/usr/share/perl5/Math/PlanePath/SquareSpiral.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 | # Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# http://d4maths.lowtech.org/mirage/ulam.htm
# http://d4maths.lowtech.org/mirage/img/ulam.gif
# sample gif of primes made by APL or something
#
# http://www.sciencenews.org/view/generic/id/2696/title/Prime_Spirals
# Ulam's spiral of primes
#
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/primeSpiral.htm
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/triangleUlam.htm
# Pulchritudinous Primes of Ulam spiral.
# http://mathworld.wolfram.com/PrimeSpiral.html
#
# Mark C. Chu-Carroll "The Surprises Never Eend: The Ulam Spiral of Primes"
# http://scienceblogs.com/goodmath/2010/06/the_surprises_never_eend_the_u.php
#
# http://yoyo.cc.monash.edu.au/%7Ebunyip/primes/index.html
# including image highlighting the lines
# S. M. Ellerstein, The square spiral, J. Recreational
# Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
#
# Stein, M. and Ulam, S. M. "An Observation on the
# Distribution of Primes." Amer. Math. Monthly 74, 43-44,
# 1967.
#
# Stein, M. L.; Ulam, S. M.; and Wells, M. B. "A Visual
# Display of Some Properties of the Distribution of Primes."
# Amer. Math. Monthly 71, 516-520, 1964.
# cf sides alternately prime and fibonacci
# A160790 corner N
# A160791 side lengths, alternately integer and triangular adding that integer
# A160792 corner N
# A160793 side lengths, alternately integer and sum primes
# A160794 corner N
# A160795 side lengths, alternately primes and fibonaccis
package Math::PlanePath::SquareSpiral;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest';
# uncomment this to run the ### lines
#use Smart::Comments '###';
# Note: this shared by other paths
use constant parameter_info_array =>
[
{ name => 'wider',
display => 'Wider',
type => 'integer',
minimum => 0,
default => 0,
width => 3,
description => 'Wider path.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
use constant xy_is_visited => 1;
# 2w+4 -- 2w+3 ----- w+2
# | |
# 2w+5 0------- w+1
# |
# 2w+6 ---
# ^
# X=0
#
sub x_negative_at_n {
my ($self) = @_;
return $self->n_start + ($self->{'wider'} ? 0 : 4);
}
sub y_negative_at_n {
my ($self) = @_;
return $self->n_start + 2*$self->{'wider'} + 6;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $self->n_start + 2*$self->{'wider'} + 4;
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
# parameters
$self->{'wider'} ||= 0; # default
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
return $self;
}
# wider==0
# base from bottom-right corner
# d = [ 1, 2, 3, 4 ]
# N = [ 2, 10, 26, 50 ]
# N = (4 d^2 - 4 d + 2)
# d = 1/2 + sqrt(1/4 * $n + -4/16)
#
# wider==1
# base from bottom-right corner
# d = [ 1, 2, 3, 4 ]
# N = [ 3, 13, 31, 57 ]
# N = (4 d^2 - 2 d + 1)
# d = 1/4 + sqrt(1/4 * $n + -3/16)
#
# wider==2
# base from bottom-right corner
# d = [ 1, 2, 3, 4 ]
# N = [ 4, 16, 36, 64 ]
# N = (4 d^2)
# d = 0 + sqrt(1/4 * $n + 0)
#
# wider==3
# base from bottom-right corner
# d = [ 1, 2, 3 ]
# N = [ 5, 19, 41 ]
# N = (4 d^2 + 2 d - 1)
# d = -1/4 + sqrt(1/4 * $n + 5/16)
#
# N = 4*d^2 + (-4+2*w)*d + (2-w)
# = 4*$d*$d + (-4+2*$w)*$d + (2-$w)
# d = 1/2-w/4 + sqrt(1/4*$n + b^2-4ac)
# (b^2-4ac)/(2a)^2 = [ (2w-4)^2 - 4*4*(2-w) ] / 64
# = [ 4w^2 - 16w + 16 - 32 + 16w ] / 64
# = [ 4w^2 - 16 ] / 64
# = [ w^2 - 4 ] / 16
# d = 1/2-w/4 + sqrt(1/4*$n + (w^2 - 4) / 16)
# = 1/4 * (2-w + sqrt(4*$n + w^2 - 4))
# = 0.25 * (2-$w + sqrt(4*$n + $w*$w - 4))
#
# then offset the base by +4*$d+$w-1 for top left corner for +/- remainder
# rem = $n - (4*$d*$d + (-4+2*$w)*$d + (2-$w) + 4*$d + $w - 1)
# = $n - (4*$d*$d + (-4+2*$w)*$d + 2 - $w + 4*$d + $w - 1)
# = $n - (4*$d*$d + (-4+2*$w)*$d + 1 - $w + 4*$d + $w)
# = $n - (4*$d*$d + (-4+2*$w)*$d + 1 + 4*$d)
# = $n - (4*$d*$d + (2*$w)*$d + 1)
# = $n - ((4*$d + 2*$w)*$d + 1)
#
sub n_to_xy {
my ($self, $n) = @_;
#### SquareSpiral n_to_xy: $n
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef
if ($n < 0) {
#### before n_start ...
return;
}
my $w = $self->{'wider'};
my $w_right = int($w/2);
my $w_left = $w - $w_right;
if ($n <= $w+1) {
#### centre horizontal
# n=0 at w_left
# x = $n - int(($w+1)/2)
# = $n - int(($w+1)/2)
return ($n - $w_left, # n=0 at w_left
0);
}
my $d = int ((2-$w + sqrt(int(4*$n) + $w*$w)) / 4);
#### d frac: ((2-$w + sqrt(int(4*$n) + $w*$w)) / 4)
#### $d
#### base: 4*$d*$d + (-4+2*$w)*$d + (2-$w)
$n -= ((4*$d + 2*$w)*$d);
#### remainder: $n
if ($n >= 0) {
if ($n <= 2*$d) {
### left vertical
return (-$d - $w_left,
-$n + $d);
} else {
### bottom horizontal
return ($n - $w_left - 3*$d,
-$d);
}
} else {
if ($n >= -2*$d-$w) {
### top horizontal
return (-$n - $d - $w_left,
$d);
} else {
### right vertical
return ($d + $w_right,
$n + 3*$d + $w);
}
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
my $w = $self->{'wider'};
my $w_right = int($w/2);
my $w_left = $w - $w_right;
$x = round_nearest ($x);
$y = round_nearest ($y);
### xy_to_n: "x=$x, y=$y"
### $w_left
### $w_right
my $d;
if (($d = $x - $w_right) > abs($y)) {
### right vertical
### $d
#
# base bottom right per above
### BR: 4*$d*$d + (-4+2*$w)*$d + (2-$w)
# then +$d-1 for the y=0 point
# N_Y0 = 4*$d*$d + (-4+2*$w)*$d + (2-$w) + $d-1
# = 4*$d*$d + (-3+2*$w)*$d + (2-$w) + -1
# = 4*$d*$d + (-3+2*$w)*$d + 1-$w
### N_Y0: (4*$d + -3 + 2*$w)*$d + 1-$w
#
return (4*$d + -3 + 2*$w)*$d - $w + $y + $self->{'n_start'};
}
if (($d = -$x - $w_left) > abs($y)) {
### left vertical
### $d
#
# top left per above
### TL: 4*$d*$d + (2*$w)*$d + 1
# then +$d for the y=0 point
# N_Y0 = 4*$d*$d + (2*$w)*$d + 1 + $d
# = 4*$d*$d + (1 + 2*$w)*$d + 1
### N_Y0: (4*$d + 1 + 2*$w)*$d + 1
#
return (4*$d + 1 + 2*$w)*$d - $y + $self->{'n_start'};
}
$d = abs($y);
if ($y > 0) {
### top horizontal
### $d
#
# top left per above
### TL: 4*$d*$d + (2*$w)*$d + 1
# then -($d+$w_left) for the x=0 point
# N_X0 = 4*$d*$d + (2*$w)*$d + 1 + -($d+$w_left)
# = 4*$d*$d + (-1 + 2*$w)*$d + 1 - $w_left
### N_Y0: (4*$d - 1 + 2*$w)*$d + 1 - $w_left
#
return (4*$d - 1 + 2*$w)*$d - $w_left - $x + $self->{'n_start'};
}
### bottom horizontal, and centre y=0
### $d
#
# top left per above
### TL: 4*$d*$d + (2*$w)*$d + 1
# then +2*$d to bottom left, +$d+$w_left for the x=0 point
# N_X0 = 4*$d*$d + (2*$w)*$d + 1 + 2*$d + $d+$w_left)
# = 4*$d*$d + (3 + 2*$w)*$d + 1 + $w_left
### N_Y0: (4*$d + 3 + 2*$w)*$d + 1 + $w_left
#
return (4*$d + 3 + 2*$w)*$d + $w_left + $x + $self->{'n_start'};
}
# hi is exact but lo is not
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
# ENHANCE-ME: find actual minimum if rect doesn't cover 0,0
return ($self->{'n_start'},
max ($self->xy_to_n($x1,$y1),
$self->xy_to_n($x2,$y1),
$self->xy_to_n($x1,$y2),
$self->xy_to_n($x2,$y2)));
# my $w = $self->{'wider'};
# my $w_right = int($w/2);
# my $w_left = $w - $w_right;
#
# my $d = 1 + max (abs($y1),
# abs($y2),
# $x1 - $w_right, -$x1 - $w_left,
# $x2 - $w_right, -$x2 - $w_left,
# 1);
# ### $d
# ### is: $d*$d
#
# # ENHANCE-ME: find actual minimum if rect doesn't cover 0,0
# return (1,
# (4*$d - 4 + 2*$w)*$d + 2); # bottom-right
}
# [ 1, 2, 3, 4, 5 ],
# [ 1, 3, 7, 13, 21 ]
# N = (d^2 - d + 1)
# = ($d**2 - $d + 1)
# = (($d - 1)*$d + 1)
# d = 1/2 + sqrt(1 * $n + -3/4)
# = (1 + sqrt(4*$n - 3)) / 2
#
# wider=3
# [ 2, 3, 4, 5 ],
# [ 6, 13, 22, 33 ]
# N = (d^2 + 2 d - 2)
# = ($d**2 + 2*$d - 2)
# = (($d + 2)*$d - 2)
# d = -1 + sqrt(1 * $n + 3)
#
# wider=5
# [ 2, 3, 4, 5 ],
# [ 8, 17, 28, 41 ]
# N = (d^2 + 4 d - 4)
# = ($d**2 + 4*$d - 4)
# = (($d + 4)*$d - 4)
# d = -2 + sqrt(1 * $n + 8)
#
# wider=7
# [ 2, 3, 4, 5 ],
# [ 10, 21, 34, 49 ]
# N = (d^2 + 6 d - 6)
# = ($d**2 + 6*$d - 6)
# = (($d + 6)*$d - 6)
# d = -3 + sqrt(1 * $n + 15)
#
#
# N = (d^2 + (w-1)*d + 1-w)
# d = (1-w)/2 + sqrt($n + (w^2 + 2w - 3)/4)
# = (1-w + sqrt(4*$n + (w-3)(w+1))) / 2
#
# extra subtract d+w-1
# Nbase = (d^2 + (w-1)*d + 1-w) + d+w-1
# = d^2 + w*d
sub n_to_dxdy {
my ($self, $n) = @_;
### n_to_dxdy(): $n
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef
if ($n < 0) {
#### before n_start ...
return;
}
my $w = $self->{'wider'};
my $d = int((1-$w + sqrt(int(4*$n) + ($w+2)*$w+1)) / 2);
my $int = int($n);
$n -= $int; # fraction 0 <= $n < 1
$int -= ($d+$w)*$d-1;
### $d
### $w
### $n
### $int
my ($dx, $dy);
if ($int <= 0) {
if ($int < 0) {
### horizontal ...
$dx = 1;
$dy = 0;
} else {
### corner horiz to vert ...
$dx = 1-$n;
$dy = $n;
}
} else {
if ($int < $d) {
### vertical ...
$dx = 0;
$dy = 1;
} else {
### corner vert to horiz ...
$dx = -$n;
$dy = 1-$n;
}
}
unless ($d % 2) {
### rotate +180 for even d ...
$dx = -$dx;
$dy = -$dy;
}
### result: "$dx, $dy"
return ($dx,$dy);
}
# old bit:
#
# wider==0
# base from two-way diagonal top-right and bottom-left
# s even for top-right diagonal doing top leftwards then left downwards
# s odd for bottom-left diagonal doing bottom rightwards then right pupwards
# s = [ 0, 1, 2, 3, 4, 5, 6 ]
# N = [ 1, 1, 3, 7, 13, 21, 31 ]
# +0 +2 +4 +6 +8 +10
# 2 2 2 2 2
#
# n = (($d - 1)*$d + 1)
# s = 1/2 + sqrt(1 * $n + -3/4)
# = .5 + sqrt ($n - .75)
#
#
#------------------------------------------------------------------------------
sub _NOTDOCUMENTED_n_to_figure_boundary {
my ($self, $n) = @_;
### _NOTDOCUMENTED_n_to_figure_boundary(): $n
# adjust to N=1 at origin X=0,Y=0
$n = $n - $self->{'n_start'} + 1;
if ($n < 1) {
return undef;
}
my $wider = $self->{'wider'};
if ($n <= $wider) {
# single block row
# +---+-----+----+
# | 1 | ... | $n | boundary = 2*N + 2
# +---+-----+----+
return 2*$n + 2;
}
my $d = int((sqrt(int(4*$n) + $wider*$wider - 2) - $wider) / 2);
### $d
### $wider
### cmp: $d*($d+1+$wider) + $wider + 1
if ($n > $d*($d+1+$wider)) {
$wider++;
### increment for +2 after turn ...
}
return 4*$d + 2*$wider + 2;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords Stanislaw Ulam pronic PlanePath Ryde Math-PlanePath Ulam's Honaker's decagonal OEIS Nbase sqrt BigRat Nrem wl wr Nsig incrementing
=head1 NAME
Math::PlanePath::SquareSpiral -- integer points drawn around a square (or rectangle)
=head1 SYNOPSIS
use Math::PlanePath::SquareSpiral;
my $path = Math::PlanePath::SquareSpiral->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path makes a square spiral,
=cut
# math-image --path=SquareSpiral --all --output=numbers_dash --size=40x16
=pod
37--36--35--34--33--32--31 3
| |
38 17--16--15--14--13 30 2
| | | |
39 18 5---4---3 12 29 1
| | | | | |
40 19 6 1---2 11 28 ... <- Y=0
| | | | | |
41 20 7---8---9--10 27 52 -1
| | | |
42 21--22--23--24--25--26 51 -2
| |
43--44--45--46--47--48--49--50 -3
^
-3 -2 -1 X=0 1 2 3 4
See F<examples/square-numbers.pl> in the sources for a simple program
printing these numbers.
This path is well known from Stanislaw Ulam finding interesting straight
lines when plotting the prime numbers on it. The cover of Scientific
American March 1964 featured this spiral,
=over
L<http://www.nature.com/scientificamerican/journal/v210/n3/covers/index.html>
L<http://oeis.org/A143861/a143861.jpg>
=back
See F<examples/ulam-spiral-xpm.pl> in the sources for a standalone program,
or see L<math-image> using this C<SquareSpiral> to draw this pattern and
more.
=head2 Straight Lines
X<Square numbers>The perfect squares 1,4,9,16,25 fall on two diagonals with
the even perfect squares going to the upper left and the odd squares to the
lower right. The X<Pronic numbers>pronic numbers 2,6,12,20,30,42 etc k^2+k
half way between the squares fall on similar diagonals to the upper right
and lower left. The decagonal numbers 10,27,52,85 etc 4*k^2-3*k go
horizontally to the right at Y=-1.
In general straight lines and diagonals are 4*k^2 + b*k + c. b=0 is the
even perfect squares up to the left, then incrementing b is an eighth turn
anti-clockwise, or clockwise if negative. So b=1 is horizontal West, b=2
diagonally down South-West, b=3 down South, etc.
Honaker's prime-generating polynomial 4*k^2 + 4*k + 59 goes down to the
right, after the first 30 or so values loop around a bit.
=head2 Wider
An optional C<wider> parameter makes the path wider, becoming a rectangle
spiral instead of a square. For example
$path = Math::PlanePath::SquareSpiral->new (wider => 3);
gives
29--28--27--26--25--24--23--22 2
| |
30 11--10-- 9-- 8-- 7-- 6 21 1
| | | |
31 12 1-- 2-- 3-- 4-- 5 20 <- Y=0
| | |
32 13--14--15--16--17--18--19 -1
|
33--34--35--36-... -2
^
-4 -3 -2 -1 X=0 1 2 3
The centre horizontal 1 to 2 is extended by C<wider> many further places,
then the path loops around that shape. The starting point 1 is shifted to
the left by ceil(wider/2) places to keep the spiral centred on the origin
X=0,Y=0.
Widening doesn't change the nature of the straight lines which arise, it
just rotates them around. For example in this wider=3 example the perfect
squares are still on diagonals, but the even squares go towards the bottom
left (instead of top left when wider=0) and the odd squares to the top right
(instead of the bottom right).
Each loop is still 8 longer than the previous, as the widening is basically
a constant amount in each loop.
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start with the same shape. For example to
start at 0,
=cut
# math-image --path=SquareSpiral,n_start=0 --all --output=numbers_dash --size=35x16
=pod
n_start => 0
16-15-14-13-12 ...
| | |
17 4--3--2 11 28
| | | | |
18 5 0--1 10 27
| | | |
19 6--7--8--9 26
| |
20-21-22-23-24-25
The only effect is to push the N values around by a constant amount. It
might help match coordinates with something else zero-based.
=head2 Corners
Other spirals can be formed by cutting the corners of the square so as to go
around faster. See the following modules,
Corners Cut Class
----------- -----
1 HeptSpiralSkewed
2 HexSpiralSkewed
3 PentSpiralSkewed
4 DiamondSpiral
The C<PyramidSpiral> is a re-shaped C<SquareSpiral> looping at the same
rate. It shifts corners but doesn't cut them.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::SquareSpiral-E<gt>new ()>
=item C<$path = Math::PlanePath::SquareSpiral-E<gt>new (wider =E<gt> $integer, n_start =E<gt> $n)>
Create and return a new square spiral object. An optional C<wider>
parameter widens the spiral path, it defaults to 0 which is no widening.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n E<lt> 1> the return is an empty list, as the path starts at 1.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each N
in the path as centred in a square of side 1, so the entire plane is
covered.
=back
=head1 FORMULAS
=head2 N to X,Y
There's a few ways to break an N into a side and offset into the side. One
convenient way is to treat a loop as starting at the bottom right corner, so
N=2,10,26,50,etc, If the first at N=2 is reckoned loop number d=1 then
Nbase = 4*d^2 - 4*d + 2
For example d=3 is Nbase=4*3^2-4*3+2=26 at X=3,Y=-2. The biggest d with
Nbase E<lt>= N can be found by inverting with the usual quadratic formula
d = floor (1/2 + sqrt(N/4 - 1/4))
For Perl it's good to keep the sqrt argument an integer (when a UV integer
is bigger than an NV float, and for BigRat accuracy), so rearranging
d = floor ((1+sqrt(N-1)) / 2)
So Nbase from this d leaves a remainder which is an offset into the loop
Nrem = N - Nbase
= N - (4*d^2 - 4*d + 2)
The loop starts at X=d,Y=d-1 and has sides length 2d, 2d+1, 2d+1 and 2d+2,
2d
+------------+ <- Y=d
| |
2d | | 2d-1
| . |
| |
| + X=d,Y=-d+1
|
+---------------+ <- Y=-d
2d+1
^
X=-d
The X,Y for an Nrem is then
side Nrem range X,Y result
---- ---------- ----------
right Nrem <= 2d-1 X = d
Y = -d+1+Nrem
top 2d-1 <= Nrem <= 4d-1 X = d-(Nrem-(2d-1)) = 3d-1-Nrem
Y = d
left 4d-1 <= Nrem <= 6d-1 X = -d
Y = d-(Nrem-(4d-1)) = 5d-1-Nrem
bottom 6d-1 <= Nrem X = -d+(Nrem-(6d-1)) = -7d+1+Nrem
Y = -d
The corners Nrem=2d-1, Nrem=4d-1 and Nrem=6d-1 get the same result from the
two sides that meet so it doesn't matter if the high comparison is "E<lt>"
or "E<lt>=".
The bottom edge runs through to Nrem E<lt> 8d, but there's no need to
check that since d=floor(sqrt()) above ensures Nrem is within the loop.
A small simplification can be had by subtracting an extra 4d-1 from Nrem to
make negatives for the right and top sides and positives for the left and
bottom.
Nsig = N - Nbase - (4d-1)
= N - (4*d^2 - 4*d + 2) - (4d-1)
= N - (4*d^2 + 1)
side Nsig range X,Y result
---- ---------- ----------
right Nsig <= -2d X = d
Y = d+(Nsig+2d) = 3d+Nsig
top -2d <= Nsig <= 0 X = -d-Nsig
Y = d
left 0 <= Nsig <= 2d X = -d
Y = d-Nsig
bottom 2d <= Nsig X = -d+1+(Nsig-(2d+1)) = Nsig-3d
Y = -d
=head2 N to X,Y with Wider
With the C<wider> parameter stretching the spiral loops the formulas above
become
Nbase = 4*d^2 + (-4+2w)*d + 2-w
d = floor ((2-w + sqrt(4N + w^2 - 4)) / 4)
Notice for Nbase the w is a term 2*w*d, being an extra 2*w for each loop.
The left offset ceil(w/2) described above (L</Wider>) for the N=1 starting
position is written here as wl, and the other half wr arises too,
wl = ceil(w/2)
wr = floor(w/2) = w - wl
The horizontal lengths increase by w, and positions shift by wl or wr, but
the verticals are unchanged.
2d+w
+------------+ <- Y=d
| |
2d | | 2d-1
| . |
| |
| + X=d+wr,Y=-d+1
|
+---------------+ <- Y=-d
2d+1+w
^
X=-d-wl
The Nsig formulas then have w, wl or wr variously inserted. In all cases if
w=wl=wr=0 then they simplify to the plain versions.
Nsig = N - Nbase - (4d-1+w)
= N - ((4d + 2w)*d + 1)
side Nsig range X,Y result
---- ---------- ----------
right Nsig <= -(2d+w) X = d+wr
Y = d+(Nsig+2d+w) = 3d+w+Nsig
top -(2d+w) <= Nsig <= 0 X = -d-wl-Nsig
Y = d
left 0 <= Nsig <= 2d X = -d-wl
Y = d-Nsig
bottom 2d <= Nsig X = -d+1-wl+(Nsig-(2d+1)) = Nsig-wl-3d
Y = -d
=head2 Rectangle to N Range
Within each row the minimum N is on the X=Y diagonal and N values increases
monotonically as X moves away to the left or right. Similarly in each
column there's a minimum N on the X=-Y opposite diagonal, or X=-Y+1 diagonal
when X negative, and N increases monotonically as Y moves away from there up
or down. When widerE<gt>0 the location of the minimum changes, but N is
still monotonic moving away from the minimum.
On that basis the maximum N in a rectangle is at one of the four corners,
|
x1,y2 M---|----M x2,y2 corner candidates
| | | for maximum N
-------O---------
| | |
| | |
x1,y1 M---|----M x1,y1
|
=head1 OEIS
This path is in Sloane's Online Encyclopedia of Integer Sequences in various
forms. Summary at
=over
L<http://oeis.org/A068225/a068225.html>
=back
And various sequences,
=over
L<http://oeis.org/A174344> (etc),
L<https://oeis.org/wiki/Ulam's_spiral>
=back
wider=0 (the default)
A174344 X coordinate
A214526 abs(X)+abs(Y) "Manhattan" distance
A079813 abs(dY), being k 0s followed by k 1s
A063826 direction 1=right,2=up,3=left,4=down
A027709 boundary length of N unit squares
A078633 grid sticks to make N unit squares
A033638 N turn positions (extra initial 1, 1)
A172979 N turn positions which are primes too
A054552 N values on X axis (East)
A054556 N values on Y axis (North)
A054567 N values on negative X axis (West)
A033951 N values on negative Y axis (South)
A054554 N values on X=Y diagonal (NE)
A054569 N values on negative X=Y diagonal (SW)
A053755 N values on X=-Y opp diagonal X<=0 (NW)
A016754 N values on X=-Y opp diagonal X>=0 (SE)
A200975 N values on all four diagonals
A137928 N values on X=-Y+1 opposite diagonal
A002061 N values on X=Y diagonal pos and neg
A016814 (4k+1)^2, every second N on south-east diagonal
A143856 N values on ENE slope dX=2,dY=1
A143861 N values on NNE slope dX=1,dY=2
A215470 N prime and >=4 primes among its 8 neighbours
A214664 X coordinate of prime N (Ulam's spiral)
A214665 Y coordinate of prime N (Ulam's spiral)
A214666 -X \ reckoning spiral starting West
A214667 -Y /
A053999 prime[N] on X=-Y opp diagonal X>=0 (SE)
A054551 prime[N] on the X axis (E)
A054553 prime[N] on the X=Y diagonal (NE)
A054555 prime[N] on the Y axis (N)
A054564 prime[N] on X=-Y opp diagonal X<=0 (NW)
A054566 prime[N] on negative X axis (W)
A090925 permutation N at rotate +90
A090928 permutation N at rotate +180
A090929 permutation N at rotate +270
A090930 permutation N at clockwise spiralling
A020703 permutation N at rotate +90 and go clockwise
A090861 permutation N at rotate +180 and go clockwise
A090915 permutation N at rotate +270 and go clockwise
A185413 permutation N at 1-X,Y
being rotate +180, offset X+1, clockwise
A068225 permutation N to the N to its right, X+1,Y
A121496 run lengths of consecutive N in that permutation
A068226 permutation N to the N to its left, X-1,Y
A020703 permutation N at transpose Y,X
(clockwise <-> anti-clockwise)
A033952 digits on negative Y axis
A033953 digits on negative Y axis, starting 0
A033988 digits on negative X axis, starting 0
A033989 digits on Y axis, starting 0
A033990 digits on X axis, starting 0
A062410 total sum previous row or column
wider=1
A069894 N on South-West diagonal
The following have "offset 0" in the OEIS and therefore are based on
starting from N=0.
n_start=0
A180714 X+Y coordinate sum
A053615 abs(X-Y), runs n to 0 to n, distance to nearest pronic
A001107 N on X axis
A033991 N on Y axis
A033954 N on negative Y axis, second 10-gonals
A002939 N on X=Y diagonal North-East
A016742 N on North-West diagonal, 4*k^2
A002943 N on South-West diagonal
A156859 N on Y axis positive and negative
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::PyramidSpiral>
L<Math::PlanePath::DiamondSpiral>,
L<Math::PlanePath::PentSpiralSkewed>,
L<Math::PlanePath::HexSpiralSkewed>,
L<Math::PlanePath::HeptSpiralSkewed>
L<Math::PlanePath::CretanLabyrinth>
L<Math::NumSeq::SpiroFibonacci>
X11 cursor font "box spiral" cursor which is this style (but going
clockwise).
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|