This file is indexed.

/usr/share/perl5/Math/PlanePath/TerdragonRounded.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Copyright 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=TerdragonRounded --all --output=numbers
# math-image --path=TerdragonRounded,radix=5 --lines
#


package Math::PlanePath::TerdragonRounded;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow';
use Math::PlanePath::TerdragonCurve;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;

*parameter_info_array   # arms
  = \&Math::PlanePath::TerdragonCurve::parameter_info_array;
*new = \&Math::PlanePath::TerdragonCurve::new;

{
  my @x_negative_at_n = (undef, 24, 7, 2, 2, 2, 2);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef, 316, 145, 32, 11, 4, 4);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}
use constant sumabsxy_minimum => 2; # X=2,Y=0
sub rsquared_minimum {
  my ($self) = @_;
  return ($self->arms_count < 2
          ? 4   # 1 arm, minimum X=2,Y=0
          : 2); # 2 or more arms, minimum X=1,Y=1
}

use constant dx_minimum => -2;
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_six;
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East


#------------------------------------------------------------------------------

sub n_to_xy {
  my ($self, $n) = @_;
  ### TerdragonRounded n_to_xy(): $n

  if ($n < 0) {            # negative
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  {
    # ENHANCE-ME: the ends join and the direction can be had without a full
    # N+1 calculation
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'});
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int; # BigFloat int() gives BigInt, use that
  }

  my $arms_count = $self->{'arms'};
  my $arm = _divrem_mutate ($n, $arms_count);
  my $pair = _divrem_mutate ($n, 2);

  my ($x, $y) = $self->Math::PlanePath::TerdragonCurve::n_to_xy
    ((9*$n + ($pair ? 4 : 2)) * $arms_count + $arm);

  ### is: (($x+3*$y)/2).", ".(($y-$x)/2)

  return (($x+3*$y)/2, ($y-$x)/2);  # rotate -60
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### TerdragonRounded xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  if (($x+$y) % 2) {
    return undef;
  }

  ($x,$y) = (($x-3*$y)/2,   # rotate +60
             ($x+$y)/2);
  ### rot: "$x,$y"

  my @n_list = $self->Math::PlanePath::TerdragonCurve::xy_to_n_list ($x, $y);
  ### @n_list

  my $arms_count = $self->{'arms'};
  foreach my $n (@n_list) {
    my $arm = _divrem_mutate ($n, $arms_count);

    my $mod = $n % 9;
    if ($mod == 2) {
      return (2*int(($n-2)/9))*$arms_count + $arm;
    }
    if ($mod == 4) {
      return (2*int(($n-4)/9) + 1)*$arms_count + $arm;
    }
  }
  return undef;
}

# arms==6 is all "hex_centred" points X+3Y mod 6 == 2 or 4
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  if ($self->{'arms'} == 6) {
    my $mod = (3*$y + $x) % 6;
    return ($mod == 2 || $mod == 4);
  }
  return defined($self->xy_to_n($x,$y));
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  # my $xmax = int(max(abs($x1),abs($x2))) + 1;
  # my $ymax = int(max(abs($y1),abs($y2))) + 1;
  # return (0,
  #         ($xmax*$xmax + 3*$ymax*$ymax)
  #         * 1
  #         * $self->{'arms'});

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  # FIXME: How much wider ?
  # Might matter when TerdragonCurve becomes exact.
  $x1 = int($x1/3) - 2;
  $y1 = int($y1/3) - 2;
  $x2 = int($x2/3) + 2;
  $y2 = int($y2/3) + 2;

  my ($n_lo, $n_hi) = $self->Math::PlanePath::TerdragonCurve::rect_to_n_range
    ($x1,$y1, $x2,$y2);
  if ($n_hi >= $n_hi) {
    $n_lo *= 2;
    $n_hi = 2*$n_hi + 1;
  }
  return ($n_lo, $n_hi);
}


#-----------------------------------------------------------------------------
# level_to_n_range()

# 3^level segments, 2 rounded points each
# arms*2*3^level when multi-arm
# numbered starting 0
#
sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, (2*$self->{'arms'}) * 3**$level - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, 2 * $self->{'arms'});
  my ($pow, $exp) = round_down_pow ($n, 3);
  return $exp + 1;
}

#-----------------------------------------------------------------------------
1;
__END__

=for stopwords Guiseppe Terdragon terdragon eg Sur une courbe qui remplit toute aire Mathematische Annalen Ryde OEIS ie Math-PlanePath versa Online Radix radix Jorg Arndt Hexdragon hexdragon

=head1 NAME

Math::PlanePath::TerdragonRounded -- triangular dragon curve, with rounded corners

=head1 SYNOPSIS

 use Math::PlanePath::TerdragonRounded;
 my $path = Math::PlanePath::TerdragonRounded->new;
 my ($x, $y) = $path->n_to_xy (123);

 # or another radix digits ...
 my $path5 = Math::PlanePath::TerdragonRounded->new (radix => 5);

=head1 DESCRIPTION

This is a version of the terdragon curve with rounded-off corners,

=cut

# math-image --path=TerdragonRounded --all --output=numbers_dash --size=132x70

=pod

    ...         44----43                                   14
      \        /        \
       46----45     .    42                                13
                        /
           .    40----41                                   12
               /
             39     .    24----23          20----19        11
               \        /        \        /        \
           .    38    25     .    22----21     .    18     10
               /        \                          /
       36----37     .    26----27     .    16----17         9
      /                          \        /
    35     .    32----31     .    28    15     .            8
      \        /        \        /        \
       34----33          30----29     .    14               7
                                          /
                             .    12----13     .            6
                                 /
                               11     .     8-----7         5
                                 \        /        \
                                  10-----9     .     6      4
                                                   /
                                      .     4-----5         3
                                          /
                                         3                  2
                                          \
                                      .     2               1
                                          /
                             .     0-----1     .       <- Y=0

     ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
    -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8

The plain C<TerdragonCurve> is tripled in size and two points on each 3-long
edge are visited by the C<TerdragonRounded> here.

=head2 Arms

Multiple copies of the curve can be selected, each advancing successively.
The curve is 1/6 of the plane (like the plain terdragon) and 6 arms rotated
by 60, 120, 180, 240 and 300 degrees mesh together perfectly.

C<arms =E<gt> 6> begins as follows.  N=0,6,12,18,etc is the first arm (the
curve shown above), then N=1,7,13,19 the second copy rotated 60 degrees,
N=2,8,14,20 the third rotated 120, etc.

=cut

# math-image --path=TerdragonRounded,arms=6 --all --output=numbers_dash --size=80x30

=pod

    arms=>6              43----37          72--...
                        /        \        /
               ...    49          31    66          48----42
               /        \        /        \        /        \
             73          55    25          60----54          36
               \        /        \                          /
                67----61          19----13          24----30
                                          \        /
       38----32          14-----8           7    18          71---...
      /        \        /        \        /        \        /
    44          26----20           2     1          12    65
      \                                            /        \
       50----56           9-----3     .     0-----6          59----53
               \        /                                            \
    ...         62    15           4     5          23----29          47
      \        /        \        /        \        /        \        /
       74----68          21    10          11----17          35----41
                        /        \
                33----27          16----22          64----70
               /                          \        /        \
             39          57----63          28    58          76
               \        /        \        /        \        /
                45----51          69    34          52    ...
                                 /        \        /
                          ...--75          40----46

     ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
    -11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9 10 11

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.

=over 4

=item C<$path = Math::PlanePath::TerdragonRounded-E<gt>new ()>

=item C<$path = Math::PlanePath::TerdragonRounded-E<gt>new (arms =E<gt> $count)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2 * 3**$level - 1)>, or for multiple arms return C<(0, 2 *
$arms * 3**$level - 1)>.

These level ranges are like C<TerdragonMidpoint> but with 2 points on each
line segment terdragon line segment instead of 1.

=back

=head1 FORMULAS

=head2 X,Y Visited

When arms=6 all "hex centred" points of the plane are visited, being those
points with

    X+3Y mod 6 == 2 or 4        "hex_centred"

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::TerdragonCurve>,
L<Math::PlanePath::TerdragonMidpoint>,
L<Math::PlanePath::DragonRounded>

X<Arndt, Jorg>X<fxtbook>Jorg Arndt C<http://www.jjj.de/fxt/#fxtbook> section
1.31.4 "Terdragon and Hexdragon", where this rounded terdragon is called
hexdragon.

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut