This file is indexed.

/usr/share/perl5/Math/PlanePath/SierpinskiTriangle.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# Maybe:
#
# rule 22 includes the midpoint between adjacent leaf points.
# math-image --path=CellularRule,rule=22 --all --text
#
# rule 126 extra cell to the inward side of each
# math-image --path=CellularRule,rule=60 --all --text
#
# cf rule 150 double ups, something base 2 instead
# math-image --path=CellularRule,rule=150 --all
#
# cf rule 182 filled gaps
# math-image --path=CellularRule,rule=182 --all

# math-image --path=SierpinskiTriangle --all --scale=5
# math-image --path=SierpinskiTriangle --all --output=numbers
# math-image --path=SierpinskiTriangle --all --text --size=80

# Number of cells in a row:
#    numerator of (2^k)/k!
#
# cf A067771  vertices of sierpinski graph, joins up replications
#             so 1 less each giving 3*(3^k-1)/2
#




package Math::PlanePath::SierpinskiTriangle;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'bit_split_lowtohigh',
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
# use Smart::Comments;

use constant parameter_info_array =>
  [ { name      => 'align',
      share_key => 'align_trld',
      display   => 'Align',
      type      => 'enum',
      default   => 'triangular',
      choices   => ['triangular', 'right', 'left','diagonal'],
      choices_display => ['Triangular', 'Right', 'Left','Diagonal'],
    },
    Math::PlanePath::Base::Generic::parameter_info_nstart0(),
  ];

my %x_negative = (triangular => 1,
                  left       => 1,
                  right      => 0,
                  diagonal   => 0);
sub x_negative {
  my ($self) = @_;
  return $x_negative{$self->{'align'}};
}
sub x_negative_at_n {
  my ($self) = @_;
  return ($self->{'align'} eq 'triangular' || $self->{'align'} eq 'left'
          ? $self->n_start + 1
          : undef);
}
use constant class_y_negative => 0;
use constant default_n_start => 0;
use constant n_frac_discontinuity => .5;
use constant tree_num_children_list => (0,1,2);

sub x_maximum {
  my ($self) = @_;
  return ($self->{'align'} eq 'left'
          ? 0       # left all X<=0
          : undef); # others X unbounded
}
use constant sumxy_minimum => 0;  # triangular X>=-Y or all X>=0

# Note: this method shared by SierpinskiArrowhead, SierpinskiArrowheadCentres
sub diffxy_maximum {
  my ($self) = @_;
  return ($self->{'align'} eq 'diagonal'
          ? undef
          : 0);    # triangular X<=Y so X-Y<=0
}

sub dy_minimum {
  my ($self) = @_;
  return ($self->{'align'} eq 'diagonal' ? undef : 0);
}
sub dy_maximum {
  my ($self) = @_;
  return ($self->{'align'} eq 'diagonal' ? undef : 1);
}
{
  my %absdx_minimum = (triangular => 1,
                       left       => 1,
                       right      => 0,  # at N=0
                       diagonal   => 0); # at N=0
  sub absdx_minimum {
    my ($self) = @_;
    return $absdx_minimum{$self->{'align'}};
  }
}
{
  my %absdy_minimum = (triangular => 0,  # rows
                       left       => 0,  # rows
                       right      => 0,  # rows
                       diagonal   => 1); # diagonal always moves
  sub absdy_minimum {
    my ($self) = @_;
    return $absdy_minimum{$self->{'align'}};
  }
}

sub dsumxy_minimum {
  my ($self) = @_;
  return ($self->{'align'} eq 'diagonal'
          ? 0         # X+Y constant along diagonals
          : undef);
}
sub dsumxy_maximum {
  my ($self) = @_;
  return ($self->{'align'} eq 'diagonal'
          ? 1         # X+Y increase by 1 to next diagonal
          : undef);
}

sub dir_minimum_dxdy {
  my ($self) = @_;
  return ($self->{'align'} eq 'diagonal'
          ? (0,1)   # North
          : (1,0)); # East
}
sub dir_maximum_dxdy {
  my ($self) = @_;
  return ($self->{'align'} eq 'diagonal'
          ? (1,-1)   # South-Eest
          : (-1,0)); # supremum, West and 1 up
}


#------------------------------------------------------------------------------
sub new {
  my $self = shift->SUPER::new(@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  my $align = ($self->{'align'} ||= 'triangular');
  if (! exists $x_negative{$align}) {
    croak "Unrecognised align option: ", $align;
  }
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### SierpinskiTriangle n_to_xy(): $n

  # written as $n-n_start() rather than "-=" so as to provoke an
  # uninitialized value warning if $n==undef
  $n = $n - $self->{'n_start'};   # N=0 basis

  # this frac behaviour slightly unspecified yet
  my $frac;
  {
    my $int = int($n);
    $frac = $n - $int;
    if (2*$frac >= 1) {        # $frac>=0.5 and BigInt friendly
      $frac -= 1;
      $int += 1;
    } elsif (2*$frac < -1) {   # $frac<0.5 and BigInt friendly
      $frac += 1;
      $int -= 1;
    }
    $n = $int;
  }
  ### $n
  ### $frac

  if ($n < 0) {
    return;
  }
  if ($n == 0) {
    return ($n,$n);
  }

  my ($depthbits, $ndepth) = _n0_to_depthbits($n)
    or return ($n,$n); # infinite

  ### $depthbits
  ### $ndepth

  my @nbits = bit_split_lowtohigh($n-$ndepth); # offset into row

  # Where there's a 0-bit in the depth remains a 0-bit.
  # Where there's a 1-bit in the depth takes a bit from Noffset.
  # Small Noffset has less bits than the depth 1s, hence "|| 0".
  #
  my @xbits = map {$_ && (shift @nbits || 0)} @$depthbits;
  ### @xbits

  my $zero = $n * 0;
  my $x = digit_join_lowtohigh (\@xbits,    2, $zero);
  my $y = digit_join_lowtohigh ($depthbits, 2, $zero);

  ### final: "$x,$y"
  if ($self->{'align'} eq 'right') {
    return ($x, $y);
  } elsif ($self->{'align'} eq 'left') {
    return ($x-$y, $y);
  } elsif ($self->{'align'} eq 'diagonal') {
    return ($x, $y-$x);
  } else { # triangular
    return (-$y+2*$x, $y);
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### SierpinskiTriangle xy_to_n(): "$x, $y"

  $y = round_nearest ($y);
  $x = round_nearest($x);

  if ($self->{'align'} eq 'diagonal') {
    $y += $x;
  } elsif ($self->{'align'} eq 'left') {
    $x += $y;
  } elsif ($self->{'align'} eq 'triangular') {
    $x += $y;
    if (_divrem_mutate ($x, 2)) {
      # if odd point
      return undef;
    }
  }
  ### adjusted xy: "$x,$y"

  return _right_xy_to_n ($self, $x, $y);
}

sub _right_xy_to_n {
  my ($self, $x, $y) = @_;
  ### _right_xy_to_n() ...

  unless ($x >= 0 && $x <= $y && $y >= 0) {
    ### outside horizontal row range ...
    return undef;
  }
  if (is_infinite($y)) {
    return $y;
  }

  my $zero = ($y * 0);
  my $n = $zero;          # inherit bignum 0
  my $npower = $zero+1;   # inherit bignum 1

  my @xbits = bit_split_lowtohigh($x);
  my @depthbits = bit_split_lowtohigh($y);

  my @nbits;  # N offset into row
  foreach my $i (0 .. $#depthbits) {      # x,y bits low to high
    if ($depthbits[$i]) {
      $n = 2*$n + $npower;
      push @nbits, $xbits[$i] || 0;   # low to high
    } else {
      if ($xbits[$i]) {
        return undef;
      }
    }
    $npower *= 3;
  }

  ### n at left end of y row: $n
  ### n offset for x: @nbits
  ### total: $n + digit_join_lowtohigh(\@nbits,2,$zero) + $self->{'n_start'}

  return $n + digit_join_lowtohigh(\@nbits,2,$zero) + $self->{'n_start'};
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### SierpinskiTriangle rect_to_n_range(): "$x1,$y1, $x2,$y2"

  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1) }

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1) }

  # $y1 to $y2 is the depth range for "triangular", "right" and "left".
  # For "diagonal" must use X+Y to reckon by anti-diagonals.
  #
  if ($self->{'align'} eq 'diagonal') {
    $y2 += $x2;
    $y1 += $x1;
  }

  if ($y2 < 0) {
    return (1, 0);
  }
  if ($y1 < 0) {
    $y1 *= 0;  # preserve any bignum $y1
  }
  return ($self->tree_depth_to_n($y1),
          $self->tree_depth_to_n_end($y2));
}

# To get N within a triangle row, based on the X range ...
#
# use Math::PlanePath::CellularRule54;
# *_rect_for_V = \&Math::PlanePath::CellularRule54::_rect_for_V;
#
# if ($self->{'align'} eq 'diagonal') {
#   if ($x2 < 0 || $y2 < 0) {
#     return (1,0);
#   }
#   if ($x1 < 0) { $x1 *= 0; }
#   if ($y1 < 0) { $y1 *= 0; }
#
#   return ($self->xy_to_n(0, $x1+$y1),
#           $self->xy_to_n($x2+$y2, 0));
# }
#
# ($x1,$y1, $x2,$y2) = _rect_for_V ($x1,$y1, $x2,$y2)
#   or return (1,0); # rect outside pyramid
#
# return ($self->xy_to_n($self->{'align'} eq 'right' ? 0 : -$y1,
#                        $y1),
#         $self->xy_to_n($self->{'align'} eq 'left' ? 0 : $y2,
#                        $y2));


#------------------------------------------------------------------------------
use constant tree_num_roots => 1;

sub tree_n_num_children {
  my ($self, $n) = @_;

  $n = $n - $self->{'n_start'};   # N=0 basis
  if ($n < 0) {
    return undef;
  }
  my ($depthbits, $ndepth) = _n0_to_depthbits($n)
    or return 1;  # infinite

  unless (shift @$depthbits) {  # low bit
    # Depth even (incl zero), two children under every point.
    return 2;
  }

  # Depth odd, either 0 or 1 child.
  # If depth==1mod4 then 1-child.
  # If depth==3mod4 so two or more trailing 1-bits then some 0-child and
  # some 1-child.
  #
  $n -= $ndepth;  # Noffset into row
  my $repbit = _divrem_mutate($n,2); # low bit of $n
  while (shift @$depthbits) {               # bits of depth low to high
    if (_divrem_mutate($n,2) != $repbit) {  # bits of $n offset low to high
      return 0;
    }
  }
  return 1;
}

sub tree_n_children {
  my ($self, $n) = @_;

  $n = $n - $self->{'n_start'};   # N=0 basis
  if ($n < 0) {
    return;
  }
  my ($depthbits, $ndepth, $nwidth) = _n0_to_depthbits($n)
    or return $n;  # infinite

  $n -= $ndepth;  # Noffset into row

  if (shift @$depthbits) {
    # Depth odd, single child under some or all points.
    # When depth==1mod4 it's all points, when depth has more than one
    # trailing 1-bit then it's only some points.
    while (shift @$depthbits) {  # depth==3mod4 or more low 1s
      my $repbit = _divrem_mutate($n,2);
      if (($n % 2) != $repbit) {
        return;
      }
    }
    return $n + $ndepth+$nwidth + $self->{'n_start'};

  } else {
    # Depth even (or zero), two children under every point.
    $n = 2*$n + $ndepth+$nwidth + $self->{'n_start'};
    return ($n,$n+1);
  }
}
sub tree_n_parent {
  my ($self, $n) = @_;

  my ($x,$y) = $self->n_to_xy($n)
    or return undef;

  if ($self->{'align'} eq 'diagonal') {
    my $n_parent = $self->xy_to_n($x-1, $y);
    if (defined $n_parent) {
      return $n_parent;
    } else {
      return $self->xy_to_n($x,$y-1);
    }
  }

  $y -= 1;
  my $n_parent = $self->xy_to_n($x-($self->{'align'} ne 'left'), $y);
  if (defined $n_parent) {
    return $n_parent;
  }
  return $self->xy_to_n($x+($self->{'align'} ne 'right'),$y);
}

sub tree_n_to_depth {
  my ($self, $n) = @_;
  ### SierpinskiTriangle n_to_depth(): $n
  $n = $n - $self->{'n_start'};
  if ($n < 0) {
    return undef;
  }
  my ($depthbits) = _n0_to_depthbits($n)
    or return $n;  # infinite
  return digit_join_lowtohigh ($depthbits, 2, $n*0);
}
sub tree_depth_to_n {
  my ($self, $depth) = @_;
  return ($depth >= 0 ? _right_xy_to_n($self,0,$depth) : undef);
}

# sub _NOTWORKING__tree_depth_to_n_range {
#   my ($self, $depth) = @_;
#   if (is_infinite($depth)) {
#     return $depth;
#   }
#   if ($depth < 0) {
#     return undef;
#   }
#
#   my $zero = my $n = ($depth * 0);    # inherit bignum 0
#   my $width = my $npower = $zero+1;   # inherit bignum 1
#
#   foreach my $dbit (bit_split_lowtohigh($depth)) {
#     if ($dbit) {
#       $n = 2*$n + $npower;
#       $width *= 2;
#     }
#     $npower *= 3;
#   }
#   $n += $self->{'n_start'};
#
#   return ($n, $n+$width-1);
# }


#------------------------------------------------------------------------------
# In align=diagonal style, height is following a straight line X increment
# until hit bit in common with Y, meaning the end of Y low 0s.  Or follow
# straight line Y until hit bit in common with X, meaning end of X low 0s.
#
# If X,Y both even then X or Y lines are the same.
# If X odd then follow X to limit of Y low 0s.
# If Y odd then follow Y to limit of X low 0s.
#
#  | 65       ...
#  | 57 66
#  | 49    67
#  | 45 50 58 68
#  | 37          69
#  | 33 38       59 70
#  | 29    39    51    71
#  | 27 30 34 40 46 52 60 72
#  | 19                      73
#  |  |                       |
#  | 15-20                   61-74
#  |  |                       |
#  | 11    21                53    75
#  |  |     |                 |     |
#  |  9-12-16-22             47-54-62-76
#  |  |                       |
#  |  5          23          41          77
#  |  |           |           |           |
#  |  3--6       17-24       35-42       63-78
#  |  |           |           |           |
#  |  1     7    13    25    31    43    55    79
#  |  |     |     |     |     |     |     |     |
#  |  0--2--4--8-10-14-18-26-28-32-36-44-48-56-64-80
#  +-------------------------------------------------
#   X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
#
# depthbits   1 0 0 0 1   Y of "right"
# nbits             n n
# xbits       n 0 0 0 n
# ybits      1-n     1-n  of Y-X for "diagonal"
#
# Y odd when ylow==1,nlow==0
#       follow its X low 0s by nbit==0 and invert of ybits==1
# X odd when ylow==1,nlow==1
#       follow its Y low 0s by nbit==1 and invert of xbits=nbits==1
#
# At a given depth<=2^k can go at most to its 2^k-1 limit, which means
# height = 2^k-1 - depth which is depth with bits flipped.
# Then bits of Noffset may put it in the middle of somewhere which limits
# the height to a sub-part 2^j < 2^k.
#
sub tree_n_to_subheight {
  my ($self, $n) = @_;
  ### SierpinskiTriangle tree_n_to_subheight(): $n

  $n = $n - $self->{'n_start'};
  if ($n < 0) {
    return undef;
  }
  my ($depthbits, $ndepth) = _n0_to_depthbits($n)
    or return $n;  # infinite
  $n -= $ndepth;      # offset into row
  my @nbits = bit_split_lowtohigh($n);

  my $target = $nbits[0] || 0;
  foreach my $i (0 .. $#$depthbits) {
    unless ($depthbits->[$i] ^= 1) {  # flip 0<->1, at original==1 take nbit
      if ((shift @nbits || 0) != $target) {
        $#$depthbits = $i-1;
        return digit_join_lowtohigh($depthbits, 2, $n*0);
      }
    }
  }
  return undef; # first or last of row, infinite
}


#------------------------------------------------------------------------------
#   \                             /
#    4   0   0   0   0   0   0   4
#     \ /     \ /     \ /     \ /
#      1       1       1       1
#       \     /         \     /
#        2   2           2   2
#         \ /             \ /
#          3               3
#           \             /
#            4   0   0   4
#             \ /     \ /
#              1       1
#               \     /
#                2   2
#                 \ /
#                  3

# sub _EXPERIMENTAL__tree_n_to_leafdist {
#   my ($self, $n) = @_;
#   ### _EXPERIMENTAL__tree_n_to_leafdist() ...
#   my $d = $self->tree_n_to_depth($n);
#   if (defined $d) {
#     $d = 3 - ($d % 4);
#     if ($d == 0 && $self->tree_n_num_children($n) != 0) {
#       $d = 4;
#     }
#   }
#   return $d;
# }
sub _EXPERIMENTAL__tree_n_to_leafdist {
  my ($self, $n) = @_;
  ### _EXPERIMENTAL__tree_n_to_leafdist(): $n

  $n = $n - $self->{'n_start'};   # N=0 basis
  if ($n < 0) {
    return undef;
  }
  my ($depthbits, $ndepth) = _n0_to_depthbits($n)  # low to high
    or return 1;  # infinite
  ### $depthbits

  # depth bits leafdist
  #   0    0,0    3
  #   1    0,1    2
  #   2    1,0    1
  #   3    1,1    0 or 4
  #
  my $ret = 3 - ((shift @$depthbits)||0);
  if (shift @$depthbits) { $ret -= 2; }
  ### $ret
  if ($ret) {
    return $ret;
  }

  $n -= $ndepth;
  ### Noffset into row: $n

  # Low bits of Nrem unchanging while trailing 1-bits in @depthbits,
  # to distinguish between leaf or non-leaf.  Same as tree_n_children().
  #
  my $repbit = _divrem_mutate($n,2); # low bit of $n
  ### $repbit
  do {
    ### next bit: $n%2
    if (_divrem_mutate($n,2) != $repbit) {  # bits of $n offset low to high
      return 0;  # is a leaf
    }
  } while (shift @$depthbits);
  return 4; # is a non-leaf
}

#------------------------------------------------------------------------------
# Return ($depthbits, $ndepth, $nwidth).
# $depthbits is an arrayref of bits which give the tree depth of $n.
# $ndepth is first N of the row.
# $nwidth is the number of points in the row.
#
sub _n0_to_depthbits {
  my ($n) = @_;

  if (is_infinite($n)) {
    return;
  }
  if ($n == 0) {
    return ([], 0, 1);
  }

  my ($nwidth, $bitpos) = round_down_pow ($n, 3);
  ### $nwidth
  ### $bitpos

  my @depthbits;
  my $ndepth = 0;
  for (;;) {
    ### at: "n=$n nwidth=$nwidth bitpos=$bitpos depthbits=".join(',',map{$_||0}@depthbits)
    if ($n >= $ndepth + $nwidth) {
      $depthbits[$bitpos] = 1;
      $ndepth += $nwidth;
      $nwidth *= 2;
    } else {
      $depthbits[$bitpos] = 0;
    }
    $bitpos--;
    last unless $bitpos >= 0;
    $nwidth /= 3;
  }

  # Nwidth = 2**count1bits(depth)
  ### @depthbits
  ### assert: $nwidth == (1 << scalar(grep{$_}@depthbits))

  return (\@depthbits, $ndepth, $nwidth);
}

#------------------------------------------------------------------------------
# levels

use Math::PlanePath::SierpinskiArrowheadCentres;
*level_to_n_range = \&Math::PlanePath::SierpinskiArrowheadCentres::level_to_n_range;
*n_to_level       = \&Math::PlanePath::SierpinskiArrowheadCentres::n_to_level;

#-----------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Sierpinski Nlevel ie Ymin Ymax OEIS Online rowpoints Nleft Math-PlanePath Gould's Nend bitand Noffset Ndepth Nrem Dyck

=head1 NAME

Math::PlanePath::SierpinskiTriangle -- self-similar triangular path traversal

=head1 SYNOPSIS

 use Math::PlanePath::SierpinskiTriangle;
 my $path = Math::PlanePath::SierpinskiTriangle->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Sierpinski, Waclaw>This is an integer version of the Sierpinski triangle
with cells numbered horizontally across each row.

    65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80   15
      57      58      59      60      61      62      63      64     14
        49  50          51  52          53  54          55  56       13
          45              46              47              48         12
            37  38  39  40                  41  42  43  44           11
              33      34                      35      36             10
                29  30                          31  32                9
                  27                              28                  8
                    19  20  21  22  23  24  25  26                    7
                      15      16      17      18                      6
                        11  12          13  14                        5
                           9              10                          4
                             5   6   7   8                            3
                               3       4                              2
                                 1   2                                1
                                   0                             <- Y=0

         X= ... -9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 ...

The base figure is the first two rows shape N=0 to N=2.  Notice the middle
"." position X=0,Y=1 is skipped

    1  .  2
       0

This is replicated twice in the next row pair as N=3 to N=8.  Then the
resulting four-row shape is replicated twice again in the next four-row
group as N=9 to N=26, etc.

See the C<SierpinskiArrowheadCentres> path to traverse by a connected
sequence rather than rows jumping across gaps.

=head2 Row Ranges

The number of points in each row is always a power of 2.  The power is the
count of 1-bits in Y.  (This count is sometimes called Gould's sequence.)

    rowpoints(Y) = 2^count_1_bits(Y)

For example Y=13 is binary 1101 which has three 1-bits so in row Y=13 there
are 2^3=8 points.

Because the first point is N=0, the N at the left of each row is the
cumulative count of preceding points,

    Ndepth(Y) = rowpoints(0) + ... + rowpoints(Y-1)

Since the powers of 2 are always even except for 2^0=1 in row Y=0, this
Ndepth(Y) total is always odd.  The self-similar nature of the triangle
means the same is true of the sub-triangles, for example odd
N=31,35,41,47,etc on the left of the triangle at X=8,Y=8.  This means in
particular the primes (being odd) fall predominately on the left side of the
triangles and sub-triangles.

=head2 Replication Sizes

Counting the single point N=0 as level=0, then N=0,1,2 as level 1, each
replication level goes from

    Nstart = 0
    Nlevel = 3^level - 1     inclusive

For example level 2 is from N=0 to N=3^2-1=8.  Each level doubles in size,

               0  <= Y <= 2^level - 1
    - 2^level + 1 <= X <= 2^level - 1

=head2 Align Right

Optional C<align=E<gt>"right"> puts points to the right of the Y axis,
packed next to each other and so using an eighth of the plane.

=cut

# math-image --path=SierpinskiTriangle,align=right --all --output=numbers

=pod

    align => "right"

      7  | 19 20 21 22 23 24 25 26 
      6  | 15    16    17    18    
      5  | 11 12       13 14       
      4  |  9          10          
      3  |  5  6  7  8             
      2  |  3     4                
      1  |  1  2                   
    Y=0  |  0                      
         +-------------------------
          X=0  1  2  3  4  5  6  7

=head2 Align Left

Optional C<align=E<gt>"left"> puts points to the left of the Y axis,
ie. into negative X.  The rows are still numbered starting from the left, so
it's a shift across, not a negate of X.

=cut

# math-image --path=SierpinskiTriangle,align=left --all --output=numbers

=pod

    align => "left"

    19 20 21 22 23 24 25 26  |     7
       15    16    17    18  |     6
          11 12       13 14  |     5
              9          10  |     4
                 5  6  7  8  |     3
                    3     4  |     2
                       1  2  |     1
                          0  | <- Y=0
    -------------------------+
    -7 -6 -5 -4 -3 -2 -1 X=0

=head2 Align Diagonal

Optional C<align=E<gt>"diagonal"> puts rows on diagonals down from the Y
axis to the X axis.  This uses the whole of the first quadrant, with gaps
according to the pattern.

=cut

# math-image --expression='i<=80?i:0' --path=SierpinskiTriangle,align=diagonal --output=numbers

=pod

    align => "diagonal"

     15 | 65       ...
     14 | 57 66
     13 | 49    67
     12 | 45 50 58 68
     11 | 37          69
     10 | 33 38       59 70
      9 | 29    39    51    71
      8 | 27 30 34 40 46 52 60 72
      7 | 19                      73
      6 | 15 20                   61 74
      5 | 11    21                53    75
      4 |  9 12 16 22             47 54 62 76
      3 |  5          23          41          77       ...
      2 |  3  6       17 24       35 42       63 78
      1 |  1     7    13    25    31    43    55    79
    Y=0 |  0  2  4  8 10 14 18 26 28 32 36 44 48 56 64 80
        +-------------------------------------------------
         X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

This form visits all points X,Y where X and Y written in binary have no
1-bits in the same bit positions, ie. where S<X bitand Y> == 0.  For example
X=13,Y=3 is not visited because 13="1011" and 6="0110" both have bit "0010"
set.

This bit-and rule is an easy way to test for visited or not visited cells of
the pattern.  The visited cells can be calculated by this diagonal X,Y
bitand, but then plotted X,X+Y for the "right" align or X-Y,X+Y for
"triangular".

=head2 Cellular Automaton

The triangle arises in Stephen Wolfram's 1-D cellular automatons (per
L<Math::PlanePath::CellularRule> and L<Cellular::Automata::Wolfram>).

    align           rule
    -----           ----
    "triangular"    18,26,82,90,146,154,210,218
    "right"         60
    "left"          102

=over

L<http://mathworld.wolfram.com/Rule90.html>

L<http://mathworld.wolfram.com/Rule60.html>

L<http://mathworld.wolfram.com/Rule102.html>

=back

=cut

# rule 60 right hand octant
# rule 102 left hand octant
# math-image --path=CellularRule,rule=60 --all
# math-image --path=CellularRule,rule=102 --all

=pod

In each row the rule 18 etc pattern turns a cell "on" in the next row if one
but not both its diagonal predecessors are "on".  This is a mod 2 sum giving
Pascal's triangle mod 2.

Some other cellular rules are variations on the triangle,

=over

=item *

Rule 22 is "triangular" but filling the gap between leaf points such as N=5
and N=6.

=item *

Rule 126 adds an extra point on the inward side of each visited.

=item *

Rule 182 fills in the big gaps leaving just a single-cell
empty border delimiting them.

=back

=head2 N Start

The default is to number points starting N=0 as shown above.  An optional
C<n_start> parameter can give a different start, with the same shape.  For
example starting at 1, which is the numbering of C<CellularRule> rule=60,

=cut

# math-image --path=SierpinskiTriangle,n_start=1 --expression='i<=27?i:0' --output=numbers

=pod

    n_start => 1

    20    21    22    23    24    25    26    27
       16          17          18          19
          12    13                14    15
             10                      11
                 6     7     8     9
                    4           5
                       2     3
                          1

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::SierpinskiTriangle-E<gt>new ()>

=item C<$path = Math::PlanePath::SierpinskiTriangle-E<gt>new (align =E<gt> $str, n_start =E<gt> $n)>

Create and return a new path object.  C<align> is a string, one of the
following as described above.

    "triangular"    (the default)
    "right"
    "left"
    "diagonal"

=back

=head2 Descriptive Methods

=over

=item C<$n = $path-E<gt>n_start()>

Return the first N in the path.  This is 0 by default, or the given
C<n_start> parameter.

=back

=head2 Tree Methods

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the children of C<$n>, or an empty list if C<$n E<lt> n_start>
(ie. before the start of the path).

The children are the points diagonally up left and right on the next row
(Y+1).  There can be 0, 1 or 2 such points.  At even depth there's 2, on
depth=1mod4 there's 1.  On depth=3mod4 there's some 0s and some 1s.  See
L</N to Number of Children> below.

For example N=3 has two children N=5,N=6.  Then in turn N=5 has just one
child N=9 and N=6 has no children.  The way points are numbered across a row
means that when there's two children they're consecutive N values.

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= n_start> (the
top of the triangle).

=item C<$depth = $path-E<gt>tree_n_to_depth($n)>

Return the depth of node C<$n>, or C<undef> if there's no point C<$n>.  In
the "triangular", "right" and "left" alignments this is the same as the Y
coordinate from C<n_to_xy()>.  In the "diagonal" alignment it's X+Y.

=item C<$n = $path-E<gt>tree_depth_to_n($depth)>

=item C<$n = $path-E<gt>tree_depth_to_n_end($depth)>

Return the first or last N at tree level C<$depth>.  The start of the tree
is depth=0 at the origin X=0,Y=0.

This is the N at the left end of each row.  So in the default triangular
alignment it's the same as C<xy_to_n(-$depth,$depth)>.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 3**$level - 1)>.

=back

=head1 FORMULAS

=head2 X,Y to N

For calculation it's convenient to turn the X,Y coordinates into the "right"
alignment style, so that Y is the depth and X is in the range
0E<lt>=XE<lt>=Y.

The starting position of each row of the triangle is given by turning 1-bits
of the depth into powers-of-3.

    Y = depth = 2^a + 2^b + 2^c + 2^d ...       a>b>c>d...

    Ndepth = first N at this depth
           =         3^a
             +   2 * 3^b
             + 2^2 * 3^c
             + 2^3 * 3^d
             + ...

For example depth=6=2^2+2^1 starts at Ndepth=3^2+2*3^1=15.  The powers-of-3
are the three parts of the triangle replication.  The power-of-2 doubling is
the doubling of the row Y when replicated.

Then the bits of X at the positions of the 1-bits of the depth become an N
offset into the row.

               a  b  c  d
    depth    = 10010010010     binary
    X        = m00n00p00q0
    Noffset  =        mnpq     binary

    N = Ndepth + Noffset

For example in depth=6 binary "110" then at X=4="100" take the bits of X
where depth has 1-bits, which is X="10_" so Noffset="10" binary and
N=15+2=17, as per the "right" table above at X=4,Y=6.

If X has any 1-bits which are a 0-bits in the depth depth then that X,Y is
not visited.  For example if depth=6="110" then X=3="11" is not visited
because the low bit X="__1" has depth="__0" at that position.

=head2 N to Depth

The row containing N can be found by working down the Ndepth formula shown
above.  The "a" term is the highest 3^a E<lt>= N, thus giving a bit 2^a for
the depth.  Then for the remaining Nrem = N - 3^a find the highest "b" where
2*3^b E<lt>= Nrem.  And so on until reaching an Nrem which is too small to
subtract any more terms.

It's convenient to go by bits high to low of the prospective depth, deciding
at each bit whether Nrem is big enough to give the depth a 1-bit there, or
whether it must be a 0-bit.

    a = floor(log3(N))     round down to power-of-3
    pow = 3^a
    Nrem = N - pow

    depth = high 1-bit at bit position "a" (counting from 0)

    factor = 2
    loop bitpos a-1 down to 0
      pow /= 3
      if pow*factor <= Nrem
      then depth 0-bit, factor *= 2
      else depth 1-bit

    factor is 2^count1bits(depth)
    Noffset = Nrem     offset into row
    0 <= Noffset < factor

=head2 N to X,Y

N is turned into depth and Noffset as per above.  X in "right" alignment
style is formed by spreading the bits of Noffset out according to the 1-bits
of the depth.

    depth   = 100110  binary
    Noffset =    abc  binary
    Xright  = a00bc0

For example in depth=5 this spreads an Noffset=0to3 to make X=000, 001, 100,
101 in binary and in "right" alignment style.

From an X,Y in "right" alignment the other alignments are formed

    alignment   from "right" X,Y
    ---------   ----------------
    triangular     2*X-Y, Y       so -Y <= X < Y
    right          X,     Y       unchanged
    left           X-Y,   Y       so -Y <= X <= 0
    diagonal       X,   Y-X       downwards sloping

=head2 N to Number of Children

The number of children follows a pattern based on the depth.

    depth      number of children
    -----      ------------------

     12    2       2       2       2   
     11     1 0 0 1         1 0 0 1
     10      2   2           2   2
      9       1 1             1 1
      8        2               2
      7         1 0 0 0 0 0 0 1   
      6          2   2   2   2 
      5           1 1     1 1  
      4            2       2   
      3             1 0 0 1   
      2              2   2
      1               1 1
      0                2   

If depth is even then all points have 2 children.  For example row depth=6
has 4 points and all have 2 children each.

At odd depth the number of children is either 1 or 0 according to the
Noffset position in the row masked down by the trailing 1-bits of the depth.

    depth  = ...011111 in binary, its trailing 1s

    Noffset = ...00000   \ num children = 1
            = ...11111   /
            = ...other   num children = 0

For example depth=11 is binary "1011" which has low 1-bits "11".  If those
two low bits of Noffset are "00" or "11" then 1 child.  Any other bit
pattern in Noffset ("01" or "10" in this case) is 0 children.  Hence the
pattern 1,0,0,1,1,0,0,1 reading across the depth=11 row.

In general when the depth doubles the triangle is replicated twice and the
number of children is carried with the replications, except the middle two
points are 0 children.  For example the triangle of depth=0to3 is repeated
twice to make depth=4to7, but the depth=7 row is not children 10011001 of a
plain doubling from the depth=3 row, but instead 10000001 which is the
middle two points becoming 0.

=head2 N to Number of Siblings

The number of siblings of a given node is determined by its depth,

    depth      number of siblings
    -----      ------------------

      4            0       0   
      3             1 1 1 1   
      2              0   0
      1               1 1
      0                0   

    depth     number of siblings
    -----     ------------------
     odd             1
     even            0

In an even row the points are all spread apart so there are no siblings.
The points in such a row are cousins or second cousins, etc, but none share
a parent.

In an odd row each parent node (an even row) has 2 children and so each of
those points has 1 sibling.

The effect is to conflate the NumChildren=1 and NumChildren=0 cases in the
picture above, those two becoming a single sibling.

    num children of N      num siblings of N
    -----------------      -----------------
          0 or 1                   1
            2                      0

=head2 Rectangle to N Range

An easy range can be had just from the Y range by noting the diagonals X=Y
and X=-Y are always visited, so just take the Ndepth of Ymin and Nend of
Ymax,

    # align="triangular"
    Nmin = N at X=-Ymin,Y=Ymin
    Nmax = N at X=Ymax,Y=Ymax

Or in "right" style the left end is at X=0 instead,

    # align="right"
    Nmin = N at X=0,Ymin
    Nmax = N at Ymax,Ymax

For less work but a bigger over-estimate, invert the Nlevel formulas given
in L</Row Ranges> above to round up to the end of a depth=2^k replication,

    level = floor(log2(Ymax)) + 1
    Nmax = 3^level - 1

For example Y=11, level=floor(log2(11))+1=4, so Nmax=3^4-1=80, which is the
end of the Y=15 row, ie. rounded up to the top of the replication block Y=8
to Y=15.

=head1 OEIS

The Sierpinski triangle is in Sloane's Online Encyclopedia of Integer
Sequences in various forms,

=over

L<http://oeis.org/A001316> (etc)

=back

    A001316   number of cells in each row (Gould's sequence)
    A001317   rows encoded as numbers with bits 0,1
    A006046   total cells to depth, being tree_depth_to_n(), 
    A074330   Nend, right hand end of each row (starting Y=1)

A001316 is the "rowpoints" described above.  A006046 is the cumulative total
of that sequence which is the "Ndepth", and A074330 is 1 less for "Nend".

    align="triangular" (the default)
      A047999   0,1 cells by rows
      A106344   0,1 cells by upwards sloping dX=3,dY=1
      A130047   0,1 cells of half X<=0 by rows

A047999 etc is every second point in the default triangular lattice, or all
points in align="right" or "left".

    align="triangular" (the default)
      A002487   count points along dX=3,dY=1 slopes
                  is the Stern diatomic sequence
      A106345   count points along dX=5,dY=1 slopes

dX=3,dY=1 sloping lines are equivalent to opposite-diagonals dX=-1,dY=1 in
align="right".

    align="right"
      A075438   0,1 cells by rows including 0 blanks at left of pyramid

    align="right", n_start=0
      A006046   N on Y axis, being Ndepth
      A074330   N on Diagonal starting from Y=1, being Nend
    align="left", n_start=0
      A006046   N on NW diagonal, being Ndepth
      A074330   N on Y axis starting from Y=1, being Nend

    A080263   Dyck encoding of the tree structure
    A080264     same in binary
    A080265     position in list of all balanced binary

    A080268   Dyck encoding breadth-first
    A080269     same in binary
    A080270     position in list of all balanced binary

    A080318   Dyck encoding breadth-first of branch-reduced
                (duplicate each bit)
    A080319     same in binary
    A080320     position in list of all balanced binary

For the Dyck encoding see for example L<Math::NumSeq::BalancedBinary/Binary
Trees>.  The position in all balanced binary which is A080265 etc
corresponds to C<value_to_i()> in that C<NumSeq>.

A branch-reduced tree has any single-child node collapsed out, so that all
remaining nodes are either a leaf node or have 2 (or more) children.  The
effect of this on the Sierpinski triangle in breadth-first encoding is to
duplicate each bit, so A080269 with each bit repeated gives the
branch-reduced A080319.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SierpinskiArrowhead>,
L<Math::PlanePath::SierpinskiArrowheadCentres>,
L<Math::PlanePath::CellularRule>,
L<Math::PlanePath::ToothpickUpist>

L<Math::NumSeq::SternDiatomic>,
L<Math::NumSeq::BalancedBinary>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut