This file is indexed.

/usr/share/perl5/Math/Symbolic/Custom/DefaultMods.pm is in libmath-symbolic-perl 0.612-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
=encoding utf8

=head1 NAME

Math::Symbolic::Custom::DefaultMods - Default Math::Symbolic transformations

=head1 SYNOPSIS

  use Math::Symbolic;

=head1 DESCRIPTION

This is a class of default transformations for Math::Symbolic trees. Likewise,
Math::Symbolic::Custom::DefaultTests defines default tree testing
routines.
For details on how the custom method delegation model works, please have
a look at the Math::Symbolic::Custom and Math::Symbolic::Custom::Base
classes.

=head2 EXPORT

Please see the docs for Math::Symbolic::Custom::Base for details, but
you should not try to use the standard Exporter semantics with this
class.

=head1 SUBROUTINES

=cut

package Math::Symbolic::Custom::DefaultMods;

use 5.006;
use strict;
use warnings;
no warnings 'recursion';

our $VERSION = '0.612';

use Math::Symbolic::Custom::Base;
BEGIN { *import = \&Math::Symbolic::Custom::Base::aggregate_import }

use Math::Symbolic::ExportConstants qw/:all/;

use Carp;

# Class Data: Special variable required by Math::Symbolic::Custom
# importing/exporting functionality.
# All subroutines that are to be exported to the Math::Symbolic::Custom
# namespace should be listed here.

our $Aggregate_Export = [
    qw/
      apply_derivatives
      apply_constant_fold
      mod_add_constant
      mod_multiply_constant
      /
];

=head2 apply_derivatives()

Never modifies the tree in-place, but returns a modified copy of the
original tree instead.

Applied to variables and constants, this method just clones.

Applied to operators and if the operator is a derivative, this applies
the derivative to the derivative's first operand.

Regardless what kind of operator this is called on, apply_derivatives
will be applied recursively on its operands.

If the first parameter to this function is an integer, at maximum that
number of derivatives are applied (from top down the tree if possible).

=cut

sub apply_derivatives {
    my $tree = shift;
    my $n    = shift || -1;

    return $tree->descend(
        in_place => 0,
        before   => sub {
            my $tree  = shift;
            my $ttype = $tree->term_type();
            if ( $ttype == T_CONSTANT || $ttype == T_VARIABLE ) {
                return undef;
            }
            elsif ( $ttype == T_OPERATOR ) {
                my $max_derivatives = $n;
                my $type            = $tree->type();

                while (
                    $n
                    && (   $type == U_P_DERIVATIVE
                        or $type == U_T_DERIVATIVE )
                  )
                {
                    my $op = $Math::Symbolic::Operator::Op_Types[$type];

                    my $operands    = $tree->{operands};
                    my $application = $op->{application};

                    if (    $type == U_T_DERIVATIVE
                        and $operands->[0]->term_type() == T_VARIABLE )
                    {
                        my @sig = $operands->[0]->signature();

                        my $name = $operands->[1]->name();

                        if (
                            ( grep { $_ eq $name } @sig ) > 0
                            and not(@sig == 1
                                and $sig[0] eq $name )
                          )
                        {
                            return undef;
                        }
                    }
                    $tree->replace( $application->(@$operands) );
                    return undef
                      unless $tree->term_type() == T_OPERATOR;

                    $type = $tree->type();
                    $n--;
                }
                return ();
            }
            else {
                croak "apply_derivatives called on invalid " . "tree type.";
            }

            die "Sanity check in apply_derivatives() should not "
              . "be reached.";
        },
    );
}

=head2 apply_constant_fold()

Does not modify the tree in-place by default, but returns a modified copy
of the original tree instead. If the first argument is true, the tree will
not be cloned. If it is false or not existant, the tree will be cloned.

Applied to variables and constants, this method just clones.

Applied to operators, all tree segments that contain constants and
operators only will be replaced with Constant objects.

=cut

sub apply_constant_fold {
    my $tree     = shift;
    my $in_place = shift;

    return $tree->descend(
        in_place => $in_place,
        before   => sub {
            my $tree = shift;
            if ( $tree->is_simple_constant() ) {
                $tree->replace( $tree->apply() )
                  unless $tree->term_type() == T_CONSTANT;
                return undef;
            }

            return undef if $tree->term_type() == T_VARIABLE;
            return { in_place => 1, descend_into => [] };
        }
    );

    return $tree;
}

=head2 mod_add_constant

Given a constant (object or number) as argument, this method tries
hard to fold it into an existing constant of the object this is called
on is already a sum or a difference.

Basically, this is the same as C<$tree + $constant> but does some
simplification.

=cut

sub mod_add_constant {
    my $tree = shift;
    my $constant = shift;

    return $tree if not $constant;
    $constant = $constant->value() if ref($constant);
    
    my $tt = $tree->term_type();
    if ($tt == T_CONSTANT) {
        return Math::Symbolic::Constant->new($tree->{value}+$constant);
    }
    elsif ($tt == T_OPERATOR) {
        my $type = $tree->type();

        if ($type == B_SUM || $type == B_DIFFERENCE) {
            my $ops = $tree->{operands};
            my $const_op;
            if ($ops->[0]->is_simple_constant()) {
                $const_op = 0;
            } elsif ($ops->[1]->is_simple_constant()) {
                $const_op = 1;
            }
            if (defined $const_op) {
                my $value = $ops->[$const_op]->value();
                my $other = $ops->[($const_op+1)%2];

                if ($const_op == 0) {
                    $value += $constant;
                }
                else { # second
                    $value = $type==B_SUM ? $value + $constant : $value - $constant;
                }

                if ($value == 0) {
                    return $other if $const_op == 1 or $type == B_SUM;
                    return Math::Symbolic::Constant->new(-$other->{value});
                }
                return Math::Symbolic::Operator->new(
                    ($type == B_DIFFERENCE ? '-' : '+'), # op-type
                    $const_op == 0 # order of ops 
                      ?($value, $other)
                      :($other, $value)
                );
            }
            if ($ops->[1]->term_type() == T_OPERATOR) {
                my $otype = $ops->[1]->type();
                if ($otype == B_SUM || $otype == B_DIFFERENCE) {
                    return Math::Symbolic::Operator->new(
                        ($type == B_SUM ? '+' : '-'),
                        $ops->[0],
                        $ops->[1]->mod_add_constant($constant)
                    );
                }
            }
            else {
                return Math::Symbolic::Operator->new(
                    ($type == B_SUM ? '+' : '-'),
                    $ops->[0]->mod_add_constant($constant),
                    $ops->[1],
                );
            }
        }
    }

    # fallback: variable, didn't apply, etc.
    return Math::Symbolic::Operator->new(
        '+', Math::Symbolic::Constant->new($constant), $tree
    );
}


=head2 mod_multiply_constant

Given a constant (object or number) as argument, this method tries
hard to fold it into an existing constant of the object this is called
on is already a product or a division.

Basically, this is the same as C<$tree * $constant> but does some
simplification.

=cut

sub mod_multiply_constant {
    my $tree = shift;
    my $constant = shift;

    return $tree if not defined $constant;
    $constant = $constant->value() if ref($constant);
    return $tree if $constant == 1;
    return Math::Symbolic::Constant->zero() if $constant == 0;
    
    my $tt = $tree->term_type();
    if ($tt == T_CONSTANT) {
        return Math::Symbolic::Constant->new($tree->{value}*$constant);
    }
    elsif ($tt == T_OPERATOR) {
        my $type = $tree->type();

        if ($type == B_PRODUCT || $type == B_DIVISION) {
            my $ops = $tree->{operands};
            my $const_op;
            if ($ops->[0]->is_simple_constant()) {
                $const_op = 0;
            } elsif ($ops->[1]->is_simple_constant()) {
                $const_op = 1;
            }
            if (defined $const_op) {
                my $value = $ops->[$const_op]->value();
                my $other = $ops->[($const_op+1)%2];

                if ($const_op == 0) {
                    $value *= $constant;
                }
                else { # second
                    $value = $type==B_PRODUCT ? $value * $constant : $value / $constant;
                }

                if ($value == 1) {
                    return $other if $const_op == 1 or $type == B_PRODUCT;
                    return Math::Symbolic::Constant->new(1/$other->{value});
                }
                return Math::Symbolic::Operator->new(
                    ($type == B_DIVISION ? '/' : '*'), # op-type
                    $const_op == 0 # order of ops 
                      ?($value, $other)
                      :($other, $value)
                );
            }
            if ($ops->[1]->term_type() == T_OPERATOR) {
                my $otype = $ops->[1]->type();
                if ($otype == B_PRODUCT || $otype == B_DIVISION) {
                    return Math::Symbolic::Operator->new(
                        ($type == B_PRODUCT ? '*' : '/'),
                        $ops->[0],
                        $ops->[1]->mod_multiply_constant($constant)
                    );
                }
            }
            else {
                return Math::Symbolic::Operator->new(
                    ($type == B_PRODUCT ? '*' : '('),
                    $ops->[0]->mod_multiply_constant($constant),
                    $ops->[1],
                );
            }
        }
    }

    # fallback: variable, didn't apply, etc.
    return Math::Symbolic::Operator->new(
        '*', Math::Symbolic::Constant->new($constant), $tree
    );
}

=begin comment

warn "mod_join_simple to be implemented in DefaultMods!";
sub mod_join_simple {
    my $o1   = shift;
    my $o2   = shift;
    my $type = shift;

    if ( $type == B_PRODUCT ) {
        return undef
          unless Math::Symbolic::Custom::is_identical_base( $o1, $o2 );

        my $tt1 = $o1->term_type();
        my $tt2 = $o2->term_type();
        my ( $base, $exp1 ) =
            ( $tt1 == T_OPERATOR and $o1->type() == B_EXP )
          ? ( $o1->op1(), $o1->op2() )
          : ( $o1, Math::Symbolic::Constant->one() );

        my $exp2 =
          ( $tt2 == T_OPERATOR and $o2->type() == B_EXP )
          ? $o2->op2()
          : Math::Symbolic::Constant->one();

        return Math::Symbolic::Operator->new( '^', $base,
            Math::Symbolic::Operator->new( '+', $exp1, $exp2 )->simplify() );
    }
}

=end comment

=cut

1;
__END__

=head1 AUTHOR

Please send feedback, bug reports, and support requests to the Math::Symbolic
support mailing list:
math-symbolic-support at lists dot sourceforge dot net. Please
consider letting us know how you use Math::Symbolic. Thank you.

If you're interested in helping with the development or extending the
module's functionality, please contact the developers' mailing list:
math-symbolic-develop at lists dot sourceforge dot net.

List of contributors:

  Steffen Müller, symbolic-module at steffen-mueller dot net
  Stray Toaster, mwk at users dot sourceforge dot net
  Oliver Ebenhöh

=head1 SEE ALSO

New versions of this module can be found on
http://steffen-mueller.net or CPAN. The module development takes place on
Sourceforge at http://sourceforge.net/projects/math-symbolic/

L<Math::Symbolic::Custom>
L<Math::Symbolic::Custom::DefaultDumpers>
L<Math::Symbolic::Custom::DefaultTests>
L<Math::Symbolic>

=cut