/usr/share/perl5/Math/PlanePath/TerdragonMidpoint.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=TerdragonMidpoint --lines --scale=40
#
# math-image --path=TerdragonMidpoint --all --output=numbers_dash --size=78x60
# math-image --path=TerdragonMidpoint,arms=6 --all --output=numbers_dash --size=78x60
package Math::PlanePath::TerdragonMidpoint;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'digit_join_lowtohigh',
'round_down_pow';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant parameter_info_array => [ { name => 'arms',
share_key => 'arms_6',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 6,
default => 1,
width => 1,
description => 'Arms',
} ];
{
my @x_negative_at_n = (undef, 12, 5, 2, 2, 2, 2);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
{
my @y_negative_at_n = (undef, 158, 73, 17, 7, 4, 4);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
use constant sumabsxy_minimum => 2; # X=2,Y=0 or X=1,Y=1
sub rsquared_minimum {
my ($self) = @_;
return ($self->arms_count < 2
? 4 # 1 arm, minimum X=2,Y=0
: 2); # 2 or more arms, minimum X=1,Y=1
}
use constant dx_minimum => -2;
sub dx_maximum {
my ($self) = @_;
return ($self->{'arms'} == 1 ? 1 : 2);
}
use constant dy_minimum => -1;
use constant dy_maximum => 1;
sub _UNDOCUMENTED__dxdy_list {
my ($self) = @_;
return ($self->{'arms'} == 1
? (1,1, # NE
-2,0, # W
1,-1) # SE
: Math::PlanePath::_UNDOCUMENTED__dxdy_list_six());
}
{
my @_UNDOCUMENTED__dxdy_list_at_n = (undef,
12, 25, 37,
15, 18, 5);
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
}
}
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
# arms=1 curve goes at 60,180,300 degrees
# arms=2 second +60 to 120,240,0 degrees
# so when arms==1 dir minimum is 60 degrees North-East
#
sub dir_minimum_dxdy {
my ($self) = @_;
return ($self->{'arms'} == 1
? (1,1) # North-East
: (1,0)); # East
}
use constant dir_maximum_dxdy => (1,-1); # South-East
#------------------------------------------------------------------------------
# Not quite.
# # all even points when arms==3
# use Math::PlanePath::TerdragonCurve;
# *xy_is_visited = \&Math::PlanePath::TerdragonCurve::xy_is_visited;
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(6, $self->{'arms'} || 1));
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### TerdragonMidpoint n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n, $n); }
{
my $int = int($n);
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
# ENHANCE-ME: own code ...
#
require Math::PlanePath::TerdragonCurve;
my ($x1,$y1) = $self->Math::PlanePath::TerdragonCurve::n_to_xy($n);
my ($x2,$y2) = $self->Math::PlanePath::TerdragonCurve::n_to_xy($n+$self->{'arms'});
# dx = x2-x1
# X = 2 * (x1 + dx/2)
# = 2 * (x1 + x2/2 - x1/2)
# = 2 * (x1/2 + x2/2)
# = x1+x2
return ($x1+$x2,
$y1+$y2);
}
# sub n_to_xy {
# my ($self, $n) = @_;
# ### TerdragonMidpoint n_to_xy(): $n
#
# if ($n < 0) { return; }
# if (is_infinite($n)) { return ($n, $n); }
#
# my $frac;
# {
# my $int = int($n);
# $frac = $n - $int; # inherit possible BigFloat
# $n = $int; # BigFloat int() gives BigInt, use that
# }
#
# my $zero = ($n * 0); # inherit bignum 0
#
# ($n, my $rot) = _divrem ($n, $self->{'arms'});
#
# # ENHANCE-ME: sx,sy just from len,len
# my @digits;
# my @sx;
# my @sy;
# {
# my $sx = $zero + 1;
# my $sy = -$sx;
# while ($n) {
# push @digits, ($n % 2);
# push @sx, $sx;
# push @sy, $sy;
# $n = int($n/2);
#
# # (sx,sy) + rot+90(sx,sy)
# ($sx,$sy) = ($sx - $sy,
# $sy + $sx);
# }
# }
#
# ### @digits
# my $rev = 0;
# my $x = $zero;
# my $y = $zero;
# my $above_low_zero = 0;
#
# for (my $i = $#digits; $i >= 0; $i--) { # high to low
# my $digit = $digits[$i];
# my $sx = $sx[$i];
# my $sy = $sy[$i];
# ### at: "$x,$y $digit side $sx,$sy"
# ### $rot
#
# if ($rot & 2) {
# $sx = -$sx;
# $sy = -$sy;
# }
# if ($rot & 1) {
# ($sx,$sy) = (-$sy,$sx);
# }
# ### rotated side: "$sx,$sy"
#
# if ($rev) {
# if ($digit) {
# $x += -$sy;
# $y += $sx;
# ### rev add to: "$x,$y next is still rev"
# } else {
# $above_low_zero = $digits[$i+1];
# $rot ++;
# $rev = 0;
# ### rev rot, next is no rev ...
# }
# } else {
# if ($digit) {
# $rot ++;
# $x += $sx;
# $y += $sy;
# $rev = 1;
# ### plain add to: "$x,$y next is rev"
# } else {
# $above_low_zero = $digits[$i+1];
# }
# }
# }
#
# # Digit above the low zero is the direction of the next turn, 0 for left,
# # 1 for right.
# #
# ### final: "$x,$y rot=$rot above_low_zero=".($above_low_zero||0)
#
# if ($rot & 2) {
# $frac = -$frac; # rotate 180
# $x -= 1;
# }
# if (($rot+1) & 2) {
# # rot 1 or 2
# $y += 1;
# }
# if (!($rot & 1) && $above_low_zero) {
# $frac = -$frac;
# }
# $above_low_zero ^= ($rot & 1);
# if ($above_low_zero) {
# $y = $frac + $y;
# } else {
# $x = $frac + $x;
# }
#
# ### rotated offset: "$x_offset,$y_offset return $x,$y"
# return ($x,$y);
# }
# w^2 = -1+w
# c = (X-Y)/2 x=2c+d
# d = Y y=d
# (c+dw)/(w+1)
# = (c+dw)*(2-w)/3
# = (2c-cw + 2dw-dw^2) / 3
# = (2c-cw + 2dw-d(w-1)) / 3
# = (2c-cw + 2dw-dw+d)) / 3
# = (2c+d + w(-c + 2d-d)) / 3
# = (2c+d + w(d-c)) / 3
#
# = (x-y+y + w(y - (x-y)/2)) / 3
# = (x + w((2y-x+y)/2)) / 3
# = (x + w((3y-x)/2)) / 3
# then
# xq = 2c+d
# = (2x + (3y-x)/2 ) / 3
# = (4x + 3y-x)/6
# = (3x+3y)/6
# = (x+y)/2
# yq = d = (3y-x)/6
#
# (-1+5w)(2-w) x=2*-1+5=3,y=5
# = -2+w+10w-5w^2
# = -2+11w-5(w-1)
# = -2+11w-5w+5
# = 3+6w -> 1+2w
# c=2*-1+5=3 d=-1+5=4
# x=2*1+2=4 y=3
#
# (w+1)*(2-w)
# = 2w-w^2+2-w
# = 2w-(w-1)+2-w
# = 2w-w+1+2-w
# = 3 -> 1 x=2
#
# 3w*(2-w) x=3,y=3 div x=3,y(3+3)/2=3
# = 6w-3w^2
# = 6w-3(w-1)
# = 6w-3w+3
# = 3w+3 -> w+1 x=3,y=1
#
# (w+1)(w+1)
# = w^2+2w+1
# = w-1+2w+1
# = 3w
#
#
# x=3,y=3 (x+y)/2=3
# X=-3 -2 -1 0 1 2 3
my @yx_to_arm = ([9, 9, 9, 4, 9, 9, 9], # Y=-2
[3, 9, 9, 9, 9, 9, 5], # Y=-1
[9, 9, 9, 9, 9, 9, 9], # Y=0
[2, 9, 9, 9, 9, 9, 0], # Y=1
[9, 9, 9, 1, 9, 9, 9], # Y= 2
);
# my @yx_to_dxdy = (undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1,
# 1,1, 0,0, -1,-1, -2,0, 0,0, 2,0,
# undef,undef, 1,-1, undef,undef, -1,1, undef,undef, 0,0,
# 0,0, 2,0, 1,1, 0,0, -1,-1, -2,0,
# undef,undef, 0,0, undef,undef, 1,-1, undef,undef, -1,1,
# -1,-1, -2,0, 0,0, 2,0, 1,1, 0,0,
# );
my @yx_to_dxdy # 12 each row
= (undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef,
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef,
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1,
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0,
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef,
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef,
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0,
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1,
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef,
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef,
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1,
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0,
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef,
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef,
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0,
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1,
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef,
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef,
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1,
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0,
0,0, undef,undef, undef,undef, undef,undef, -1,-1, undef,undef,
undef,undef, undef,undef, 1,1, undef,undef, undef,undef, undef,undef,
undef,undef, 2,0, undef,undef, 0,0, undef,undef, -2,0,
undef,undef, -1,1, undef,undef, 0,0, undef,undef, 1,-1,
);
my @x_to_digit = (1, 2, 0); # digit = X+1 mod 3
sub xy_to_n {
my ($self, $x, $y) = @_;
### TerdragonMidpoint xy_to_n(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
if (is_infinite($x)) {
return $x; # infinity
}
if (is_infinite($y)) {
return $y; # infinity
}
my $zero = ($x * 0 * $y); # inherit bignum 0
my @ndigits; # low to high;
for (;;) {
my $digit = $x_to_digit[$x%3];
my $k = 2*(12*($y%12) + ($x%12));
my $dx = $yx_to_dxdy[$k++];
if (! defined $dx) {
### not a visited point ...
return undef;
}
### at: "$x,$y (k=$k) n=$n digit=$digit k=$k offset=$yx_to_dxdy[$k-1],$yx_to_dxdy[$k] to ".($x+$yx_to_dxdy[$k-1]).",".($y+$yx_to_dxdy[$k])
push @ndigits, $digit;
$x += $dx;
$y += $yx_to_dxdy[$k];
last if ($x <= 3 && $x >= -3 && $y <= 2 && $y >= -2);
### assert: ($x+$y) % 2 == 0
### assert: $x % 3 == 0
### assert: (3 * $y - $x) % 6 == 0
($x,$y) = (($x+$y)/2, # divide w+1
($y-$x/3)/2);
### divide down to: "$x,$y"
}
### final: "xy=$x,$y"
my $arm = $yx_to_arm[$y+2][$x+3] || 0; # 0 to 5
### $arm
my $arms_count = $self->arms_count;
if ($arm >= $arms_count) {
return undef;
}
if ($arm & 1) {
### flip ...
@ndigits = map {2-$_} @ndigits;
}
return digit_join_lowtohigh(\@ndigits, 3, $zero) * $arms_count + $arm;
}
# quarter size of TerdragonCurve
#
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### TerdragonCurve rect_to_n_range(): "$x1,$y1 $x2,$y2"
my $xmax = int(max(abs($x1),abs($x2)));
my $ymax = int(max(abs($y1),abs($y2)));
return (0,
int (($xmax*$xmax + 3*$ymax*$ymax + 1)
/ 2)
* $self->{'arms'});
}
#-----------------------------------------------------------------------------
# level_to_n_range()
# 3^level segments, one midpoint each
# arms*3^level when multi-arm
# numbered starting 0
#
sub level_to_n_range {
my ($self, $level) = @_;
return (0,
3**$level * $self->{'arms'} - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_down_pow ($n, 3);
return $exp + 1;
}
#-----------------------------------------------------------------------------
1;
__END__
# 72----66----60----54
# \ /
# 55 78 48
# / \ \ /
# 61 49 96----90----84 42
# / \ /
# 67 43 19 36
# / \ / \ /
# 73----79----85 37 25 13 30----24----18
# / \ / \ /
# 91 31 7 12
# / \ /
# 97 20----14-----8-----2 1 6 35----41----47--...
# \ / \
# 26 3 0 29
# \ / \
# ...-44----38----32 9 4 5----11----17----23 100
# / \ /
# 15 10 34 94
# / \ / \ /
# 21----27----33 16 28 40 88----82----76
# / \ / \ /
# 39 22 46 70
# / \ /
# 45 87----93----99 52 64
# / \ \ /
# 51 81 58
# / \
# 57----63----69----75
=for stopwords eg Ryde Terdragon Math-PlanePath Nlevel Davis Knuth et al terdragon ie Xadj Yadj
=head1 NAME
Math::PlanePath::TerdragonMidpoint -- dragon curve midpoints
=head1 SYNOPSIS
use Math::PlanePath::TerdragonMidpoint;
my $path = Math::PlanePath::TerdragonMidpoint->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Davis>X<Knuth, Donald>This is midpoints of an integer version of the
terdragon curve by Davis and Knuth.
30----29----28----27 13
\ /
31 26 12
\ /
36----35----34----33----32 25 11
\ /
37 41 24 10
\ / \ /
38 40 42 23----22----21 9
\ / \ /
39 43 20 8
\ /
48----47----46----45----44 19 12----11----10-----9 7
\ / \ /
49 18 13 8 6
\ / \ /
...---50 17----16----15----14 7 5
/
6 4
/
5-----4-----3 3
/
2 2
/
1 1
/
0 <- Y=0
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 ...
The points are the middle of each edge of a double-size C<TerdragonCurve>.
...
\
6 -----8----- double size
\ TerdragonCurve
\ giving midpoints
5 7
\
\
4 -----6---- _
\ / \
\ / \
3 5 4 3
\ / \
\_/ \
2 _----2-----
\
\
1 1
\
\
Y=0 -> +-----0-----.
^
X=0 1 2 3 4 5 6
For example in the C<TerdragonCurve> N=3 to N=4 is X=3,Y=1 to X=2,Y=2 and
that's doubled out here to X=6,Y=2 and X=4,Y=4 then the midpoint of those
positions is X=5,Y=3 for N=3 in the C<TerdragonMidpoint>.
The result is integer X,Y coordinates on every second point per
L<Math::PlanePath/Triangular Lattice>, but visiting only 3 of every 4 such
triangular points, which in turn is 3 of 8 all integer X,Y points. The
points used are a pattern of alternate rows with 1 of 2 points and 1 of 4
points. For example the Y=7 row is 1 of 2 and the Y=8 row is 1 of 4.
Notice the pattern is the same when turned by 60 degrees.
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
=head2 Arms
Multiple copies of the curve can be selected, each advancing successively.
Like the main C<TerdragonCurve> the midpoint curve covers 1/6 of the plane
and 6 arms rotated by 60, 120, 180, 240 and 300 degrees mesh together
perfectly. With 6 arms all the alternating "1of2" and "1of4" points
described above are visited.
C<arms =E<gt> 6> begins as follows. N=0,6,12,18,etc is the first arm (like
the single curve above), then N=1,7,13,19 the second copy rotated 60
degrees, N=2,8,14,20 the third rotated 120, etc.
arms=>6 ...
/
... 42
\ /
43 19 36
\ / \ /
37 25 13 30----24----18
\ / \ /
31 7 12
\ /
20----14-----8-----2 1 6 35----41----47-..
\ / \
26 3 . 0 29
\ / \
..-44----38----32 9 4 5----11----17----23
/ \
15 10 34
/ \ / \
21----27----33 16 28 40
/ \ / \
39 22 46
/ \
45 ...
/
...
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::TerdragonMidpoint-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 3**$level - 1)>, or for multiple arms return C<(0, $arms *
3**$level - 1)>.
There are 3^level segments comprising the terdragon, or arms*3^level when
multiple arms, numbered starting from 0.
=back
=head1 FORMULAS
=head2 X,Y to N
An X,Y point can be turned into N by dividing out digits of a complex base
w+1 where
w = 1/2 + i * sqrt(3)/2 w^2 w
= 6th root of unity \ /
\ /
w^3=-1 -----o------ w^0=1
/ \
/ \
w^4 w^5
At each step the low ternary digit is formed from X,Y and an adjustment
applied to move X,Y onto a multiple of w+1 ready to divide out w+1.
In the N points above it can be seen that each group of three N values make
a straight line, such as N=0,1,2, or N=3,4,5 etc. The adjustment moves the
two ends N=0mod3 or N=2mod3 to the centre N=1mod3. The centre N=1mod3
position is always a multiple of w+1.
The angles and positions for the N triples follow a 12-point pattern as
follows, where each / \ or - is a point on the path (any arm).
\ / / \ / / \ / / \ / / \
- \ / \ - - - \ / \ - - - \ / \ - - - \ / \ - - -
/ \ / / \ / / \ / / \ /
\ - - - \ / \ - - - \ / \ - - - \ / \ - - - \ / \
\ / / \ / / \ / / \ / / \
- \ / \ - - - \ / \ - - - \ / \ - - - \ / \ - - -
/ \ / / \ / / \ / / \ /
\ - - - \ / \ - - - \ / \ - - - \ / \ - - - \ / \
\ / / \ / / \ / / \ / / \
- \ / \ - - - \ / \ - - - \ / \ - - - \ / \ - - -
/ \ / / \ / / \ / / \ /
\ - - - \ / \ - - - \ / \ - - - \ / \ - - - \ / \
\ / / \ / / \ / / \ / / \
- \ / \ - - - \ / \ - - - \ / \ - - - \ / \ - - -
/ \ / / \ / / \ / / \ /
\ - - - \ / \ - - - \ / \ - - - \ / \ - - - \ / \
\ / / \ / / \ / / \ / / \
- \ / \ - - - \ / \ - - - \ / \ - - - \ / \ - - -
/ \ / / \ / / \ / / \ /
\ - - - \ / \ - - - \ / \ - - - \ / \ - - - \ / \
\ / / \ / / \ / / \ / / \
- \ / \ - - - \ / \ - - - \ / \ - - - \ / \ - - -
/ \ / / \ / / \ / / \ /
\ - - - \ / \ - - - \ / \ - - - \ / \ - - - \ / \
In the current code a 12x12 table is used, indexed by X mod 12 and Y mod 12.
With Xadj and Yadj from there
Ndigit = (X + 1) mod 3 # N digits low to high
Xm = X + Xadj[X mod 12, Y mod 12]
Ym = Y + Yadj[X mod 12, Y mod 12]
new X,Y = (Xm,Ym) / (w+1)
= (Xm,Ym) * (2-w) / 3
= ((Xm+Ym)/2, (Ym-(Xm/3))/2)
Is there a good aX+bY mod 12 or mod 24 for a smaller table? Maybe X+3Y like
the digit? Taking C=(X-Y)/2 in triangular coordinate style can reduce the
table to 6x6.
Points not reached by the curve (ie. not the 3 of 4 triangular or 3 of 8
rectangular described above) can be detected with C<undef> or suitably
tagged entries in the adjustment table.
The X,Y reduction stops at the midpoint of the first triple of the
originating arm. So X=3,Y=1 which is N=1 for the first arm, and that point
rotated by 60,120,180,240,300 degrees for the others. If only some of the
arms are of interest then reaching one of the others means the original X,Y
was outside the desired region.
Arm X,Y Endpoint
--- ------------
0 3,1
1 0,2
2 -3,1
3 -3,-1
4 0,-2
5 3,-1
For the odd arms 1,3,5 each digit of N must be flipped 2-digit so 0,1,2
becomes 2,1,0,
if arm odd
then N = 3**numdigits - 1 - N
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::TerdragonCurve>,
L<Math::PlanePath::TerdragonRounded>
L<Math::PlanePath::DragonMidpoint>,
L<Math::PlanePath::R5DragonMidpoint>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|