This file is indexed.

/usr/share/perl5/Math/PlanePath/WythoffPreliminaryTriangle.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Copyright 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# x=45,y=10 x=59,y=19  dx=14,dy=9 14/9=1.55
#
# x=42,y=8 x=113,y=52 dx=71,dy=44 71/44=1.613
#
# below
# 32,12 to 36,4 sqrt((32-36)^2+(12-4)^2) = 9
# 84,34 to 99,14 sqrt((84-99)^2+(34-14)^2) = 25
# 180,64 to 216,11 sqrt((180-216)^2+(64-11)^2) = 64
#
# above
# 14,20 to 5,32 sqrt((14-5)^2+(20-32)^2) = 15 = 9*1.618               3
# 34,50 to 14,85 sqrt((34-14)^2+(50-85)^2) = 40 = 25*1.618            5
# 132,158 to 77,247 sqrt((132-77)^2+(158-247)^2) = 104 = 64*1.618     8
# 8,525 to 133,280  sqrt((8-133)^2+(525-280)^2) = 275 = 169*1.618    13


package Math::PlanePath::WythoffPreliminaryTriangle;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'bit_split_lowtohigh';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant y_minimum => 1;
use constant diffxy_maximum => -1;  # Y>=X+1 so X-Y <= -1

# Apparent minimum dx=F(i),dy=F(i+5)
# eg. N=57313   dx=377,dy=34    F(14),F(9)
#     N=392835  dx=987,dy=89    F(16),F(11)
#     N=2692537 dx=2584,dy=233  F(18),F(13)
# dy/dx -> 1/phi^5
use constant dir_minimum_dxdy => (((1+sqrt(5))/2)**5, 1);
use constant dir_maximum_dxdy => (1,-1);  # SE at N=5

use Math::PlanePath::WythoffArray;
my $wythoff = Math::PlanePath::WythoffArray->new;

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'shift'} ||= 0;
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### WythoffPreliminaryTriangle n_to_xy(): $n

  if ($n < 1) { return; }
  if (is_infinite($n) || $n == 0) { return ($n,$n); }

  {
    # fractions on straight line ?
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  # prev+y=x
  # prev = x-y
  $n -= 1;
  my $y = $wythoff->xy_to_n(0,$n);
  my $x = $wythoff->xy_to_n(1,$n);

  while ($y <= $x) {
    ### at: "y=$y x=$x"
    ($y,$x) = ($x-$y,$y);
  }
  ### reduction to: "y=$y x=$x"

  ### return: "y=$y x=$x"
  return ($x, $y);
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  return $x >= 0 && $x < $y;
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### WythoffPreliminaryTriangle xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  my $orig_x = $x;
  my $orig_y = $y;
  if (is_infinite($y)) { return $y; }

  unless ($x >= 0 && $x < $y) {
    return undef;
  }

  ($y,$x) = ($x,$x+$y);
  foreach (0 .. 500) {
    ($y,$x) = ($x,$x+$y);
    ### at: "seek y=$y x=$x"
    my ($c,$r) = $wythoff->n_to_xy($y) or next;
    my $wx = $wythoff->xy_to_n($c+1,$r);
    if (defined $wx && $wx == $x) {
      ### found: "pair $y $x at c=$c r=$r"
      my $n = $r+1;
      my ($nx,$ny) = $self->n_to_xy($n);
      ### nxy: "nx=$nx, ny=$ny"
      if ($nx == $orig_x && $ny == $orig_y) {
        return $n;
      } else {
        ### no match: "cf x=$x y=$y"
        return undef;
      }
    }
  }
  ### not found ...
  return undef;
}

sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### WythoffPreliminaryTriangle rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  if ($x2 < 0 || $y2 < 1) {
    ### all outside first quadrant ...
    return (1, 0);
  }

  return (1,
          $self->xy_to_n(0,2*abs($y2)));
}

1;
__END__

=for stopwords eg Ryde Math-PlanePath Moore Wythoff Zeckendorf concecutive fibbinary OEIS Kimberling precurses

=head1 NAME

Math::PlanePath::WythoffPreliminaryTriangle -- Wythoff row containing X,Y recurrence

=head1 SYNOPSIS

 use Math::PlanePath::WythoffPreliminaryTriangle;
 my $path = Math::PlanePath::WythoffPreliminaryTriangle->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Kimberling, Clark>This path is the Wythoff preliminary triangle by Clark
Kimberling,

=cut

# math-image  --path=WythoffPreliminaryTriangle --output=numbers --all --size=60x14

=pod

     13  | 105 118 131 144  60  65  70  75  80  85  90  95 100
     12  |  97 110  47  52  57  62  67  72  77  82  87  92    
     11  |  34  39  44  49  54  59  64  69  74  79  84        
     10  |  31  36  41  46  51  56  61  66  71  76            
      9  |  28  33  38  43  48  53  58  63  26                
      8  |  25  30  35  40  45  50  55  23                    
      7  |  22  27  32  37  42  18  20                        
      6  |  19  24  29  13  15  17                            
      5  |  16  21  10  12  14                                
      4  |   5   7   9  11                                    
      3  |   4   6   8                                        
      2  |   3   2                                            
      1  |   1                                                
    Y=0  |                                                    
         +-----------------------------------------------------
           X=0   1   2   3   4   5   6   7   8   9  10  11  12

A given N is at an X,Y position in the triangle according to where row
number N of the Wythoff array "precurses" back to.  Each Wythoff row is a
Fibonacci recurrence.  Starting from the pair of values in the first and
second columns of row N it can be run in reverse by

    F[i-1] = F[i+i] - F[i]

It can be shown that such a reverse always reaches a pair Y and X with
YE<gt>=1 and 0E<lt>=XE<lt>Y, hence making the triangular X,Y arrangement
above.

    N=7 WythoffArray row 7 is 17,28,45,73,...
    go backwards from 17,28 by subtraction
       11 = 28 - 17
        6 = 17 - 11
        5 = 11 - 6
        1 = 6 - 5
        4 = 5 - 1
    stop on reaching 4,1 which is Y=4,X=1 with Y>=1 and 0<=X<Y

Conversely a coordinate pair X,Y are reckoned as the start of a Fibonacci
style recurrence,

    F[i+i] = F[i] + F[i-1]   starting F[1]=Y, F[2]=X       

Iterating these values gives a row of the Wythoff array
(L<Math::PlanePath::WythoffArray>) after some initial iterations.  The N
value at X,Y is the row number of the Wythoff array which is reached.  Rows
are numbered starting from 1.  For example,

    Y=4,X=1 sequence:       4, 1, 5, 6, 11, 17, 28, 45, ...
    row 7 of WythoffArray:                  17, 28, 45, ...
    so N=7 at Y=4,X=1

=cut

# =head2 Phi Slope Blocks
# 
# The effect of each step backwards is to move to successive blocks of values
# with slope golden ratio phi=(sqrt(5)+1)/2.
# 
# Suppose no backwards steps were applied, so Y,X were the first two values of
# Wythoff row N.  In the example above that would be N=7 at Y=17,X=28.  The
# first two values of the Wythoff array are
# 
#     Y = W[0,r] = r-1 + floor(r*phi)       # r = row numbered from 1
#     X = W[1,r] = r-1 + 2*floor(r*phi)
# 
# So this would put N values on a line of slope Y/X = 1/phi = 0.618.  The
# portion of that line which falls within 0E<lt>=XE<lt>Y

=pod

=cut

# (r-1 + floor(r*phi)) / (r-1 + 2*floor(r*phi))
#   ~= (r-1+r*phi)/(r-1+2*r*phi)
#    = (r*(phi+1) - 1) / (r*(2phi+1) - 1)
#   -> r*(phi+1) / r*(2*phi+1)
#    = (phi+1) / (2*phi+1)
#    = 1/phi = 0.618

=pod

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.

=over 4

=item C<$path = Math::PlanePath::WythoffPreliminaryTriangle-E<gt>new ()>

Create and return a new path object.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A165360> (etc)

=back

    A165360     X
    A165359     Y
    A166309     N by rows
    A173027     N on Y axis

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::WythoffArray>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut