This file is indexed.

/usr/share/perl5/Math/PlanePath/Staircase.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::Staircase;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant n_frac_discontinuity => .5;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1;

use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dsumxy_minimum => -1; # straight S
use constant dsumxy_maximum => 2;  # next row
use constant ddiffxy_maximum => 1; # straight S,E
use constant dir_maximum_dxdy => (0,-1); # South

use constant parameter_info_array =>
  [
   Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}

# start from 0.5 back
#     d = [ 0, 1,  2, 3 ]
#     n = [ 1.5, 6.5, 15.5 ]
#     n = ((2*$d - 1)*$d + 0.5)
#     d = 1/4 + sqrt(1/2 * $n + -3/16)
#
# start from integer vertical
#     d = [ 0, 1,  2,  3,  4 ]
#     n = [ 1, 2,  7, 16, 29 ]
#     n = ((2*$d - 1)*$d + 1)
#     d = 1/4 + sqrt(1/2 * $n + -7/16)
#       = [1 + sqrt(8*$n-7) ] / 4
#
sub n_to_xy {
  my ($self, $n) = @_;
  #### Staircase n_to_xy: $n

  # adjust to N=1 start
  $n = $n - $self->{'n_start'} + 1;

  my $d;
  {
    my $r = 8*$n - 3;
    if ($r < 1) {
      return;   # N < 0.5, so before start of path
    }
    $d = int( (sqrt(int($r)) + 1)/4 );
  }
  ### $d
  ### base: ((2*$d - 1)*$d + 0.5)

  $n -= (2*$d - 1)*$d;
  ### fractional: $n

  my $int = int($n);
  $n -= $int;

  my $rem = _divrem_mutate ($int, 2);
  if ($rem) {
    ### down ...
    return ($int,
            -$n + 2*$d - $int);
  } else {
    ### across ...
    return ($n + $int-1,
            2*$d - $int);
  }
}

# d = [ 1  2, 3, 4 ]
# N = [ 2, 7, 16, 29 ]
# N = (2 d^2 - d + 1)
# and add 2*$d
# base = 2*d^2 - d + 1 + 2*d
#      = 2*d^2 + d + 1
#      = (2*$d + 1)*$d + 1
#
sub xy_to_n {
  my ($self, $x, $y) = @_;

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($x < 0 || $y < 0) {
    return undef;
  }
  my $d = int(($x + $y + 1) / 2);
  return (2*$d + 1)*$d - $y + $x + $self->{'n_start'};
}

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### Staircase rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }  # x2 > x1
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }  # y2 > y1
  if ($x2 < 0 || $y2 < 0) {
    return (1, 0);   # nothing outside first quadrant
  }

  if ($x1 < 0) { $x1 *= 0; }
  if ($y1 < 0) { $y1 *= 0; }
  my $y_min = $y1;

  if ((($x1 ^ $y1) & 1) && $y1 < $y2) {  # y2==y_max
    $y1 += 1;
    ### y1 inc: $y1
  }
  if (! (($x2 ^ $y2) & 1) && $y2 > $y_min) {
    $y2 -= 1;
    ### y2 dec: $y2
  }
  return ($self->xy_to_n($x1,$y1),
          $self->xy_to_n($x2,$y2));
}

1;
__END__

=for stopwords eg Ryde Math-PlanePath Legendre's OEIS

=head1 NAME

Math::PlanePath::Staircase -- integer points in stair-step diagonal stripes

=head1 SYNOPSIS

 use Math::PlanePath::Staircase;
 my $path = Math::PlanePath::Staircase->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes a staircase pattern down from the Y axis to the X,

=cut

# math-image --path=Staircase --all --output=numbers_dash --size=70x30

=pod

     8      29
             |
     7      30---31
                  |
     6      16   32---33
             |         |
     5      17---18   34---35
                  |         |
     4       7   19---20   36---37
             |         |         |
     3       8--- 9   21---22   38---39
                  |         |         |
     2       2   10---11   23---24   40...
             |         |         |
     1       3--- 4   12---13   25---26
                  |         |         |
    Y=0 ->   1    5--- 6   14---15   27---28

             ^
            X=0   1    2    3    4    5    6

X<Hexagonal numbers>The 1,6,15,28,etc along the X axis at the end of each
run are the hexagonal numbers k*(2*k-1).  The diagonal 3,10,21,36,etc up
from X=0,Y=1 is the second hexagonal numbers k*(2*k+1), formed by extending
the hexagonal numbers to negative k.  The two together are the
X<Triangular numbers>triangular numbers k*(k+1)/2.

Legendre's prime generating polynomial 2*k^2+29 bounces around for some low
values then makes a steep diagonal upwards from X=19,Y=1, at a slope 3 up
for 1 across, but only 2 of each 3 drawn.

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, in the same pattern.  For example to
start at 0,

=cut

# math-image --path=Staircase,n_start=0 --expression='i<=38?i:0' --output=numbers --size=80x10

=pod

    n_start => 0

    28
    29 30
    15 31 32
    16 17 33 34
     6 18 19 35 36
     7  8 20 21 37 38
     1  9 10 22 23 ....
     2  3 11 12 24 25
     0  4  5 13 14 26 27

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::Staircase-E<gt>new ()>

=item C<$path = Math::PlanePath::AztecDiamondRings-E<gt>new (n_start =E<gt> $n)>

Create and return a new staircase path object.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
rounded to the nearest integers, which has the effect of treating each point
C<$n> as a square of side 1, so the quadrant x>=-0.5, y>=-0.5 is covered.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head1 FORMULAS

=head2 Rectangle to N Range

Within each row increasing X is increasing N, and in each column increasing
Y is increasing pairs of N.  Thus for C<rect_to_n_range()> the lower left
corner vertical pair is the minimum N and the upper right vertical pair is
the maximum N.

A given X,Y is the larger of a vertical pair when ((X^Y)&1)==1.  If that
happens at the lower left corner then it's X,Y+1 which is the smaller N, as
long as Y+1 is in the rectangle.  Conversely at the top right if
((X^Y)&1)==0 then it's X,Y-1 which is the bigger N, again as long as Y-1 is
in the rectangle.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A084849> (etc)

=back

    n_start=1 (the default)
      A084849    N on diagonal X=Y

    n_start=0
      A014105    N on diagonal X=Y, second hexagonal numbers

    n_start=2
      A128918    N on X axis, except initial 1,1
      A096376    N on diagonal X=Y

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::Diagonals>,
L<Math::PlanePath::Corner>,
L<Math::PlanePath::ToothpickSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut