
2 | 3 5 9 17 33
1 | 1 2 4 8 16 32 64 128 256 512
Y=0 |
+-----------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
N=1,2,4,etc in the row Y=1 are powers-of-2, being integers X/1 having just a
single group of bits N=1000..000.
N=1,3,6,12,etc in the column X=1 are 3*2^(Y-1) corresponding to continued
fraction S<0 + 1/Y> so terms 0,Y making runs 1,Y-1 and so bits N=11000...00.
X<Thue-Morse>The turn sequence left or right following successive X,Y points
is the Thue-Morse sequence. A proof of this can be found in the author's
mathematical write-up (above).
count 1-bits in N+1 turn at N
------------------- ---------
odd right
even left
=head2 Bird Tree
X<Hinze, Ralf>C<tree_type=E<gt>"Bird"> selects the Bird tree,
=over
Ralf Hinze, "Functional Pearls: The Bird tree", Journal of Functional
Programming, volume 19, issue 5, September 2009, pages 491-508. DOI
10.1017/S0956796809990116
L<http://www.cs.ox.ac.uk/ralf.hinze/publications/Bird.pdf>
=back
It's expressed recursively, illustrating Haskell programming features. The
left subtree is the tree plus one and take the reciprocal. The right
subtree is conversely the reciprocal first then add one,
1 1
-------- and ---- + 1
tree + 1 tree
which means Y/(X+Y) and (X+Y)/X taking N bits low to high.
N=1 1/1
------ ------
N=2 to N=3 1/2 2/1
/ \ / \
N=4 to N=7 2/3 1/3 3/1 3/2
| | | | | | | |
N=8 to N=15 3/5 3/4 1/4 2/5 5/2 4/1 4/3 5/3
Plotting by X,Y gives
tree_type => "Bird"
10 | 682 41 38 597
9 | 341 43 45 34 36 298 938
8 | 170 23 16 149 469
7 | 85 20 22 17 19 74 234 59 57
6 | 42 37 117
5 | 21 11 8 18 58 28 31 61
4 | 10 9 29 30 50
3 | 5 4 14 15 25 24 54
2 | 2 7 12 27 52
1 | 1 3 6 13 26 53 106 213 426 853
Y=0 |
----------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
Notice that unlike the other trees N=1,2,5,10,etc in the X=1 vertical for
fractions 1/Y is not the row start or end, but instead are on a zigzag
through the middle of the tree binary N=1010...etc alternate 1 and 0 bits.
The integers X/1 in the Y=1 vertical are similar, but N=11010...etc starting
the alternation from a 1 in the second highest bit, since those integers are
in the right hand half of the tree.
The Bird tree N values are related to the SB tree by inverting every second
bit starting from the second after the high 1-bit,
Bird N=1abcdefg.. binary
101010.. xor, so b,d,f etc flip 0<->1
SB N=1aBcDeFg.. to make B,D,F
For example 3/4 in the SB tree is at N=11 = binary 1011. Xor with 0010 for
binary 1001 N=9 which is 3/4 in the Bird tree. The same xor goes back the
other way Bird tree to SB tree.
This xoring is a mirroring in the tree, swapping left and right at each
level. Only every second bit is inverted because mirroring twice puts it
back to the ordinary way on even rows.
=head2 Drib Tree
X<Hinze, Ralf>C<tree_type=E<gt>"Drib"> selects the Drib tree by Ralf Hinze.
=over
L<http://oeis.org/A162911>
=back
It reverses the bits of N in the Bird tree (in a similar way that the SB and
CW are bit reversals of each other).
N=1 1/1
------ ------
N=2 to N=3 1/2 2/1
/ \ / \
N=4 to N=7 2/3 3/1 1/3 3/2
| | | | | | | |
N=8 to N=15 3/5 5/2 1/4 4/3 3/4 4/1 2/5 5/3
The descendants of each node are
X/Y
/ \
Y/(X+Y) (X+Y)/X
X<Fibonacci numbers>The endmost fractions of each row are Fibonacci numbers,
F(k)/F(k+1) on the left and F(k+1)/F(k) on the right.
=cut
# math-image --path=RationalsTree,tree_type=Drib --all --output=numbers_xy
=pod
tree_type => "Drib"
10 | 682 50 44 852
9 | 426 58 54 40 36 340 683
8 | 170 30 16 212 427
7 | 106 18 22 24 28 84 171 59 51
6 | 42 52 107
5 | 26 14 8 20 43 19 31 55
4 | 10 12 27 23 41
3 | 6 4 11 15 25 17 45
2 | 2 7 9 29 37
1 | 1 3 5 13 21 53 85 213 341 853
Y=0 |
-------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
In each node descent the left Y/(X+Y) E<lt> 1 and the right (X+Y)/X E<gt> 1,
which means even N is above the X=Y diagonal and odd N is below.
Because Drib/Bird are bit reversals like CW/SB are bit reversals, the xor
procedure described above which relates BirdE<lt>-E<gt>SB applies to
DribE<lt>-E<gt>CW, but working from the second lowest bit upwards, ie. xor
binary "0..01010". For example 4/1 is at N=15 binary 1111 in the CW tree.
Xor with 0010 for 1101 N=13 which is 4/1 in the Drib tree.
=head2 L Tree
X<Luschny, Peter>C<tree_type=E<gt>"L"> selects the L-tree by Peter Luschny.
=over
L<http://www.oeis.org/wiki/User:Peter_Luschny/SternsDiatomic>
=back
It's a row-reversal of the CW tree with a shift to include zero as 0/1.
N=0 0/1
------ ------
N=1 to N=2 1/2 1/1
/ \ / \
N=3 to N=8 2/3 3/2 1/3 2/1
| | | | | | | |
N=9 to N=16 3/4 5/3 2/5 5/2 3/5 4/3 1/4 3/1
Notice in the N=9 to N=16 row rationals 3/4 to 1/4 are the same as in the CW
tree but read right-to-left.
=cut
# math-image --path=RationalsTree,tree_type=L --all --output=numbers_xy --size=70x11
=pod
tree_type => "L"
10 | 1021 37 55 511
9 | 509 45 33 59 47 255 1020
8 | 253 25 19 127 508
7 | 125 21 17 27 23 63 252 44 36
6 | 61 31 124
5 | 29 9 11 15 60 20 24 32
4 | 13 7 28 16 58
3 | 5 3 12 8 26 18 54
2 | 1 4 10 22 46
1 | 0 2 6 14 30 62 126 254 510 1022 2046
Y=0 |
-------------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10
N=0,2,6,14,30,etc along the row at Y=1 are powers 2^(X+1)-2.
N=1,5,13,29,etc in the column at X=1 are similar powers 2^Y-3.
=head2 Common Characteristics
The SB, CW, Bird, Drib, AYT and HCS trees have the same set of rationals in
each row, just in different orders. The properties of Stern's diatomic
sequence mean that within a row the totals are
row N=2^depth to N=2^(depth+1)-1 inclusive
sum X/Y = (3 * 2^depth - 1) / 2
sum X = 3^depth
sum 1/(X*Y) = 1
For example the SB tree depth=2, N=4 to N=7,
sum X/Y = 1/3 + 2/3 + 3/2 + 3/1 = 11/2 = (3*2^2-1)/2
sum X = 1+2+3+3 = 9 = 3^2
sum 1/(X*Y) = 1/(1*3) + 1/(2*3) + 1/(3*2) + 1/(3*1) = 1
Many permutations are conceivable within a row, but the ones here have some
relationship to X/Y descendants, tree sub-forms or continued fractions. As
an encoding of continued fraction terms by bit runs the combinations are
bit encoding high to low low to high
---------------- ----------- -----------
0000 1111 runs SB CW
0101 1010 alternating Bird Drib
1000 1000 runs HCS AYT
A run of alternating 101010 ends where the next bit is the oppose of the
expected alternating 0,1. This is a doubled bit 00 or 11. An electrical
engineer would think of it as a phase shift.
=head2 Minkowski Question Mark
The Minkowski question mark function is a sum of the terms in the continued
fraction representation of a real number. If q0,q1,q2,etc are those terms
then the question mark function "?(r)" is
1 1 1
?(r) = 2 * (1 - ---- * (1 - ---- * (1 - ---- * (1 - ...
2^q0 2^q1 2^q2
1 1 1
= 2 * (1 - ---- + --------- - ------------ + ... )
2^q0 2^(q0+q1) 2^(q0+q1+q2)
For rational r the continued fraction q0,q1,q2,etc is finite and so the ?(r)
sum is finite and rational. The pattern of + and - in the terms gives runs
of bits the same as the N values in the Stern-Brocot tree. The
RationalsTree code can calculate the ?(r) function by
rational r=X/Y
N = xy_to_n(X,Y) tree_type=>"SB"
depth = floor(log2(N)) # row containing N (depth=0 at top)
Ndepth = 2^depth # start of row containing N
2*(N-Ndepth) + 1
?(r) = ----------------
Ndepth
The effect of N-Ndepth is to remove the high 1-bit, leaving an offset into
the row. 2*(..)+1 appends an extra 1-bit at the end. The division by
Ndepth scales down from integer N to a fraction.
N = 1abcdef integer, in binary
?(r) = a.bcdef1 binary fraction
For example ?(2/3) is X=2,Y=3 which is N=5 in the SB tree. It is at
depth=2, Ndepth=2^2=4, and so ?(2/3)=(2*(5-4)+1)/4=3/4. Or written in
binary N=101 gives Ndepth=100 and N-Ndepth=01 so 2*(N-Ndepth)+1=011 and
divide by Ndepth=100 for ?=0.11.
In practice this is not a very efficient way to handle the question
function, since the bit runs in the N values may become quite large for
relatively modest fractions. (L<Math::ContinuedFraction> may be better, and
also allows repeating terms from quadratic irrationals to be represented
exactly.)
=head2 Pythagorean Triples
Pythagorean triples A^2+B^2=C^2 can be generated by A=P^2-Q^2, B=2*P*Q. If
PE<gt>QE<gt>1 with P,Q no common factor and one odd the other even then this
gives all primitive triples, being primitive in the sense of A,B,C no common
factor (L<Math::PlanePath::PythagoreanTree/PQ Coordinates>).
In the Calkin-Wilf tree the parity of X,Y pairs are as follows. Pairs X,Y
with one odd the other even are N=0 or 2 mod 3.
CW tree X/Y
--------
N=0 mod 3 even/odd
N=1 mod 3 odd/odd
N=2 mod 3 odd/even
This occurs because the numerators are the Stern diatomic sequence and the
denominators likewise but offset by 1. The Stern diatomic sequence is a
repeating pattern even,odd,odd (eg. per L<Math::NumSeq::SternDiatomic/Odd
and Even>).
The XE<gt>Y pairs in the CW tree are the right leg of each node, which is N
odd. so
CW tree N=3 or 5 mod 6 gives X>Y one odd the other even
index t=1,2,3,etc to enumerate such pairs
N = 3*t if t odd
3*t-1 if t even
X<Jacobsthal numbers>2 of each 6 points are used. In a given row it's
width/3 but rounded up or down according to where the 3,5mod6 falls on the
N=2^depth start, which is either floor or ceil according to depth odd or
even,
NumPQ(depth) = floor(2^depth / 3) for depth=even
ceil (2^depth / 3) for depth=odd
= 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ...
These are the Jacobsthal numbers, which in binary are 101010...101 and
1010...1011.
For the other tree types the various bit transformations which map N
positions between the trees can be applied to the above N=3or5 mod 6. The
simplest is the L tree where the N offset and row reversal gives N=0or4
mod 6.
The SB tree is a bit reversal of the CW, as described above, and for the
Pythagorean N this gives
SB tree N=0 or 2 mod 2 and N="11...." in binary
gives X>Y one odd the other even
N="11..." binary is the bit reversal of the CW N=odd "1...1" condition.
This bit pattern is those N in the second half of each row, which is where
the X/Y E<gt> 1 rationals occur. The N=0or2 mod 3 condition is unchanged by
the bit reversal. N=0or2 mod 3 precisely when bitreverse(N)=0or2 mod 3.
For SB whether it's odd/even or even/odd at N=0or2 mod 3 alternates between
rows. The two are both wanted, they just happen to switch in each row.
SB tree X/Y depth=even depth=odd
---------- ---------
N=0 mod 3 odd/even even/odd
N=1 mod 3 odd/odd odd/odd <- exclude for Pythagorean
N=2 mod 3 even/odd odd/even
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over
=item C<$path = Math::PlanePath::RationalsTree-E<gt>new ()>
=item C<$path = Math::PlanePath::RationalsTree-E<gt>new (tree_type =E<gt> $str)>
Create and return a new path object. C<tree_type> (a string) can be
"SB" Stern-Brocot
"CW" Calkin-Wilf
"AYT" Yu-Ting, Andreev
"HCS"
"Bird"
"Drib"
"L"
=item C<$n = $path-E<gt>n_start()>
Return the first N in the path. This is 1 for SB, CW, AYT, HCS, Bird and
Drib, but 0 for L.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
Return a range of N values which occur in a rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>. The range is inclusive.
For reference, C<$n_hi> can be quite large because within each row there's
only one new X/1 integer and 1/Y fraction. So if X=1 or Y=1 is included
then roughly C<$n_hi = 2**max(x,y)>. If min(x,y) is bigger than 1 then it
reduces a little to roughly 2**(max/min + min).
=back
=head2 Tree Methods
X<Complete binary tree>Each point has 2 children, so the path is a complete
binary tree.
=over
=item C<@n_children = $path-E<gt>tree_n_children($n)>
Return the two children of C<$n>, or an empty list if C<$n E<lt> 1>
(ie. before the start of the path).
This is simply C<2*$n, 2*$n+1>. Written in binary the children are C<$n>
with an extra bit appended, a 0-bit or a 1-bit.
=item C<$num = $path-E<gt>tree_n_num_children($n)>
Return 2, since every node has two children. If C<$nE<lt>1>, ie. before the
start of the path, then return C<undef>.
=item C<$n_parent = $path-E<gt>tree_n_parent($n)>
Return the parent node of C<$n>. Or return C<undef> if C<$n E<lt>= 1> (the
top of the tree).
This is simply Nparent = floor(N/2), ie. strip the least significant bit
from C<$n>. (Undo what C<tree_n_children()> appends.)
=item C<$depth = $path-E<gt>tree_n_to_depth($n)>
Return the depth of node C<$n>, or C<undef> if there's no point C<$n>. The
top of the tree at N=1 is depth=0, then its children depth=1, etc.
This is simply floor(log2(N)) since the tree has 2 nodes per point. For
example N=4 through N=7 are all depth=2.
The L tree starts at N=0 and the calculation becomes floor(log2(N+1)) there.
=item C<$n = $path-E<gt>tree_depth_to_n($depth)>
=item C<$n = $path-E<gt>tree_depth_to_n_end($depth)>
Return the first or last N at tree level C<$depth> in the path, or C<undef>
if nothing at that depth or not a tree. The top of the tree is depth=0.
The structure of the tree means the first N is at C<2**$depth>, or for the L
tree S<C<2**$depth - 1>>. The last N is C<2**($depth+1)-1>, or for the L
tree C<2**($depth+1)>.
=back
=head2 Tree Descriptive Methods
=over
=item C<$num = $path-E<gt>tree_num_children_minimum()>
=item C<$num = $path-E<gt>tree_num_children_maximum()>
Return 2 since every node has 2 children so that's both the minimum and
maximum.
=item C<$bool = $path-E<gt>tree_any_leaf()>
Return false, since there are no leaf nodes in the tree.
=back
=cut
# =head1 FORMULAS
=pod
=head1 OEIS
The trees are in Sloane's Online Encyclopedia of Integer Sequences in
various forms,
=over
L<http://oeis.org/A007305> (etc)
=back
tree_type=SB
A007305 X, extra initial 0,1
A047679 Y
A057431 X,Y pairs (initial extra 0/1,1/0)
A007306 X+Y sum, Farey 0 to 1 part (extra 1,1)
A153036 int(X/Y), integer part
A088696 length of continued fraction SB left half (X/Y<1)
tree_type=CW
A002487 X and Y, Stern diatomic sequence (extra 0)
A070990 Y-X diff, Stern diatomic first diffs (less 0)
A070871 X*Y product
A007814 int(X/Y), integer part, count trailing 1-bits
which is count trailing 0-bits of N+1
A086893 N position of Fibonacci F[n+1]/F[n], N = binary 1010..101
A061547 N position of Fibonacci F[n]/F[n+1], N = binary 11010..10
A047270 3or5 mod 6, being N positions of X>Y not both odd
which can generate primitive Pythagorean triples
tree_type=AYT
A020650 X
A020651 Y (Kepler numerator)
A086592 X+Y sum (Kepler denominator)
A135523 int(X/Y), integer part,
count trailing 0-bits plus 1 extra if N=2^k
tree_type=HCS
A229742 X, extra initial 0/1
A071766 Y
A071585 X+Y sum
tree_type=Bird
A162909 X
A162910 Y
A081254 N of row Y=1, N = binary 1101010...10
A000975 N of column X=1, N = binary 101010...10
tree_type=Drib
A162911 X
A162912 Y
A086893 N of row Y=1, N = binary 110101..0101 (ending 1)
A061547 N of column X=1, N = binary 110101..010 (ending 0)
tree_type=L
A174981 X
A002487 Y, same as CW X,Y, Stern diatomic
A047233 0or4 mod 6, being N positions of X>Y not both odd
which can generate primitive Pythagorean triples
tree_type=SB,CW,AYT,HCS,Bird,Drib,L
A008776 total X+Y in row, being 2*3^depth
A000523 tree_n_to_depth(), being floor(log2(N))
A059893 permutation SB<->CW, AYT<->HCS, Bird<->Drib
reverse bits below highest
A153153 permutation CW->AYT, reverse and un-Gray
A153154 permutation AYT->CW, reverse and Gray code
A154437 permutation AYT->Drib, Lamplighter low to high
A154438 permutation Drib->AYT, un-Lamplighter low to high
A003188 permutation SB->HCS, Gray code shift+xor
A006068 permutation HCS->SB, Gray code inverse
A154435 permutation HCS->Bird, Lamplighter bit flips
A154436 permutation Bird->HCS, Lamplighter variant
A054429 permutation SB,CW,Bird,Drib N at transpose Y/X,
(mirror binary tree, runs 0b11..11 down to 0b10..00)
A004442 permutation AYT N at transpose Y/X, from N=2 onwards
(xor 1, ie. flip least significant bit)
A063946 permutation HCS N at transpose Y/X, extra initial 0
(xor 2, ie. flip second least significant bit)
A054424 permutation DiagonalRationals -> SB
A054426 permutation SB -> DiagonalRationals
A054425 DiagonalRationals -> SB with 0s at non-coprimes
A054427 permutation coprimes -> SB right hand X/Y>1
A044051 N+1 of those N where SB and CW have same X,Y
same Bird<->Drib and HCS<->AYT
begin N+1 of N binary palindrome below high 1-bit
The sequences marked "extra ..." have one or two extra initial values over
what the RationalsTree here gives, but are the same after that. And the
Stern first differences "less ..." means it has one less term than what the
code here gives.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::FractionsTree>,
L<Math::PlanePath::CfracDigits>,
L<Math::PlanePath::ChanTree>
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::DiagonalRationals>,
L<Math::PlanePath::FactorRationals>,
L<Math::PlanePath::GcdRationals>,
L<Math::PlanePath::PythagoreanTree>
L<Math::NumSeq::SternDiatomic>,
L<Math::ContinuedFraction>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
#
# =head2 Calkin-Wilf Tree -- X,Y to Next X,Y
#
# Successive values of the CW tree can be calculated using a method be Moshe
# Newman.
#
# X Y
# N is --- N+1 is ---------------
# Y X+Y - 2*(X % Y) 0 <= X%Y < Y
#
# This means that the tree X,Y values can be iterated by keeping just a
# current X,Y pair.
#
# dX = Y - X
# dY = X+Y - 2*(X%Y) - Y
# = X - 2*(X%Y)
#
# floor(X/Y) = count trailing 1-bits of N
# 10111
# 11000 increment
# floor(X/Y) = integer part = first term of continued fraction
|