/usr/share/perl5/Math/PlanePath/UlamWarburtonQuarter.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 | # Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::UlamWarburtonQuarter;
use 5.004;
use strict;
use Carp 'croak';
use List::Util 'sum';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'bit_split_lowtohigh',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant parameter_info_array =>
[
{ name => 'parts',
share_key => 'parts_ulamwarburton_quarter',
display => 'Parts',
type => 'enum',
default => '1',
choices => ['1','octant','octant_up' ],
choices_display => ['1','Octant','Octant Up' ],
description => 'Which parts of the plane to fill.',
},
Math::PlanePath::Base::Generic::parameter_info_nstart1(),
];
use constant class_x_negative => 0;
use constant class_y_negative => 0;
sub diffxy_minimum {
my ($self) = @_;
return ($self->{'parts'} eq 'octant' ? 0 : undef);
}
sub diffxy_maximum {
my ($self) = @_;
return ($self->{'parts'} eq 'octant_up' ? 0 : undef);
}
# Minimum dir=0 at N=13 dX=2,dY=0.
# Maximum dir seems dX=13,dY=-9 at N=149 going top-left part to new bottom
# right diagonal.
my %dir_maximum_dxdy = (1 => [13,-9],
octant => [1,-1], # South-East
octant_up => [0,-1], # South
);
sub dir_maximum_dxdy {
my ($self) = @_;
return @{$dir_maximum_dxdy{$self->{'parts'}}};
}
sub tree_num_children_list {
my ($self) = @_;
return ($self->{'parts'} =~ /octant/
? (0, 1, 2, 3)
: (0, 1, 3));
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
my $parts = ($self->{'parts'} ||= '1');
if (! exists $dir_maximum_dxdy{$parts}) {
croak "Unrecognised parts option: ", $parts;
}
return $self;
}
# 7 7 7 7
# 6 6
# 7 5 5 7
# 4
# 3 3 5 7
# 2 6
# 1 3 7 7
#
# 1+1+3=5
# 5+1+3*5=21
# 1+3 = 4
# 1+3+3+9 = 16
#
# 0
# 1 0 +1
# 2 1 +1 <- 1
# 3 2 +3
# 4 5 +1 <- 1 + 4 = 5
# 5 6 +3
# 6 9 +3
# 7 12 +9
# 8 21 <- 1 + 4 + 16 = 21
# 1+3 = 4 power 2
# 1+3+3+9 = 16 power 3
# 1+3+3+9+3+9+9+27 = 64 power 4
#
# (1+4+16+...+4^(l-1)) = (4^l-1)/3
# l=1 total=(4-1)/3 = 1
# l=2 total=(16-1)/3 = 5
# l=3 total=(64-1)/3=63/3 = 21
#
# n = 1 + (4^l-1)/3
# n-1 = (4^l-1)/3
# 3n-3 = (4^l-1)
# 3n-2 = 4^l
#
# 3^0+3^1+3^1+3^2 = 1+3+3+9=16
# x+3x+3x+9x = 16x = 256
#
# 22
# 20 19 18 17
# 12 11
# 21 9 8 16
# 6
# 5 4 7 15
# 2 10
# 1 3 13 14
#
sub n_to_xy {
my ($self, $n) = @_;
### UlamWarburtonQuarter n_to_xy(): $n
if ($n < $self->{'n_start'}) { return; }
if (is_infinite($n)) { return ($n,$n); }
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
$n = $n - $self->{'n_start'} + 1; # N=1 basis
if ($n == 1) { return (0,0); }
my ($depthsum, $nrem, $rowwidth) = _n1_to_depthsum_rem_width($self,$n)
or return ($n,$n); # N==nan or N==+inf
### assert: $nrem >= 0
### assert: $nrem < $width
if ($self->{'parts'} eq 'octant_up') {
$nrem += ($rowwidth-1)/2;
### assert: $nrem < $width
}
my @ndigits = digit_split_lowtohigh($nrem,3);
my $dhigh = shift(@$depthsum) - 1; # highest term
my $x = 0;
my $y = 0;
foreach my $depthsum (reverse @$depthsum) { # depth terms low to high
my $ndigit = shift @ndigits; # N digits low to high
### $depthsum
### $ndigit
$x += $depthsum;
$y += $depthsum;
### depthsum to xy: "$x,$y"
if ($ndigit) {
if ($ndigit == 2) {
($x,$y) = (-$y,$x); # rotate +90
}
} else {
# digit==0 (or undef when run out of @ndigits)
($x,$y) = ($y,-$x); # rotate -90
}
### rotate to: "$x,$y"
}
### final: "$x,$y"
return ($dhigh + $x, $dhigh + $y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### UlamWarburtonQuarter xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
my $parts = $self->{'parts'};
if ($y < 0
|| $x < ($parts eq 'octant' ? $y : 0)
|| ($parts eq 'octant_up' && $x > $y)) {
return undef;
}
if ($x == 0 && $y == 0) {
return $self->{'n_start'};
}
$x += 1; # pushed away by 1 ...
$y += 1;
my ($len, $exp) = round_down_pow ($x + $y, 2);
if (is_infinite($exp)) { return $exp; }
my $depth
= my $n
= ($x * 0 * $y); # inherit bignum 0
my $rowwidth = $depth + 1;
while ($exp-- >= 0) {
### at: "$x,$y n=$n len=$len"
# first quadrant square
### assert: $x >= 0
### assert: $y >= 0
# ### assert: $x < 2*$len
# ### assert: $y < 2*$len
if ($x >= $len || $y >= $len) {
# one of three quarters away from origin
# +---+---+
# | 2 | 1 |
# +---+---+
# | | 0 |
# +---+---+
$x -= $len;
$y -= $len;
### shift to: "$x,$y"
if ($x) {
unless ($y) {
return undef; # x==0, y!=0, nothing
}
} else {
if ($y) {
return undef; # x!=0, y-=0, nothing
}
}
$depth += $len;
if ($x || $y) {
$rowwidth *= 3;
$n *= 3;
if ($y < 0) {
### bottom right, digit 0 ...
($x,$y) = (-$y,$x); # rotate +90
} elsif ($x >= 0) {
### top right, digit 1 ...
$n += 1;
} else {
### top left, digit 2 ...
($x,$y) = ($y,-$x); # rotate -90
$n += 2;
}
}
}
$len /= 2;
}
### $n
### $depth
if ($self->{'parts'} eq 'octant_up') {
$n -= ($rowwidth-1)/2;
}
return $n + $self->tree_depth_to_n($depth-1);
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### UlamWarburtonQuarter rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x2 < 0 || $y2 < 0) {
return (1, 0); # all outside first quadrant
}
if ($x1 < 0) { $x1 *= 0; }
if ($y1 < 0) { $y1 *= 0; }
# level numbers
my $dlo = ($x1 > $y1 ? $x1 : $y1)+1;
my $dhi = ($x2 > $y2 ? $x2 : $y2);
### $dlo
### $dhi
# round down to level=2^k numbers
if ($dlo) {
($dlo) = round_down_pow ($dlo,2);
}
($dhi) = round_down_pow ($dhi,2);
### rounded to pow2: "$dlo ".(2*$dhi)
return ($self->tree_depth_to_n($dlo-1),
$self->tree_depth_to_n(2*$dhi-1));
}
#------------------------------------------------------------------------------
use constant tree_num_roots => 1;
# ENHANCE-ME: step by the bits, not by X,Y
sub tree_n_children {
my ($self, $n) = @_;
if ($n < $self->{'n_start'}) {
return;
}
my ($x,$y) = $self->n_to_xy($n);
my @ret;
my $dx = 1;
my $dy = 1;
foreach (1 .. 4) {
if (defined (my $n_child = $self->xy_to_n($x+$dx,$y+$dy))) {
if ($n_child > $n) {
push @ret, $n_child;
}
}
($dx,$dy) = (-$dy,$dx); # rotate +90
}
return sort {$a<=>$b} @ret;
}
sub tree_n_parent {
my ($self, $n) = @_;
if ($n <= $self->{'n_start'}) {
return undef;
}
my ($x,$y) = $self->n_to_xy($n);
my $dx = 1;
my $dy = 1;
foreach (1 .. 4) {
if (defined (my $n_parent = $self->xy_to_n($x+$dx,$y+$dy))) {
if ($n_parent < $n) {
return $n_parent;
}
}
($dx,$dy) = (-$dy,$dx); # rotate +90
}
return undef;
}
# level = depth+1 = 2^a + 2^b + 2^c + 2^d ... a>b>c>d...
# Ndepth = 1 + (-1
# + 4^a
# + 3 * 4^b
# + 3^2 * 4^c
# + 3^3 * 4^d + ...) / 3
sub tree_depth_to_n {
my ($self, $depth) = @_;
### tree_depth_to_n(): $depth
if (is_infinite($depth)) {
return $depth;
}
unless ($depth >= 0) {
return undef;
}
my $n = $depth*0; # inherit bignum 0
my $pow3 = 1 + $n; # inherit bignum 1
foreach my $bit (reverse bit_split_lowtohigh($depth+1)) { # high to low
$n *= 4;
if ($bit) {
$n += $pow3;
$pow3 *= 3;
}
}
if ($self->{'parts'} =~ /octant/) {
$n = ($n + (3*$depth-1))/6;
} else {
$n = ($n-1)/3;
}
return $n + $self->{'n_start'};
}
sub tree_n_to_depth {
my ($self, $n) = @_;
$n = int($n - $self->{'n_start'} + 1); # N=1 basis
if ($n < 1) {
return undef;
}
(my $depthsum, $n) = _n1_to_depthsum_rem_width($self,$n)
or return $n; # N==nan or N==+infinity
return sum(-1, @$depthsum);
}
# Return ($aref, $remaining_n).
# sum(@$aref) = depth starting depth=1
#
# depth+1 = 2^k
# Ndepth(depth) = (4^k+2)/3
# 3N-2 = 4^k
# NdepthOct(depth) = ((4^k+2)/3 + 2^k)/2
# 6N-2 = 4^k + 3*2^k
#
sub _n1_to_depthsum_rem_width {
my ($self, $n) = @_;
### _n1_to_depthsum_rem_width(): $n
my $octant = ($self->{'parts'} =~ /octant/);
my ($power, $exp) = round_down_pow (($octant ? 6 : 3)*$n - 2, 4);
if (is_infinite($exp)) {
return;
}
### $power
### $exp
### pow base: ($power - 1)/3 + 1
{
my $sub = ($power + 2)/3; # (power-1)/3 + 1
if ($octant) {
$sub = ($sub + 2**$exp) / 2;
### prospective sub: $sub
### assert: $sub == ($power + 3 * 2 ** $exp + 2)/6
if ($sub > $n) {
$exp -= 1;
$power /= 4;
$sub = ($power + 3*2**$exp + 2)/6;
}
}
### assert: $sub <= $n
$n -= $sub;
}
### n less pow base: $n
my @depthsum = (2**$exp);
# find the cumulative levelpoints total <= $n, being the start of the
# level containing $n
#
my $factor = 1;
while (--$exp >= 0) {
$power /= 4;
my $sub = $power * $factor;
if ($octant) {
$sub = ($sub + 2**$exp)/2;
}
### $sub
my $rem = $n - $sub;
### $n
### $power
### $factor
### consider subtract: $sub
### $rem
if ($rem >= 0) {
$n = $rem;
push @depthsum, 2**$exp;
$factor *= 3;
}
}
### _n1_to_depthsum_rem_width() result ...
### @depthsum
### remaining n: $n
### assert: $n >= 0
### assert: $n < $factor
return (\@depthsum, $n, $factor);
}
# at 0,2 turn and new height limit
# at 1 keep existing depth limit
# N=30 rem=1 = 0,1 depth=11=8+2+1=1011 width=9
#
sub tree_n_to_subheight {
my ($self, $n) = @_;
### tree_n_to_subheight(): $n
$n = int($n - $self->{'n_start'} + 1); # N=1 basis
if ($n < 1) {
return undef;
}
my ($depthsum, $nrem, $rowwidth) = _n1_to_depthsum_rem_width($self,$n)
or return $n; # N==nan or N==+infinity
### $depthsum
### $nrem
if ($self->{'parts'} eq 'octant_up') {
$nrem += ($rowwidth-1)/2;
}
my $sub = pop @$depthsum;
while (@$depthsum && _divrem_mutate($nrem,3) == 1) {
$sub += pop @$depthsum;
}
if (@$depthsum) {
return $depthsum->[-1] - 1 - $sub;
} else {
return undef; # $nrem all 1-digits
}
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return ($self->{'n_start'},
$self->tree_depth_to_n_end(2**($level+1) - 2));
}
sub n_to_level {
my ($self, $n) = @_;
my $depth = $self->tree_n_to_depth($n);
if (! defined $depth) { return undef; }
my ($pow, $exp) = round_down_pow ($depth+1, 2);
return $exp;
}
#------------------------------------------------------------------------------
1;
__END__
# Octant depth 0 1 1
# 15 1 2 2
# 14 2 3 3,4
# 9 3 4 5
# 7 13 4 5 6,7
# 5 5 6 8,9
# 4 6 12 6 7 10,11,12,13,14
# 2 8 7 8 15
# 1 3 10 11
#
# Ndepth 2*oct-depth = quad
# oct = (quad+depth)/2
=for stopwords eg Ryde Math-PlanePath Ulam Warburton Ndepth Nend ie OEIS Octant octant
=head1 NAME
Math::PlanePath::UlamWarburtonQuarter -- growth of a 2-D cellular automaton
=head1 SYNOPSIS
use Math::PlanePath::UlamWarburtonQuarter;
my $path = Math::PlanePath::UlamWarburtonQuarter->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Ulam, Stanislaw>X<Warburton>This is the pattern of a cellular automaton
studied by Ulam and Warburton, confined to a quarter of the plane and
oriented diagonally. Cells are numbered by growth tree row and
anti-clockwise within the row.
=cut
# math-image --path=UlamWarburtonQuarter --all --output=numbers --size=70x15
=pod
14 | 81 80 79 78 75 74 73 72
13 | 57 56 55 54
12 | 82 48 47 77 76 46 45 71
11 | 40 39
10 | 83 49 36 35 34 33 44 70
9 | 58 28 27 53
8 | 84 85 37 25 24 32 68 69
7 | 22
6 | 20 19 18 17 23 31 67 66
5 | 12 11 26 52
4 | 21 9 8 16 29 30 43 65
3 | 6 38
2 | 5 4 7 15 59 41 42 64
1 | 2 10 50 51
Y=0| 1 3 13 14 60 61 62 63
+----------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
The growth rule is a given cell grows diagonally NE, NW, SE and SW, but only
if the new cell has no neighbours and is within the first quadrant. So the
initial cell "a" is N=1,
|
| a initial cell, depth=0
+----
It's confined to the first quadrant so can only grow NE as "b",
| b
| a "b" depth=1
+------
Then the next row "c" cells can go in three directions SE, NE, NW. These
cells are numbered anti-clockwise around from the SE as N=3,N=4,N=5.
| c c
| b
| a c "c" depth=2
+---------
The "d" cell is then only a single on the leading diagonal, since the other
diagonals all already have neighbours (the existing "c" cells).
| d
| c c depth=3
| b
| a c
+---------
| e e
| d
| c c e depth=4
| b
| a c
+-----------
| f f
| e e
| d
| c c e depth=5
| b f
| a c
+-------------
| g g g g
| f f
| g e e g
| d
| c c e g depth=6
| b f
| a c g g
+-------------
In general the pattern always always grows by 1 along the X=Y leading
diagonal. The point on that diagonal is the middle of row depth=X. The
pattern expands into the sides with a self-similar diamond shaped pattern
filling 6 of 16 cells in any 4x4 square block.
=head2 Tree Row Ranges
Counting depth=0 as the N=1 at the origin, depth=1 as the next N=2, etc, the
number of new cells added in the tree row is
rowwidth(depth) = 3^(count_1_bits(depth+1) - 1)
=for Test-Pari-DEFINE rowwidth(depth) = 3^(hammingweight(depth+1) - 1)
=for Test-Pari rowwidth(0) == 1 /* a */
=for Test-Pari rowwidth(1) == 1 /* b */
=for Test-Pari rowwidth(2) == 3 /* c */
=for Test-Pari rowwidth(3) == 1 /* d */
So depth=0 has 3^(1-1)=1 cells, as does depth=1 which is N=2. Then depth=2
has 3^(2-1)=3 cells N=3,N=4,N=5 because depth+1=3=0b11 has two 1 bits in
binary. The N row start and end is the cumulative total of those before it,
Ndepth(depth) = 1 + rowwidth(0) + ... + rowwidth(depth-1)
Nend(depth) = rowwidth(0) + ... + rowwidth(depth)
For example depth=2 ends at N=(1+1+3)=5.
=for Test-Pari-DEFINE Ndepth(depth) = 1 + sum(i=0,depth-1, rowwidth(i))
=for Test-Pari-DEFINE Nend(depth) = sum(i=0,depth, rowwidth(i))
=for Test-Pari Nend(2) == 5
depth Ndepth rowwidth Nend
0 1 1 1
1 2 1 2
2 3 3 5
3 6 1 6
4 7 3 9
5 10 3 12
6 13 9 21
7 22 1 22
8 23 3 25
=for Test-Pari vector(9,depth,my(depth=depth-1); Ndepth(depth)) == [1,2,3,6,7,10,13,22,23]
=for Test-Pari vector(9,depth,my(depth=depth-1); rowwidth(depth)) == [1,1,3,1,3,3,9,1,3]
=for Test-Pari vector(9,depth,my(depth=depth-1); Nend(depth)) == [1,2,5,6,9,12,21,22,25]
At row depth+1 = power-of-2 the Ndepth sum is
Ndepth(depth) = 1 + (4^a-1)/3 for depth+1 = 2^a
For example depth=3 is depth+1=2^2 starts at N=1+(4^2-1)/3=6, or depth=7 is
depth+1=2^3 starts N=1+(4^3-1)/3=22.
=for Test-Pari Ndepth(3) == 6
=for Test-Pari Ndepth(7) == 22
Further bits in the depth+1 contribute powers-of-4 with a tripling for each
bit above it. So if depth+1 has bits a,b,c,d,etc from high to low then
depth+1 = 2^a + 2^b + 2^c + 2^d ... a>b>c>d...
Ndepth = 1 + (-1
+ 4^a
+ 3 * 4^b
+ 3^2 * 4^c
+ 3^3 * 4^d + ...) / 3
For example depth=5 is depth+1=6 = 2^2+2^1 is Ndepth = 1+(4^2-1)/3 + 4^1 =
10. Or depth=6 is depth+1=7 = 2^2+2^1+2^0 is Ndepth = 1+(4^2-1)/3 + 4^1 +
3*4^0 = 13.
=head2 Self-Similar Replication
The square shape growth to depth=2^level-2 repeats the pattern to the
preceding depth=2^(level-1)-2 three times. For example,
| d d c c depth=6 = 2^3-2
| d c triplicates
| d d c c depth=2 = 2^2-2
| *
| a a b b
| a b
| a a b b
+--------------------
The 3x3 square "a" repeats, pointing SE, NE and NW as "b", "c" and "d".
This resulting 7x7 square then likewise repeats. The points in the path
here are numbered by tree rows rather than by this sort of replication, but
the replication helps to see the structure of the pattern.
=head2 Octant
Option C<parts =E<gt> 'octant'> confines the pattern to the first eighth of
the plane 0E<lt>=YE<lt>=X.
=cut
# math-image --path=UlamWarburtonQuarter,parts=octant --all --output=numbers --size=75x15
=pod
parts => "octant"
14 | 50
13 | 36
12 | 31 49
11 | 26
10 | 24 30 48
9 | 19 35
8 | 17 23 46 47
7 | 15
6 | 14 16 22 45 44
5 | 9 18 34
4 | 7 13 20 21 29 43
3 | 5 25
2 | 4 6 12 37 27 28 42
1 | 2 8 32 33
Y=0 | 1 3 10 11 38 39 40 41
+-------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
In this arrangement N=1,2,4,5,7,etc on the leading diagonal is the last N of
each row (C<tree_depth_to_n_end()>).
=head2 Upper Octant
Option C<parts =E<gt> 'octant_up'> confines the pattern to the upper octant
0E<lt>=XE<lt>=Y of the first quadrant.
=cut
# math-image --path=UlamWarburtonQuarter,parts=octant_up --all --output=numbers --size=75x15
=pod
parts => "octant_up"
14 | 46 45 44 43 40 39 38 37
13 | 35 34 33 32
12 | 47 30 29 42 41 28 27
11 | 26 25
10 | 48 31 23 22 21 20
9 | 36 19 18
8 | 49 50 24 17 16
7 | 15
6 | 13 12 11 10
5 | 9 8
4 | 14 7 6
3 | 5
2 | 4 3
1 | 2
Y=0 | 1
+----------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
In this arrangement N=1,2,3,5,6,etc on the leading diagonal is the first N
of each row (C<tree_depth_to_n()>).
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start, in the same pattern. For example to
start at 0,
=cut
# math-image --path=UlamWarburtonQuarter,n_start=0 --expression='i<22?i:0' --output=numbers
=pod
n_start => 0
7 | 21
6 | 19 18 17 16
5 | 11 10
4 | 20 8 7 15
3 | 5
2 | 4 3 6 14
1 | 1 9
Y=0| 0 2 12 13
+-------------------------
X=0 1 2 3 4 5 6 7
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::UlamWarburtonQuarter-E<gt>new ()>
=item C<$path = Math::PlanePath::UlamWarburtonQuarter-E<gt>new (parts =E<gt> $str, n_start =E<gt> $n)>
Create and return a new path object. C<parts> can be
1 first quadrant, the default
"octant" first eighth
"octant_up" upper eighth
=back
=head2 Tree Methods
=over
=item C<@n_children = $path-E<gt>tree_n_children($n)>
Return the children of C<$n>, or an empty list if C<$n> has no children
(including when C<$n E<lt> 1>, ie. before the start of the path).
The children are the cells turned on adjacent to C<$n> at the next row. The
way points are numbered means that when there's multiple children they're
consecutive N values, for example at N=12 the children 19,20,21.
=item C<$n_parent = $path-E<gt>tree_n_parent($n)>
Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the start of
the path).
=back
=head2 Tree Descriptive Methods
=over
=item C<@nums = $path-E<gt>tree_num_children_list()>
Return a list of the possible number of children at the nodes of C<$path>.
This is the set of possible return values from C<tree_n_num_children()>.
parts tree_num_children_list()
----- ------------------------
1 0, 1, 3
octant 0, 1, 2, 3
octant_up 0, 1, 2, 3
The octant forms have 2 children when branching from the leading diagonal,
otherwise 0,1,3.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<($n_start, tree_depth_to_n_end(2**($level+1) - 2))>.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path includes
=over
L<http://oeis.org/A151920> (etc)
=back
parts=1 (the default)
A147610 num cells in row, tree_depth_to_width()
A151920 total cells to depth, tree_depth_to_n_end()
parts=octant,octant_up
A079318 num cells in row, tree_depth_to_width()
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::UlamWarburton>,
L<Math::PlanePath::LCornerTree>,
L<Math::PlanePath::CellularRule>
L<Math::PlanePath::SierpinskiTriangle> (a similar binary ones-count related
calculation)
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|