This file is indexed.

/usr/share/perl5/Math/PlanePath/SquareSpiral.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# http://d4maths.lowtech.org/mirage/ulam.htm
# http://d4maths.lowtech.org/mirage/img/ulam.gif
#     sample gif of primes made by APL or something
#
# http://www.sciencenews.org/view/generic/id/2696/title/Prime_Spirals
#     Ulam's spiral of primes
#
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/primeSpiral.htm
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/triangleUlam.htm
#     Pulchritudinous Primes of Ulam spiral.

# http://mathworld.wolfram.com/PrimeSpiral.html
#
# Mark C. Chu-Carroll "The Surprises Never Eend: The Ulam Spiral of Primes"
# http://scienceblogs.com/goodmath/2010/06/the_surprises_never_eend_the_u.php
#
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/index.html
# including image highlighting the lines

# S. M. Ellerstein, The square spiral, J. Recreational
# Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
#
# Stein, M. and Ulam, S. M. "An Observation on the
# Distribution of Primes." Amer. Math. Monthly 74, 43-44,
# 1967.
#
# Stein, M. L.; Ulam, S. M.; and Wells, M. B. "A Visual
# Display of Some Properties of the Distribution of Primes."
# Amer. Math. Monthly 71, 516-520, 1964.

# cf sides alternately prime and fibonacci
# A160790 corner N
# A160791 side lengths, alternately integer and triangular adding that integer
# A160792 corner N
# A160793 side lengths, alternately integer and sum primes
# A160794 corner N
# A160795 side lengths, alternately primes and fibonaccis


package Math::PlanePath::SquareSpiral;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Smart::Comments '###';


# Note: this shared by other paths
use constant parameter_info_array =>
  [
   { name        => 'wider',
     display     => 'Wider',
     type        => 'integer',
     minimum     => 0,
     default     => 0,
     width       => 3,
     description => 'Wider path.',
   },
   Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

use constant xy_is_visited => 1;

#    2w+4 -- 2w+3 ----- w+2
#      |                 |
#    2w+5      0------- w+1
#      |     
#    2w+6 ---
#                  ^
#                 X=0
#
sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + ($self->{'wider'} ? 0 : 4);
}
sub y_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 2*$self->{'wider'} + 6;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
  my ($self) = @_;
  return $self->n_start + 2*$self->{'wider'} + 4;
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);

  # parameters
  $self->{'wider'} ||= 0;  # default
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }

  return $self;
}

# wider==0
# base from bottom-right corner
#   d = [ 1,  2,  3,  4 ]
#   N = [ 2, 10, 26, 50 ]
#   N = (4 d^2 - 4 d + 2)
#   d = 1/2 + sqrt(1/4 * $n + -4/16)
#
# wider==1
# base from bottom-right corner
#   d = [ 1,  2,  3,  4 ]
#   N = [ 3, 13, 31, 57 ]
#   N = (4 d^2 - 2 d + 1)
#   d = 1/4 + sqrt(1/4 * $n + -3/16)
#
# wider==2
# base from bottom-right corner
#   d = [ 1,  2,  3, 4 ]
#   N = [ 4, 16, 36, 64 ]
#   N = (4 d^2)
#   d = 0 + sqrt(1/4 * $n + 0)
#
# wider==3
# base from bottom-right corner
#   d = [ 1,  2,  3 ]
#   N = [ 5, 19, 41 ]
#   N = (4 d^2 + 2 d - 1)
#   d = -1/4 + sqrt(1/4 * $n + 5/16)
#
# N = 4*d^2 + (-4+2*w)*d + (2-w)
#   = 4*$d*$d + (-4+2*$w)*$d + (2-$w)
# d = 1/2-w/4 + sqrt(1/4*$n + b^2-4ac)
# (b^2-4ac)/(2a)^2 = [ (2w-4)^2 - 4*4*(2-w) ] / 64
#                  = [ 4w^2 - 16w + 16 - 32 + 16w ] / 64
#                  = [ 4w^2 - 16 ] / 64
#                  = [ w^2 - 4 ] / 16
# d = 1/2-w/4 + sqrt(1/4*$n + (w^2 - 4) / 16)
#   = 1/4 * (2-w + sqrt(4*$n + w^2 - 4))
#   = 0.25 * (2-$w + sqrt(4*$n + $w*$w - 4))
#
# then offset the base by +4*$d+$w-1 for top left corner for +/- remainder
# rem = $n - (4*$d*$d + (-4+2*$w)*$d + (2-$w) + 4*$d + $w - 1)
#     = $n - (4*$d*$d + (-4+2*$w)*$d + 2 - $w + 4*$d + $w - 1)
#     = $n - (4*$d*$d + (-4+2*$w)*$d + 1 - $w + 4*$d + $w)
#     = $n - (4*$d*$d + (-4+2*$w)*$d + 1 + 4*$d)
#     = $n - (4*$d*$d + (2*$w)*$d + 1)
#     = $n - ((4*$d + 2*$w)*$d + 1)
#

sub n_to_xy {
  my ($self, $n) = @_;
  #### SquareSpiral n_to_xy: $n

  $n = $n - $self->{'n_start'};  # starting $n==0, warn if $n==undef
  if ($n < 0) {
    #### before n_start ...
    return;
  }

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;
  if ($n <= $w+1) {
    #### centre horizontal
    # n=0 at w_left
    # x = $n - int(($w+1)/2)
    #   = $n - int(($w+1)/2)
    return ($n - $w_left,  # n=0 at w_left
            0);
  }

  my $d = int ((2-$w + sqrt(int(4*$n) + $w*$w)) / 4);
  #### d frac: ((2-$w + sqrt(int(4*$n) + $w*$w)) / 4)
  #### $d

  #### base: 4*$d*$d + (-4+2*$w)*$d + (2-$w)
  $n -= ((4*$d + 2*$w)*$d);
  #### remainder: $n

  if ($n >= 0) {
    if ($n <= 2*$d) {
      ### left vertical
      return (-$d - $w_left,
              -$n + $d);
    } else {
      ### bottom horizontal
      return ($n - $w_left - 3*$d,
              -$d);
    }
  } else {
    if ($n >= -2*$d-$w) {
      ### top horizontal
      return (-$n - $d - $w_left,
              $d);
    } else {
      ### right vertical
      return ($d + $w_right,
              $n + 3*$d + $w);
    }
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;

  my $w = $self->{'wider'};
  my $w_right = int($w/2);
  my $w_left = $w - $w_right;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### xy_to_n: "x=$x, y=$y"
  ### $w_left
  ### $w_right

  my $d;
  if (($d = $x - $w_right) > abs($y)) {
    ### right vertical
    ### $d
    #
    # base bottom right per above
    ### BR: 4*$d*$d + (-4+2*$w)*$d + (2-$w)
    # then +$d-1 for the y=0 point
    # N_Y0  = 4*$d*$d + (-4+2*$w)*$d + (2-$w) + $d-1
    #       = 4*$d*$d + (-3+2*$w)*$d + (2-$w) + -1
    #       = 4*$d*$d + (-3+2*$w)*$d +  1-$w
    ### N_Y0: (4*$d + -3 + 2*$w)*$d + 1-$w
    #
    return (4*$d + -3 + 2*$w)*$d - $w + $y + $self->{'n_start'};
  }

  if (($d = -$x - $w_left) > abs($y)) {
    ### left vertical
    ### $d
    #
    # top left per above
    ### TL: 4*$d*$d + (2*$w)*$d + 1
    # then +$d for the y=0 point
    # N_Y0  = 4*$d*$d + (2*$w)*$d + 1 + $d
    #       = 4*$d*$d + (1 + 2*$w)*$d + 1
    ### N_Y0: (4*$d + 1 + 2*$w)*$d + 1
    #
    return (4*$d + 1 + 2*$w)*$d - $y + $self->{'n_start'};
  }

  $d = abs($y);
  if ($y > 0) {
    ### top horizontal
    ### $d
    #
    # top left per above
    ### TL: 4*$d*$d + (2*$w)*$d + 1
    # then -($d+$w_left) for the x=0 point
    # N_X0  = 4*$d*$d + (2*$w)*$d + 1 + -($d+$w_left)
    #       = 4*$d*$d + (-1 + 2*$w)*$d + 1 - $w_left
    ### N_Y0: (4*$d - 1 + 2*$w)*$d + 1 - $w_left
    #
    return (4*$d - 1 + 2*$w)*$d - $w_left - $x + $self->{'n_start'};
  }

  ### bottom horizontal, and centre y=0
  ### $d
  #
  # top left per above
  ### TL: 4*$d*$d + (2*$w)*$d + 1
  # then +2*$d to bottom left, +$d+$w_left for the x=0 point
  # N_X0  = 4*$d*$d + (2*$w)*$d + 1 + 2*$d + $d+$w_left)
  #       = 4*$d*$d + (3 + 2*$w)*$d + 1 + $w_left
  ### N_Y0: (4*$d + 3 + 2*$w)*$d + 1 + $w_left
  #
  return (4*$d + 3 + 2*$w)*$d + $w_left + $x + $self->{'n_start'};
}

# hi is exact but lo is not
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  # ENHANCE-ME: find actual minimum if rect doesn't cover 0,0
  return ($self->{'n_start'},
          max ($self->xy_to_n($x1,$y1),
               $self->xy_to_n($x2,$y1),
               $self->xy_to_n($x1,$y2),
               $self->xy_to_n($x2,$y2)));

  # my $w = $self->{'wider'};
  # my $w_right = int($w/2);
  # my $w_left = $w - $w_right;
  #
  # my $d = 1 + max (abs($y1),
  #                  abs($y2),
  #                  $x1 - $w_right, -$x1 - $w_left,
  #                  $x2 - $w_right, -$x2 - $w_left,
  #                  1);
  # ### $d
  # ### is: $d*$d
  #
  # # ENHANCE-ME: find actual minimum if rect doesn't cover 0,0
  # return (1,
  #         (4*$d - 4 + 2*$w)*$d + 2);  # bottom-right
}


# [ 1, 2, 3,  4,  5 ],
# [ 1, 3, 7, 13, 21 ]
# N = (d^2 - d + 1)
#   = ($d**2 - $d + 1)
#   = (($d - 1)*$d + 1)
# d = 1/2 + sqrt(1 * $n + -3/4)
#   = (1 + sqrt(4*$n - 3)) / 2
#
# wider=3
# [ 2, 3,  4,  5 ],
# [ 6, 13, 22, 33 ]
# N = (d^2 + 2 d - 2)
#   = ($d**2 + 2*$d - 2)
#   = (($d + 2)*$d - 2)
# d = -1 + sqrt(1 * $n + 3)
#
# wider=5
# [ 2, 3,  4,  5 ],
# [ 8, 17, 28, 41 ]
# N = (d^2 + 4 d - 4)
#   = ($d**2 + 4*$d - 4)
#   = (($d + 4)*$d - 4)
# d = -2 + sqrt(1 * $n + 8)
#
# wider=7
# [ 2, 3,  4,  5 ],
# [ 10, 21, 34, 49 ]
# N = (d^2 + 6 d - 6)
#   = ($d**2 + 6*$d - 6)
#   = (($d + 6)*$d - 6)
# d = -3 + sqrt(1 * $n + 15)
#
#
# N = (d^2 + (w-1)*d + 1-w)
# d = (1-w)/2 + sqrt($n + (w^2 + 2w - 3)/4)
#   = (1-w + sqrt(4*$n + (w-3)(w+1))) / 2
#
# extra subtract d+w-1
# Nbase = (d^2 + (w-1)*d + 1-w) + d+w-1
#       = d^2 + w*d

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  $n = $n - $self->{'n_start'};  # starting $n==0, warn if $n==undef
  if ($n < 0) {
    #### before n_start ...
    return;
  }

  my $w = $self->{'wider'};
  my $d = int((1-$w + sqrt(int(4*$n) + ($w+2)*$w+1)) / 2);

  my $int = int($n);
  $n -= $int;  # fraction 0 <= $n < 1
  $int -= ($d+$w)*$d-1;

  ### $d
  ### $w
  ### $n
  ### $int

  my ($dx, $dy);
  if ($int <= 0) {
    if ($int < 0) {
      ### horizontal ...
      $dx = 1;
      $dy = 0;
    } else {
      ### corner horiz to vert ...
      $dx = 1-$n;
      $dy = $n;
    }
  } else {
    if ($int < $d) {
      ### vertical ...
      $dx = 0;
      $dy = 1;
    } else {
      ### corner vert to horiz ...
      $dx = -$n;
      $dy = 1-$n;
    }
  }

  unless ($d % 2) {
    ### rotate +180 for even d ...
    $dx = -$dx;
    $dy = -$dy;
  }

  ### result: "$dx, $dy"
  return ($dx,$dy);
}



# old bit:
#
# wider==0
# base from two-way diagonal top-right and bottom-left
# s even for top-right diagonal doing top leftwards then left downwards
# s odd for bottom-left diagonal doing bottom rightwards then right pupwards
#   s = [ 0,  1,   2,   3,   4,   5,   6 ]
#   N = [ 1,  1,   3,   7,  13,  21,  31 ]
#         +0  +2  +4  +6  +8  +10
#            2   2   2   2   2
#
#   n = (($d - 1)*$d + 1)
#   s = 1/2 + sqrt(1 * $n + -3/4)
#     = .5 + sqrt ($n - .75)
#
#

#------------------------------------------------------------------------------

sub _NOTDOCUMENTED_n_to_figure_boundary {
  my ($self, $n) = @_;
  ### _NOTDOCUMENTED_n_to_figure_boundary(): $n

  # adjust to N=1 at origin X=0,Y=0
  $n = $n - $self->{'n_start'} + 1;

  if ($n < 1) {
    return undef;
  }

  my $wider = $self->{'wider'};
  if ($n <= $wider) {
    # single block row
    # +---+-----+----+
    # | 1 | ... | $n |  boundary = 2*N + 2
    # +---+-----+----+
    return 2*$n + 2;
  }

  my $d = int((sqrt(int(4*$n) + $wider*$wider - 2) - $wider) / 2);
  ### $d
  ### $wider
  ### cmp: $d*($d+1+$wider) + $wider + 1

  if ($n > $d*($d+1+$wider)) {
    $wider++;
    ### increment for +2 after turn ...
  }
  return 4*$d + 2*$wider + 2;
}

#------------------------------------------------------------------------------
1;
__END__


=for stopwords Stanislaw Ulam pronic PlanePath Ryde Math-PlanePath Ulam's Honaker's decagonal OEIS Nbase sqrt BigRat Nrem wl wr Nsig incrementing

=head1 NAME

Math::PlanePath::SquareSpiral -- integer points drawn around a square (or rectangle)

=head1 SYNOPSIS

 use Math::PlanePath::SquareSpiral;
 my $path = Math::PlanePath::SquareSpiral->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes a square spiral,

=cut

# math-image --path=SquareSpiral --all --output=numbers_dash --size=40x16

=pod

    37--36--35--34--33--32--31              3
     |                       |
    38  17--16--15--14--13  30              2
     |   |               |   |
    39  18   5---4---3  12  29              1
     |   |   |       |   |   |
    40  19   6   1---2  11  28  ...    <- Y=0
     |   |   |           |   |   |
    41  20   7---8---9--10  27  52         -1
     |   |                   |   |
    42  21--22--23--24--25--26  51         -2
     |                           |
    43--44--45--46--47--48--49--50         -3

                 ^
    -3  -2  -1  X=0  1   2   3   4

See F<examples/square-numbers.pl> in the sources for a simple program
printing these numbers.

This path is well known from Stanislaw Ulam finding interesting straight
lines when plotting the prime numbers on it.  The cover of Scientific
American March 1964 featured this spiral,

=over

L<http://www.nature.com/scientificamerican/journal/v210/n3/covers/index.html>

L<http://oeis.org/A143861/a143861.jpg>

=back

See F<examples/ulam-spiral-xpm.pl> in the sources for a standalone program,
or see L<math-image> using this C<SquareSpiral> to draw this pattern and
more.

=head2 Straight Lines

X<Square numbers>The perfect squares 1,4,9,16,25 fall on two diagonals with
the even perfect squares going to the upper left and the odd squares to the
lower right.  The X<Pronic numbers>pronic numbers 2,6,12,20,30,42 etc k^2+k
half way between the squares fall on similar diagonals to the upper right
and lower left.  The decagonal numbers 10,27,52,85 etc 4*k^2-3*k go
horizontally to the right at Y=-1.

In general straight lines and diagonals are 4*k^2 + b*k + c.  b=0 is the
even perfect squares up to the left, then incrementing b is an eighth turn
anti-clockwise, or clockwise if negative.  So b=1 is horizontal West, b=2
diagonally down South-West, b=3 down South, etc.

Honaker's prime-generating polynomial 4*k^2 + 4*k + 59 goes down to the
right, after the first 30 or so values loop around a bit.

=head2 Wider

An optional C<wider> parameter makes the path wider, becoming a rectangle
spiral instead of a square.  For example

    $path = Math::PlanePath::SquareSpiral->new (wider => 3);

gives

    29--28--27--26--25--24--23--22        2
     |                           |
    30  11--10-- 9-- 8-- 7-- 6  21        1
     |   |                   |   |
    31  12   1-- 2-- 3-- 4-- 5  20   <- Y=0
     |   |                       |
    32  13--14--15--16--17--18--19       -1
     |
    33--34--35--36-...                   -2

                     ^
    -4  -3  -2  -1  X=0  1   2   3

The centre horizontal 1 to 2 is extended by C<wider> many further places,
then the path loops around that shape.  The starting point 1 is shifted to
the left by ceil(wider/2) places to keep the spiral centred on the origin
X=0,Y=0.

Widening doesn't change the nature of the straight lines which arise, it
just rotates them around.  For example in this wider=3 example the perfect
squares are still on diagonals, but the even squares go towards the bottom
left (instead of top left when wider=0) and the odd squares to the top right
(instead of the bottom right).

Each loop is still 8 longer than the previous, as the widening is basically
a constant amount in each loop.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start with the same shape.  For example to
start at 0,

=cut

# math-image --path=SquareSpiral,n_start=0 --all --output=numbers_dash --size=35x16

=pod

    n_start => 0

    16-15-14-13-12 ...
     |           |  | 
    17  4--3--2 11 28 
     |  |     |  |  | 
    18  5  0--1 10 27 
     |  |        |  | 
    19  6--7--8--9 26 
     |              | 
    20-21-22-23-24-25 

The only effect is to push the N values around by a constant amount.  It
might help match coordinates with something else zero-based.

=head2 Corners

Other spirals can be formed by cutting the corners of the square so as to go
around faster.  See the following modules,

    Corners Cut    Class
    -----------    -----
         1        HeptSpiralSkewed
         2        HexSpiralSkewed
         3        PentSpiralSkewed
         4        DiamondSpiral

The C<PyramidSpiral> is a re-shaped C<SquareSpiral> looping at the same
rate.  It shifts corners but doesn't cut them.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::SquareSpiral-E<gt>new ()>

=item C<$path = Math::PlanePath::SquareSpiral-E<gt>new (wider =E<gt> $integer, n_start =E<gt> $n)>

Create and return a new square spiral object.  An optional C<wider>
parameter widens the spiral path, it defaults to 0 which is no widening.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n E<lt> 1> the return is an empty list, as the path starts at 1.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each N
in the path as centred in a square of side 1, so the entire plane is
covered.

=back

=head1 FORMULAS

=head2 N to X,Y

There's a few ways to break an N into a side and offset into the side.  One
convenient way is to treat a loop as starting at the bottom right corner, so
N=2,10,26,50,etc,  If the first at N=2 is reckoned loop number d=1 then

    Nbase = 4*d^2 - 4*d + 2

For example d=3 is Nbase=4*3^2-4*3+2=26 at X=3,Y=-2.  The biggest d with
Nbase E<lt>= N can be found by inverting with the usual quadratic formula

    d = floor (1/2 + sqrt(N/4 - 1/4))

For Perl it's good to keep the sqrt argument an integer (when a UV integer
is bigger than an NV float, and for BigRat accuracy), so rearranging

    d = floor ((1+sqrt(N-1)) / 2)

So Nbase from this d leaves a remainder which is an offset into the loop

    Nrem = N - Nbase
         = N - (4*d^2 - 4*d + 2)

The loop starts at X=d,Y=d-1 and has sides length 2d, 2d+1, 2d+1 and 2d+2,

             2d      
         +------------+        <- Y=d
         |            |
    2d   |            |  2d-1
         |     .      |
         |            |
         |            + X=d,Y=-d+1
         |
         +---------------+     <- Y=-d
             2d+1

         ^
       X=-d

The X,Y for an Nrem is then

     side      Nrem range            X,Y result
     ----      ----------            ----------
    right           Nrem <= 2d-1     X = d
                                     Y = -d+1+Nrem
    top     2d-1 <= Nrem <= 4d-1     X = d-(Nrem-(2d-1)) = 3d-1-Nrem
                                     Y = d
    left    4d-1 <= Nrem <= 6d-1     X = -d
                                     Y = d-(Nrem-(4d-1)) = 5d-1-Nrem
    bottom  6d-1 <= Nrem             X = -d+(Nrem-(6d-1)) = -7d+1+Nrem
                                     Y = -d

The corners Nrem=2d-1, Nrem=4d-1 and Nrem=6d-1 get the same result from the
two sides that meet so it doesn't matter if the high comparison is "E<lt>"
or "E<lt>=".

The bottom edge runs through to Nrem E<lt> 8d, but there's no need to
check that since d=floor(sqrt()) above ensures Nrem is within the loop.

A small simplification can be had by subtracting an extra 4d-1 from Nrem to
make negatives for the right and top sides and positives for the left and
bottom.

    Nsig = N - Nbase - (4d-1)
         = N - (4*d^2 - 4*d + 2) - (4d-1)
         = N - (4*d^2 + 1)

     side      Nsig range            X,Y result
     ----      ----------            ----------
    right           Nsig <= -2d      X = d
                                     Y = d+(Nsig+2d) = 3d+Nsig
    top      -2d <= Nsig <= 0        X = -d-Nsig
                                     Y = d
    left       0 <= Nsig <= 2d       X = -d
                                     Y = d-Nsig
    bottom    2d <= Nsig             X = -d+1+(Nsig-(2d+1)) = Nsig-3d
                                     Y = -d

=head2 N to X,Y with Wider

With the C<wider> parameter stretching the spiral loops the formulas above
become

    Nbase = 4*d^2 + (-4+2w)*d + 2-w

    d = floor ((2-w + sqrt(4N + w^2 - 4)) / 4)

Notice for Nbase the w is a term 2*w*d, being an extra 2*w for each loop.

The left offset ceil(w/2) described above (L</Wider>) for the N=1 starting
position is written here as wl, and the other half wr arises too,

    wl = ceil(w/2)
    wr = floor(w/2) = w - wl

The horizontal lengths increase by w, and positions shift by wl or wr, but
the verticals are unchanged.

             2d+w      
         +------------+        <- Y=d
         |            |
    2d   |            |  2d-1
         |     .      |
         |            |
         |            + X=d+wr,Y=-d+1
         |
         +---------------+     <- Y=-d
             2d+1+w

         ^
       X=-d-wl

The Nsig formulas then have w, wl or wr variously inserted.  In all cases if
w=wl=wr=0 then they simplify to the plain versions.

    Nsig = N - Nbase - (4d-1+w)
         = N - ((4d + 2w)*d + 1)

     side      Nsig range            X,Y result
     ----      ----------            ----------
    right         Nsig <= -(2d+w)    X = d+wr
                                     Y = d+(Nsig+2d+w) = 3d+w+Nsig
    top      -(2d+w) <= Nsig <= 0    X = -d-wl-Nsig
                                     Y = d
    left       0 <= Nsig <= 2d       X = -d-wl
                                     Y = d-Nsig
    bottom    2d <= Nsig             X = -d+1-wl+(Nsig-(2d+1)) = Nsig-wl-3d
                                     Y = -d

=head2 Rectangle to N Range

Within each row the minimum N is on the X=Y diagonal and N values increases
monotonically as X moves away to the left or right.  Similarly in each
column there's a minimum N on the X=-Y opposite diagonal, or X=-Y+1 diagonal
when X negative, and N increases monotonically as Y moves away from there up
or down.  When widerE<gt>0 the location of the minimum changes, but N is
still monotonic moving away from the minimum.

On that basis the maximum N in a rectangle is at one of the four corners,

              |
    x1,y2 M---|----M x2,y2      corner candidates
          |   |    |            for maximum N
       -------O---------
          |   |    |
          |   |    |
    x1,y1 M---|----M x1,y1
              |

=head1 OEIS

This path is in Sloane's Online Encyclopedia of Integer Sequences in various
forms.  Summary at

=over

L<http://oeis.org/A068225/a068225.html>

=back

And various sequences,

=over

L<http://oeis.org/A174344> (etc),
L<https://oeis.org/wiki/Ulam's_spiral>

=back

    wider=0 (the default)
      A174344    X coordinate
      A214526    abs(X)+abs(Y) "Manhattan" distance

      A079813    abs(dY), being k 0s followed by k 1s
      A063826    direction 1=right,2=up,3=left,4=down

      A027709    boundary length of N unit squares
      A078633    grid sticks to make N unit squares

      A033638    N turn positions (extra initial 1, 1)
      A172979    N turn positions which are primes too

      A054552    N values on X axis (East)
      A054556    N values on Y axis (North)
      A054567    N values on negative X axis (West)
      A033951    N values on negative Y axis (South)
      A054554    N values on X=Y diagonal (NE)
      A054569    N values on negative X=Y diagonal (SW)
      A053755    N values on X=-Y opp diagonal X<=0 (NW)
      A016754    N values on X=-Y opp diagonal X>=0 (SE)
      A200975    N values on all four diagonals

      A137928    N values on X=-Y+1 opposite diagonal
      A002061    N values on X=Y diagonal pos and neg
      A016814    (4k+1)^2, every second N on south-east diagonal

      A143856    N values on ENE slope dX=2,dY=1
      A143861    N values on NNE slope dX=1,dY=2
      A215470    N prime and >=4 primes among its 8 neighbours

      A214664    X coordinate of prime N (Ulam's spiral)
      A214665    Y coordinate of prime N (Ulam's spiral)
      A214666    -X  \ reckoning spiral starting West
      A214667    -Y  /

      A053999    prime[N] on X=-Y opp diagonal X>=0 (SE)
      A054551    prime[N] on the X axis (E)
      A054553    prime[N] on the X=Y diagonal (NE)
      A054555    prime[N] on the Y axis (N)
      A054564    prime[N] on X=-Y opp diagonal X<=0 (NW)
      A054566    prime[N] on negative X axis (W)

      A090925    permutation N at rotate +90
      A090928    permutation N at rotate +180
      A090929    permutation N at rotate +270
      A090930    permutation N at clockwise spiralling
      A020703    permutation N at rotate +90 and go clockwise
      A090861    permutation N at rotate +180 and go clockwise
      A090915    permutation N at rotate +270 and go clockwise
      A185413    permutation N at 1-X,Y
                   being rotate +180, offset X+1, clockwise

      A068225    permutation N to the N to its right, X+1,Y
      A121496     run lengths of consecutive N in that permutation
      A068226    permutation N to the N to its left, X-1,Y
      A020703    permutation N at transpose Y,X
                   (clockwise <-> anti-clockwise)

      A033952    digits on negative Y axis
      A033953    digits on negative Y axis, starting 0
      A033988    digits on negative X axis, starting 0
      A033989    digits on Y axis, starting 0
      A033990    digits on X axis, starting 0

      A062410    total sum previous row or column

    wider=1
      A069894    N on South-West diagonal

The following have "offset 0" in the OEIS and therefore are based on
starting from N=0.

    n_start=0
      A180714    X+Y coordinate sum
      A053615    abs(X-Y), runs n to 0 to n, distance to nearest pronic

      A001107    N on X axis
      A033991    N on Y axis
      A033954    N on negative Y axis, second 10-gonals
      A002939    N on X=Y diagonal North-East
      A016742    N on North-West diagonal, 4*k^2
      A002943    N on South-West diagonal
      A156859    N on Y axis positive and negative

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PyramidSpiral>

L<Math::PlanePath::DiamondSpiral>,
L<Math::PlanePath::PentSpiralSkewed>,
L<Math::PlanePath::HexSpiralSkewed>,
L<Math::PlanePath::HeptSpiralSkewed>

L<Math::PlanePath::CretanLabyrinth>

L<Math::NumSeq::SpiroFibonacci>

X11 cursor font "box spiral" cursor which is this style (but going
clockwise).

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut