/usr/share/perl5/Math/PlanePath/TerdragonCurve.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# points singles A052548 2^n + 2
# points doubles A000918 2^n - 2
# points triples A028243 3^(n-1) - 2*2^(n-1) + 1 cf A[k] = 2*3^(k-1) - 2*2^(k-1)
# T(3*N) = (w+1)*T(N) dir(N)=w^(2*count1digits)
# T(3*N+1) = (w+1)*T(N) + 1*dir(N)
# T(3*N+2) = (w+1)*T(N) + w*dir(N)
# T(0*3^k + N) = T(N)
# T(1*3^k + N) = 2^k + w^2*T(N) # rotate and offset
# T(2*3^k + N) = w*2^k + T(N) # offset only
package Math::PlanePath::TerdragonCurve;
use 5.004;
use strict;
use List::Util 'first';
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use Math::PlanePath;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest',
'xy_is_even';
use Math::PlanePath::Base::Digits
'digit_split_lowtohigh',
'digit_join_lowtohigh',
'round_down_pow';
use vars '$VERSION', '@ISA';
$VERSION = 117;
@ISA = ('Math::PlanePath');
use Math::PlanePath::TerdragonMidpoint;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant n_start => 0;
use constant parameter_info_array =>
[ { name => 'arms',
share_key => 'arms_6',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 6,
default => 1,
width => 1,
description => 'Arms',
} ];
{
my @x_negative_at_n = (undef, 13, 5, 5, 6, 7, 8);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
{
my @y_negative_at_n = (undef, 159, 75, 20, 11, 9, 10);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
sub dx_minimum {
my ($self) = @_;
return ($self->{'arms'} == 1 ? -1 : -2);
}
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
sub _UNDOCUMENTED__dxdy_list {
my ($self) = @_;
return ($self->{'arms'} == 1
? Math::PlanePath::_UNDOCUMENTED__dxdy_list_three()
: Math::PlanePath::_UNDOCUMENTED__dxdy_list_six());
}
{
my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 4, 9, 13, 7, 8, 5);
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
}
}
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
# arms=1 curve goes at 0,120,240 degrees
# arms=2 second +60 to 60,180,300 degrees
# so when arms==1 dir maximum is 240 degrees
sub dir_maximum_dxdy {
my ($self) = @_;
return ($self->{'arms'} == 1
? (-1,-1) # 0,2,4 only South-West
: ( 1,-1)); # rotated to 1,3,5 too South-East
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(6, $self->{'arms'} || 1));
return $self;
}
my @dir6_to_si = (1,0,0, -1,0,0);
my @dir6_to_sj = (0,1,0, 0,-1,0);
my @dir6_to_sk = (0,0,1, 0,0,-1);
sub n_to_xy {
my ($self, $n) = @_;
### TerdragonCurve n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n, $n); }
my $zero = ($n * 0); # inherit bignum 0
my $i = 0;
my $j = 0;
my $k = 0;
my $si = $zero;
my $sj = $zero;
my $sk = $zero;
# initial rotation from arm number
{
my $int = int($n);
my $frac = $n - $int; # inherit possible BigFloat
$n = $int; # BigFloat int() gives BigInt, use that
my $rot = _divrem_mutate ($n, $self->{'arms'});
my $s = $zero + 1; # inherit bignum 1
if ($rot >= 3) {
$s = -$s; # rotate 180
$frac = -$frac;
$rot -= 3;
}
if ($rot == 0) { $i = $frac; $si = $s; } # rotate 0
elsif ($rot == 1) { $j = $frac; $sj = $s; } # rotate +60
else { $k = $frac; $sk = $s; } # rotate +120
}
foreach my $digit (digit_split_lowtohigh($n,3)) {
### at: "$i,$j,$k side $si,$sj,$sk"
### $digit
if ($digit == 1) {
($i,$j,$k) = ($si-$j, $sj-$k, $sk+$i); # rotate +120 and add
} elsif ($digit == 2) {
$i -= $sk; # add rotated +60
$j += $si;
$k += $sj;
}
# add rotated +60
($si,$sj,$sk) = ($si - $sk,
$sj + $si,
$sk + $sj);
}
### final: "$i,$j,$k side $si,$sj,$sk"
### is: (2*$i + $j - $k).",".($j+$k)
return (2*$i + $j - $k, $j+$k);
}
# all even points when arms==6
sub xy_is_visited {
my ($self, $x, $y) = @_;
if ($self->{'arms'} == 6) {
return xy_is_even($self,$x,$y);
} else {
return defined($self->xy_to_n($x,$y));
}
}
# maximum extent -- no, not quite right
#
# .----*
# \
# *----.
#
# Two triangle heights, so
# rnext = 2 * r * sqrt(3)/2
# = r * sqrt(3)
# rsquared_next = 3 * rsquared
# Initial X=2,Y=0 is rsquared=4
# then X=3,Y=1 is 3*3+3*1*1 = 9+3 = 12 = 4*3
# then X=3,Y=3 is 3*3+3*3*3 = 9+3 = 36 = 4*3^2
#
my @try_dx = (2, 1, -1, -2, -1, 1);
my @try_dy = (0, 1, 1, 0, -1, -1);
sub xy_to_n {
return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
my ($self, $x, $y) = @_;
### TerdragonCurve xy_to_n_list(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
if (is_infinite($x)) {
return $x; # infinity
}
if (is_infinite($y)) {
return $y; # infinity
}
my @n_list;
my $xm = 2*$x; # doubled out
my $ym = 2*$y;
foreach my $i (0 .. $#try_dx) {
my $t = $self->Math::PlanePath::TerdragonMidpoint::xy_to_n
($xm+$try_dx[$i], $ym+$try_dy[$i]);
### try: ($xm+$try_dx[$i]).",".($ym+$try_dy[$i])
### $t
next unless defined $t;
# function call here to get our n_to_xy(), not the overridden method
# when in TerdragonRounded or other subclass
my ($tx,$ty) = n_to_xy($self,$t)
or next;
if ($tx == $x && $ty == $y) {
### found: $t
if (@n_list && $t < $n_list[0]) {
unshift @n_list, $t;
} elsif (@n_list && $t < $n_list[-1]) {
splice @n_list, -1,0, $t;
} else {
push @n_list, $t;
}
if (@n_list == 3) {
return @n_list;
}
}
}
return @n_list;
}
# minimum -- no, not quite right
#
# *----------*
# \
# \ *
# * \
# \
# *----------*
#
# width = side/2
# minimum = side*sqrt(3)/2 - width
# = side*(sqrt(3)/2 - 1)
#
# minimum 4/9 * 2.9^level roughly
# h = 4/9 * 2.9^level
# 2.9^level = h*9/4
# level = log(h*9/4)/log(2.9)
# 3^level = 3^(log(h*9/4)/log(2.9))
# = h*9/4, but big bigger for log
#
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### TerdragonCurve rect_to_n_range(): "$x1,$y1 $x2,$y2"
my $xmax = int(max(abs($x1),abs($x2)));
my $ymax = int(max(abs($y1),abs($y2)));
return (0,
($xmax*$xmax + 3*$ymax*$ymax + 1)
* 2
* $self->{'arms'});
}
my @dir6_to_dx = (2, 1,-1,-2, -1, 1);
my @dir6_to_dy = (0, 1, 1, 0, -1,-1);
my @digit_to_nextturn = (2,-2);
sub n_to_dxdy {
my ($self, $n) = @_;
### n_to_dxdy(): $n
if ($n < 0) {
return; # first direction at N=0
}
if (is_infinite($n)) {
return ($n,$n);
}
my $int = int($n); # integer part
$n -= $int; # fraction part
# initial direction from arm
my $dir6 = _divrem_mutate ($int, $self->{'arms'});
my @ndigits = digit_split_lowtohigh($int,3);
$dir6 += 2 * scalar(grep {$_==1} @ndigits); # count 1s for total turn
$dir6 %= 6;
my $dx = $dir6_to_dx[$dir6];
my $dy = $dir6_to_dy[$dir6];
if ($n) {
# fraction part
# find lowest non-2 digit, or zero if all 2s or no digits at all
$dir6 += $digit_to_nextturn[ first {$_!=2} @ndigits, 0];
$dir6 %= 6;
$dx += $n*($dir6_to_dx[$dir6] - $dx);
$dy += $n*($dir6_to_dy[$dir6] - $dy);
}
return ($dx, $dy);
}
#-----------------------------------------------------------------------------
# eg. arms=5 0 .. 5*3^k step by 5s
# 1 .. 5*3^k+1 step by 5s
# 4 .. 5*3^k+4 step by 5s
#
sub level_to_n_range {
my ($self, $level) = @_;
return (0,
3**$level * $self->{'arms'} + ($self->{'arms'}-1));
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_down_pow ($n - 1, 3);
return $exp + 1;
}
#-----------------------------------------------------------------------------
# right boundary N
# mixed radix binary, ternary
# no 11, 12, 20
# 11 -> 21, including low digit
# run of 11111 becomes 22221
# low to high 1 or 0 <- 0 cannot 20 can 10 00
# 2 or 0 <- 1 cannot 11 can 21 01
# 2 or 0 <- 2 cannot 12 can 02 22
sub _UNDOCUMENTED__right_boundary_i_to_n {
my ($self, $i) = @_;
my @digits = _digit_split_mix23_lowtohigh($i);
for (my $i = $#digits; $i >= 1; $i--) { # high to low
if ($digits[$i] == 1 && $digits[$i-1] != 0) {
$digits[$i] = 2;
}
}
return digit_join_lowtohigh(\@digits, 3, $i*0);
# {
# for (my $i = 0; $i < $#digits; $i++) { # low to high
# if ($digits[$i+1] == 1 && ($digits[$i] == 1 || $digits[$i] == 2)) {
# $digits[$i+1] = 2;
# }
# }
# return digit_join_lowtohigh(\@digits,3);
# }
}
# Return a list of digits, low to high, which is a mixed radix
# representation low digit ternary and the rest binary.
sub _digit_split_mix23_lowtohigh {
my ($n) = @_;
if ($n == 0) {
return ();
}
my $low = _divrem_mutate($n,3);
return ($low, digit_split_lowtohigh($n,2));
}
{
# disallowed digit pairs $disallowed[high][low]
my @disallowed;
$disallowed[1][1] = 1;
$disallowed[1][2] = 1;
$disallowed[2][0] = 1;
sub _UNDOCUMENTED__n_segment_is_right_boundary {
my ($self, $n) = @_;
if (is_infinite($n)) { return 0; }
unless ($n >= 0) { return 0; }
$n = int($n);
# no boundary when arms=6, right boundary is only in arm 0
{
my $arms = $self->{'arms'};
if ($arms == 6) { return 0; }
if (_divrem_mutate($n,$arms)) { return 0; }
}
my $prev = _divrem_mutate($n,3);
while ($n) {
my $digit = _divrem_mutate($n,3);
if ($disallowed[$digit][$prev]) {
return 0;
}
$prev = $digit;
}
return 1;
}
}
#-----------------------------------------------------------------------------
# left boundary N
# mixed 0,1, 2, 10, 11, 12, 100, 101, 102, 110, 111, 112, 1000, 1001, 1002, 1010, 1011, 1012, 1100, 1101, 1102,
# vals 0,1,12,120,121,122,1200,1201,1212,1220,1221,1222,12000,12001,12012,12120,12121,12122,12200,12201,12212,
{
my @_UNDOCUMENTED__left_boundary_i_to_n = ([0,2], # 0
[0,2], # 1
[1,2]); # 2
sub _UNDOCUMENTED__left_boundary_i_to_n {
my ($self, $i, $level) = @_;
### _UNDOCUMENTED__left_boundary_i_to_n(): $i
### $level
if (defined $level && $level < 0) {
if ($i <= 2) {
return $i;
}
$i += 2;
}
my @digits = _digit_split_mix23_lowtohigh($i);
### @digits
if (defined $level) {
if ($level >= 0) {
if (@digits > $level) {
### beyond given level ...
return undef;
}
# pad for $level, total $level many digits
push @digits, (0) x ($level - scalar(@digits));
} else {
### union all levels ...
pop @digits;
if ($digits[-1]) {
push @digits, 0; # high 0,1 or 0,2 when i=3
} else {
$digits[-1] = 1; # high 1
}
}
} else {
### infinite curve, an extra high 0 ...
push @digits, 0;
}
### @digits
my $prev = $digits[0];
foreach my $i (1 .. $#digits) {
$prev = $digits[$i] = $_UNDOCUMENTED__left_boundary_i_to_n[$prev][$digits[$i]];
}
### ternary: @digits
return digit_join_lowtohigh(\@digits, 3, $i*0);
}
}
{
# disallowed digit pairs $disallowed[high][low]
my @disallowed;
$disallowed[0][2] = 1;
$disallowed[1][0] = 1;
$disallowed[1][1] = 1;
sub _UNDOCUMENTED__n_segment_is_left_boundary {
my ($self, $n, $level) = @_;
### _UNDOCUMENTED__n_segment_is_left_boundary(): $n
### $level
if (is_infinite($n)) { return 0; }
unless ($n >= 0) { return 0; }
$n = int($n);
if (defined $level && $level == 0) {
### level 0 curve, N=0 is only segment: ($n == 0)
return ($n == 0);
}
{
my $arms = $self->{'arms'};
if ($arms == 6) {
return 0;
}
my $arm = _divrem_mutate($n,$arms);
if ($arm != $arms-1) {
return 0;
}
}
my $prev = _divrem_mutate($n,3);
if (defined $level) { $level -= 1; }
for (;;) {
if (defined $level && $level == 0) {
### end of level many digits, must be N < 3**$level
return ($n == 0);
}
last unless $n;
my $digit = _divrem_mutate($n,3);
if ($disallowed[$digit][$prev]) {
return 0;
}
if (defined $level) { $level -= 1; }
$prev = $digit;
}
return ((defined $level && $level < 0) # union all levels
|| ($prev != 2)); # not high 2 otherwise
}
sub _UNDOCUMENTED__n_segment_is_any_left_boundary {
my ($self, $n) = @_;
my $prev = _divrem_mutate($n,3);
while ($n) {
my $digit = _divrem_mutate($n,3);
if ($disallowed[$digit][$prev]) {
return 0;
}
$prev = $digit;
}
return 1;
}
# sub left_boundary_n_pred {
# my ($n) = @_;
# my $n3 = '0' . Math::BaseCnv::cnv($n,10,3);
# return ($n3 =~ /02|10|11/ ? 0 : 1);
# }
}
sub _UNDOCUMENTED__n_segment_is_boundary {
my ($self, $n, $level) = @_;
return $self->_UNDOCUMENTED__n_segment_is_right_boundary($n)
|| $self->_UNDOCUMENTED__n_segment_is_left_boundary($n,$level);
}
1;
__END__
# old n_to_xy()
#
# # initial rotation from arm number
# my $arms = $self->{'arms'};
# my $rot = $n % $arms;
# $n = int($n/$arms);
# my @digits;
# my (@si, @sj, @sk); # vectors
# {
# my $si = $zero + 1; # inherit bignum 1
# my $sj = $zero; # inherit bignum 0
# my $sk = $zero; # inherit bignum 0
#
# for (;;) {
# push @digits, ($n % 3);
# push @si, $si;
# push @sj, $sj;
# push @sk, $sk;
# ### push: "digit $digits[-1] $si,$sj,$sk"
#
# $n = int($n/3) || last;
#
# # straight + rot120 + straight
# ($si,$sj,$sk) = (2*$si - $sj,
# 2*$sj - $sk,
# 2*$sk + $si);
# }
# }
# ### @digits
#
# my $i = $zero;
# my $j = $zero;
# my $k = $zero;
# while (defined (my $digit = pop @digits)) { # digits high to low
# my $si = pop @si;
# my $sj = pop @sj;
# my $sk = pop @sk;
# ### at: "$i,$j,$k $digit side $si,$sj,$sk"
# ### $rot
#
# $rot %= 6;
# if ($rot == 1) { ($si,$sj,$sk) = (-$sk,$si,$sj); }
# elsif ($rot == 2) { ($si,$sj,$sk) = (-$sj,-$sk,$si); }
# elsif ($rot == 3) { ($si,$sj,$sk) = (-$si,-$sj,-$sk); }
# elsif ($rot == 4) { ($si,$sj,$sk) = ($sk,-$si,-$sj); }
# elsif ($rot == 5) { ($si,$sj,$sk) = ($sj,$sk,-$si); }
#
# if ($digit) {
# $i += $si; # digit=1 or digit=2
# $j += $sj;
# $k += $sk;
# if ($digit == 2) {
# $i -= $sj; # digit=2, straight+rot120
# $j -= $sk;
# $k += $si;
# } else {
# $rot += 2; # digit=1
# }
# }
# }
#
# $rot %= 6;
# $i = $frac * $dir6_to_si[$rot] + $i;
# $j = $frac * $dir6_to_sj[$rot] + $j;
# $k = $frac * $dir6_to_sk[$rot] + $k;
#
# ### final: "$i,$j,$k"
# return (2*$i + $j - $k, $j+$k);
=for stopwords eg Ryde Dragon Math-PlanePath Nlevel Knuth et al vertices doublings OEIS Online terdragon ie morphism si,sj,sk dX,dY Pari rhombi dX si
=head1 NAME
Math::PlanePath::TerdragonCurve -- triangular dragon curve
=head1 SYNOPSIS
use Math::PlanePath::TerdragonCurve;
my $path = Math::PlanePath::TerdragonCurve->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Davis>X<Knuth, Donald>This is the terdragon curve by Davis and Knuth,
=over
Chandler Davis and Donald Knuth, "Number Representations and Dragon Curves
-- I", Journal Recreational Mathematics, volume 3, number 2 (April 1970),
pages 66-81 and "Number Representations and Dragon Curves -- II", volume 3,
number 3 (July 1970), pages 133-149.
Reprinted with addendum in Knuth "Selected Papers on Fun and Games", 2010,
pages 571--614.
=back
Points are a triangular grid using every second integer X,Y as per
L<Math::PlanePath/Triangular Lattice>, beginning
\ / \
--- 26,29,32 ---------- 27 6
/ \
\ / \
-- 24,33,42 ---------- 22,25 5
/ \ / \
\ / \
--- 20,23,44 -------- 12,21 10 4
/ \ / \ / \
\ / \ / \ / \
18,45 --------- 13,16,19 ------ 8,11,14 -------- 9 3
\ / \ / \
\ / \ / \
17 6,15 --------- 4,7 2
\ / \
\ / \
2,5 ---------- 3 1
\
\
0 ----------- 1 <-Y=0
^ ^ ^ ^ ^ ^ ^
-3 -2 -1 X=0 1 2 3
The base figure is an "S" shape
2-----3
\
\
0-----1
which then repeats in self-similar style, so N=3 to N=6 is a copy rotated
+120 degrees, which is the angle of the N=1 to N=2 edge,
6 4 base figure repeats
\ / \ as N=3 to N=6,
\/ \ rotated +120 degrees
5 2----3
\
\
0-----1
Then N=6 to N=9 is a plain horizontal, which is the angle of N=2 to N=3,
8-----9 base figure repeats
\ as N=6 to N=9,
\ no rotation
6----7,4
\ / \
\ / \
5,2----3
\
\
0-----1
Notice X=1,Y=1 is visited twice as N=2 and N=5. Similarly X=2,Y=2 as N=4
and N=7. Each point can repeat up to 3 times. "Inner" points are 3 times
and on the edges up to 2 times. The first tripled point is X=1,Y=3 which as
shown above is N=8, N=11 and N=14.
The curve never crosses itself. The vertices touch as triangular corners
and no edges repeat.
The curve turns are the same as the C<GosperSide>, but here the turns are by
120 degrees each whereas C<GosperSide> is 60 degrees each. The extra angle
here tightens up the shape.
=head2 Spiralling
The first step N=1 is to the right along the X axis and the path then slowly
spirals anti-clockwise and progressively fatter. The end of each
replication is
Nlevel = 3^level
That point is at level*30 degrees around (as reckoned with Y*sqrt(3) for a
triangular grid).
Nlevel X, Y Angle (degrees)
------ ------- -----
1 1, 0 0
3 3, 1 30
9 3, 3 60
27 0, 6 90
81 -9, 9 120
243 -27, 9 150
729 -54, 0 180
The following is points N=0 to N=3^6=729 going half-circle around to 180
degrees. The N=0 origin is marked "0" and the N=729 end is marked "E".
=cut
# the following generated by
# math-image --path=TerdragonCurve --expression='i<=729?i:0' --text --size=132x40
=pod
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* E * * * * * * * * * * * * * * * * 0 *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * *
* * * * * * * *
* * * *
=head2 Tiling
The little "S" shapes of the base figure N=0 to N=3 can be thought of as a
rhombus
2-----3
. .
. .
0-----1
The "S" shapes of each 3 points make a tiling of the plane with those rhombi
\ \ / / \ \ / /
*-----*-----* *-----*-----*
/ / \ \ / / \ \
\ / / \ \ / / \ \ /
--*-----* *-----*-----* *-----*--
/ \ \ / / \ \ / / \
\ \ / / \ \ / /
*-----*-----* *-----*-----*
/ / \ \ / / \ \
\ / / \ \ / / \ \ /
--*-----* *-----o-----* *-----*--
/ \ \ / / \ \ / / \
\ \ / / \ \ / /
*-----*-----* *-----*-----*
/ / \ \ / / \ \
Which is an ancient pattern,
=over
L<http://tilingsearch.org/HTML/data23/C07A.html>
=back
=head2 Arms
The curve fills a sixth of the plane and six copies rotated by 60, 120, 180,
240 and 300 degrees mesh together perfectly. The C<arms> parameter can
choose 1 to 6 such curve arms successively advancing.
For example C<arms =E<gt> 6> begins as follows. N=0,6,12,18,etc is the
first arm (the same shape as the plain curve above), then N=1,7,13,19 the
second, N=2,8,14,20 the third, etc.
\ / \ /
\ / \ /
--- 8/13/31 ---------------- 7/12/30 ---
/ \ / \
\ / \ / \ /
\ / \ / \ /
--- 9/14/32 ------------- 0/1/2/3/4/5 -------------- 6/17/35 ---
/ \ / \ / \
/ \ / \ / \
\ / \ /
--- 10/15/33 ---------------- 11/16/34 ---
/ \ / \
/ \ / \
With six arms every X,Y point is visited three times, except the origin 0,0
where all six begin. Every edge between points is traversed once.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::TerdragonCurve-E<gt>new ()>
=item C<$path = Math::PlanePath::TerdragonCurve-E<gt>new (arms =E<gt> 6)>
Create and return a new path object.
The optional C<arms> parameter can make 1 to 6 copies of the curve, each arm
successively advancing.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. If there's nothing at
C<$x,$y> then return C<undef>.
The curve can visit an C<$x,$y> up to three times. C<xy_to_n()> returns the
smallest of the these N values.
=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>
Return a list of N point numbers for coordinates C<$x,$y>. There can be
none, one, two or three N's for a given C<$x,$y>.
=back
=head2 Descriptive Methods
=over
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=item C<$dx = $path-E<gt>dx_minimum()>
=item C<$dx = $path-E<gt>dx_maximum()>
=item C<$dy = $path-E<gt>dy_minimum()>
=item C<$dy = $path-E<gt>dy_maximum()>
The dX,dY values on the first arm take three possible combinations, being
120 degree angles.
dX,dY for arms=1
-----
2, 0 dX minimum = -1, maximum = +2
-1, 1 dY minimum = -1, maximum = +1
1,-1
For 2 or more arms the second arm is rotated by 60 degrees so giving the
following additional combinations, for a total six. This changes the dX
minimum.
dX,dY for arms=2 or more
-----
-2, 0 dX minimum = -2, maximum = +2
1, 1 dY minimum = -1, maximum = +1
-1,-1
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 3**$level)>, or for multiple arms return C<(0, $arms *
3**$level + ($arms-1))>.
There are 3^level segments in a curve level, so 3^level+1 points numbered
from 0. For multiple arms there are arms*(3^level+1) points, numbered from
0 so n_hi = arms*(3^level+1)-1.
=back
=head1 FORMULAS
Various formulas for boundary length and area can be found in the author's
mathematical write-up
=over
L<http://user42.tuxfamily.org/terdragon/index.html>
=back
=head2 N to X,Y
There's no reversals or reflections in the curve so C<n_to_xy()> can take
the digits of N either low to high or high to low and apply what is
effectively powers of the N=3 position. The current code goes low to high
using i,j,k coordinates as described in L<Math::PlanePath/Triangular
Calculations>.
si = 1 # position of endpoint N=3^level
sj = 0 # where level=number of digits processed
sk = 0
i = 0 # position of N for digits so far processed
j = 0
k = 0
loop base 3 digits of N low to high
if digit == 0
i,j,k no change
if digit == 1
(i,j,k) = (si-j, sj-k, sk+i) # rotate +120, add si,sj,sk
if digit == 2
i -= sk # add (si,sj,sk) rotated +60
j += si
k += sj
(si,sj,sk) = (si - sk, # add rotated +60
sj + si,
sk + sj)
The digit handling is a combination of rotate and offset,
digit==1 digit 2
rotate and offset offset at si,sj,sk rotated
^ 2------>
\
\ \
*--- --1 *-- --*
The calculation can also be thought of in term of w=1/2+I*sqrt(3)/2, a
complex number sixth root of unity. i is the real part, j in the w
direction (60 degrees), and k in the w^2 direction (120 degrees). si,sj,sk
increase as if multiplied by w+1.
=head2 Turn
At each point N the curve always turns 120 degrees either to the left or
right, it never goes straight ahead. If N is written in ternary then the
lowest non-zero digit gives the turn
ternary lowest
non-zero digit turn
-------------- -----
1 left
2 right
At N=3^level or N=2*3^level the turn follows the shape at that 1 or 2 point.
The first and last unit step in each level are in the same direction, so the
next level shape gives the turn.
2*3^k-------3*3^k
\
\
0-------1*3^k
=head2 Next Turn
The next turn, ie. the turn at position N+1, can be calculated from the
ternary digits of N similarly. The lowest non-2 digit gives the turn.
ternary lowest
non-2 digit turn
-------------- -----
0 left
1 right
If N is all 2s then the lowest non-2 is taken to be a 0 above the high end.
For example N=8 is 22 ternary so considered 022 for lowest non-2 digit=0 and
turn left after the segment at N=8, ie. at point N=9 turn left.
This rule works for the same reason as the plain turn above. The next turn
of N is the plain turn of N+1 and adding +1 turns trailing 2s into trailing
0s and increments the 0 or 1 digit above them to be 1 or 2.
=head2 Total Turn
The direction at N, ie. the total cumulative turn, is given by the number of
1 digits when N is written in ternary,
direction = (count 1s in ternary N) * 120 degrees
For example N=12 is ternary 110 which has two 1s so the cumulative turn at
that point is 2*120=240 degrees, ie. the segment N=16 to N=17 is at angle
240.
The segments for digit 0 or 2 are in the "current" direction unchanged. The
segment for digit 1 is rotated +120 degrees.
=head2 X,Y to N
The current code applies C<TerdragonMidpoint> C<xy_to_n()> to calculate six
candidate N from the six edges around a point. Those N values which convert
back to the target X,Y by C<n_to_xy()> are the results for
C<xy_to_n_list()>.
The six edges are three going towards the point and three going away. The
midpoint calculation gives N-1 for the towards and N for the away. Is there
a good way to tell which edge will be the smaller? Or just which 3 edges
lead away? It would be directions 0,2,4 for the even arms and 1,3,5 for the
odd ones, but identifying the boundaries of those arms to know which is
which is difficult.
=head2 X,Y Visited
When arms=6 all "even" points of the plane are visited. As per the
triangular representation of X,Y this means
X+Y mod 2 == 0 "even" points
=head1 OEIS
The terdragon is in Sloane's Online Encyclopedia of Integer Sequences as,
=over
L<http://oeis.org/A080846> (etc)
=back
A080846 next turn 0=left,1=right, by 120 degrees
(n=0 is turn at N=1)
A060236 turn 1=left,2=right, by 120 degrees
(lowest non-zero ternary digit)
A137893 turn 1=left,0=right (morphism)
A189640 turn 0=left,1=right (morphism, extra initial 0)
A189673 turn 1=left,0=right (morphism, extra initial 0)
A038502 strip trailing ternary 0s,
taken mod 3 is turn 1=left,2=right
A189673 and A026179 start with extra initial values arising from their
morphism definition. That can be skipped to consider the turns starting
with a left turn at N=1.
A026225 N positions of left turns,
being (3*i+1)*3^j so lowest non-zero digit is a 1
A026179 N positions of right turns (except initial 1)
A060032 bignum turns 1=left,2=right to 3^level
A062756 total turn, count ternary 1s
A005823 N positions where total turn == 0, ternary no 1s
A111286 boundary length, N=0 to N=3^k, skip initial 1
A003945 boundary/2
A002023 boundary odd levels N=0 to N=3^(2k+1),
or even levels one side N=0 to N=3^(2k),
being 6*4^k
A164346 boundary even levels N=0 to N=3^(2k),
or one side, odd levels, N=0 to N=3^(2k+1),
being 3*4^k
A042950 V[k] boundary length
A056182 area enclosed N=0 to N=3^k, being 2*(3^k-2^k)
A081956 same
A118004 1/2 area N=0 to N=3^(2k+1), odd levels, 9^n-4^n
A155559 join area, being 0 then 2^k
A092236 count East segments N=0 to N=3^k
A135254 count North-West segments N=0 to N=3^k, extra 0
A133474 count South-West segments N=0 to N=3^k
A057083 count segments diff from 3^(k-1)
A057682 level X, at N=3^level
also arms=2 level Y, at N=2*3^level
A057083 level Y, at N=3^level
also arms=6 level X at N=6*3^level
A057681 arms=2 level X, at N=2*3^level
also arms=3 level Y at 3*3^level
A103312 same
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::TerdragonRounded>,
L<Math::PlanePath::TerdragonMidpoint>,
L<Math::PlanePath::GosperSide>
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::R5DragonCurve>
Larry Riddle's Terdragon page, for boundary and area calculations of the
terdragon as an infinite fractal
L<http://ecademy.agnesscott.edu/~lriddle/ifs/heighway/terdragon.htm>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|