/usr/share/perl5/Math/PlanePath/WythoffPreliminaryTriangle.pm is in libmath-planepath-perl 117-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | # Copyright 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# x=45,y=10 x=59,y=19 dx=14,dy=9 14/9=1.55
#
# x=42,y=8 x=113,y=52 dx=71,dy=44 71/44=1.613
#
# below
# 32,12 to 36,4 sqrt((32-36)^2+(12-4)^2) = 9
# 84,34 to 99,14 sqrt((84-99)^2+(34-14)^2) = 25
# 180,64 to 216,11 sqrt((180-216)^2+(64-11)^2) = 64
#
# above
# 14,20 to 5,32 sqrt((14-5)^2+(20-32)^2) = 15 = 9*1.618 3
# 34,50 to 14,85 sqrt((34-14)^2+(50-85)^2) = 40 = 25*1.618 5
# 132,158 to 77,247 sqrt((132-77)^2+(158-247)^2) = 104 = 64*1.618 8
# 8,525 to 133,280 sqrt((8-133)^2+(525-280)^2) = 275 = 169*1.618 13
package Math::PlanePath::WythoffPreliminaryTriangle;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'bit_split_lowtohigh';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant y_minimum => 1;
use constant diffxy_maximum => -1; # Y>=X+1 so X-Y <= -1
# Apparent minimum dx=F(i),dy=F(i+5)
# eg. N=57313 dx=377,dy=34 F(14),F(9)
# N=392835 dx=987,dy=89 F(16),F(11)
# N=2692537 dx=2584,dy=233 F(18),F(13)
# dy/dx -> 1/phi^5
use constant dir_minimum_dxdy => (((1+sqrt(5))/2)**5, 1);
use constant dir_maximum_dxdy => (1,-1); # SE at N=5
use Math::PlanePath::WythoffArray;
my $wythoff = Math::PlanePath::WythoffArray->new;
sub new {
my $self = shift->SUPER::new(@_);
$self->{'shift'} ||= 0;
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### WythoffPreliminaryTriangle n_to_xy(): $n
if ($n < 1) { return; }
if (is_infinite($n) || $n == 0) { return ($n,$n); }
{
# fractions on straight line ?
my $int = int($n);
if ($n != $int) {
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
# prev+y=x
# prev = x-y
$n -= 1;
my $y = $wythoff->xy_to_n(0,$n);
my $x = $wythoff->xy_to_n(1,$n);
while ($y <= $x) {
### at: "y=$y x=$x"
($y,$x) = ($x-$y,$y);
}
### reduction to: "y=$y x=$x"
### return: "y=$y x=$x"
return ($x, $y);
}
sub xy_is_visited {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
$y = round_nearest ($y);
return $x >= 0 && $x < $y;
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### WythoffPreliminaryTriangle xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
my $orig_x = $x;
my $orig_y = $y;
if (is_infinite($y)) { return $y; }
unless ($x >= 0 && $x < $y) {
return undef;
}
($y,$x) = ($x,$x+$y);
foreach (0 .. 500) {
($y,$x) = ($x,$x+$y);
### at: "seek y=$y x=$x"
my ($c,$r) = $wythoff->n_to_xy($y) or next;
my $wx = $wythoff->xy_to_n($c+1,$r);
if (defined $wx && $wx == $x) {
### found: "pair $y $x at c=$c r=$r"
my $n = $r+1;
my ($nx,$ny) = $self->n_to_xy($n);
### nxy: "nx=$nx, ny=$ny"
if ($nx == $orig_x && $ny == $orig_y) {
return $n;
} else {
### no match: "cf x=$x y=$y"
return undef;
}
}
}
### not found ...
return undef;
}
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### WythoffPreliminaryTriangle rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x2 < 0 || $y2 < 1) {
### all outside first quadrant ...
return (1, 0);
}
return (1,
$self->xy_to_n(0,2*abs($y2)));
}
1;
__END__
=for stopwords eg Ryde Math-PlanePath Moore Wythoff Zeckendorf concecutive fibbinary OEIS Kimberling precurses
=head1 NAME
Math::PlanePath::WythoffPreliminaryTriangle -- Wythoff row containing X,Y recurrence
=head1 SYNOPSIS
use Math::PlanePath::WythoffPreliminaryTriangle;
my $path = Math::PlanePath::WythoffPreliminaryTriangle->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Kimberling, Clark>This path is the Wythoff preliminary triangle by Clark
Kimberling,
=cut
# math-image --path=WythoffPreliminaryTriangle --output=numbers --all --size=60x14
=pod
13 | 105 118 131 144 60 65 70 75 80 85 90 95 100
12 | 97 110 47 52 57 62 67 72 77 82 87 92
11 | 34 39 44 49 54 59 64 69 74 79 84
10 | 31 36 41 46 51 56 61 66 71 76
9 | 28 33 38 43 48 53 58 63 26
8 | 25 30 35 40 45 50 55 23
7 | 22 27 32 37 42 18 20
6 | 19 24 29 13 15 17
5 | 16 21 10 12 14
4 | 5 7 9 11
3 | 4 6 8
2 | 3 2
1 | 1
Y=0 |
+-----------------------------------------------------
X=0 1 2 3 4 5 6 7 8 9 10 11 12
A given N is at an X,Y position in the triangle according to where row
number N of the Wythoff array "precurses" back to. Each Wythoff row is a
Fibonacci recurrence. Starting from the pair of values in the first and
second columns of row N it can be run in reverse by
F[i-1] = F[i+i] - F[i]
It can be shown that such a reverse always reaches a pair Y and X with
YE<gt>=1 and 0E<lt>=XE<lt>Y, hence making the triangular X,Y arrangement
above.
N=7 WythoffArray row 7 is 17,28,45,73,...
go backwards from 17,28 by subtraction
11 = 28 - 17
6 = 17 - 11
5 = 11 - 6
1 = 6 - 5
4 = 5 - 1
stop on reaching 4,1 which is Y=4,X=1 with Y>=1 and 0<=X<Y
Conversely a coordinate pair X,Y are reckoned as the start of a Fibonacci
style recurrence,
F[i+i] = F[i] + F[i-1] starting F[1]=Y, F[2]=X
Iterating these values gives a row of the Wythoff array
(L<Math::PlanePath::WythoffArray>) after some initial iterations. The N
value at X,Y is the row number of the Wythoff array which is reached. Rows
are numbered starting from 1. For example,
Y=4,X=1 sequence: 4, 1, 5, 6, 11, 17, 28, 45, ...
row 7 of WythoffArray: 17, 28, 45, ...
so N=7 at Y=4,X=1
=cut
# =head2 Phi Slope Blocks
#
# The effect of each step backwards is to move to successive blocks of values
# with slope golden ratio phi=(sqrt(5)+1)/2.
#
# Suppose no backwards steps were applied, so Y,X were the first two values of
# Wythoff row N. In the example above that would be N=7 at Y=17,X=28. The
# first two values of the Wythoff array are
#
# Y = W[0,r] = r-1 + floor(r*phi) # r = row numbered from 1
# X = W[1,r] = r-1 + 2*floor(r*phi)
#
# So this would put N values on a line of slope Y/X = 1/phi = 0.618. The
# portion of that line which falls within 0E<lt>=XE<lt>Y
=pod
=cut
# (r-1 + floor(r*phi)) / (r-1 + 2*floor(r*phi))
# ~= (r-1+r*phi)/(r-1+2*r*phi)
# = (r*(phi+1) - 1) / (r*(2phi+1) - 1)
# -> r*(phi+1) / r*(2*phi+1)
# = (phi+1) / (2*phi+1)
# = 1/phi = 0.618
=pod
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.
=over 4
=item C<$path = Math::PlanePath::WythoffPreliminaryTriangle-E<gt>new ()>
Create and return a new path object.
=back
=head1 OEIS
Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include
=over
L<http://oeis.org/A165360> (etc)
=back
A165360 X
A165359 Y
A166309 N by rows
A173027 N on Y axis
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::WythoffArray>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|